Cornell University

Mathematics > Classical Analysis and ODEs

Illumination by Tangent Lines

Alan Horwitz

(Submitted on 28 Jul 2011)
Let f be a differentiable function on the real line, and let $P \backslash i n G _\{f\} \wedge\{C\}=$ all points not on the graph of f. We say that the illumination index of P, denoted by $I _\{f\}(P)$, is k if there are k distinct tangents to the graph of f which pass through P. In section 2 we prove results about the illumination index of f with f" (x)\geq 0 on \backslash Re. In particular, suppose that $y=L _1(x)$ and $y=L _2(x)$ are distinct oblique asymptotes of f and let $P=(s, t)$ in $G _\{f\} \wedge\{C\}$. If $\max \left(L_{-} 1(s), L _2\right.$ $(s))<t<f(s)$, then $I _\{f\}(P)=2$. If $L _1(s) \backslash n o t=L _2(s)$ and $\min \left(L_{-} 1(s), L _1(s)\right)$ <tlleqmax(L_1(s),L_2(s)), then I_\{f\}(P)=1.
Finally, if t_leqmin(L_1(s),L_2(s)), then I_\{f\}(P)=0. We also show that any point below the graph of a convex rational function or exponential polynomial must have illumination index equal to 2 . In section 3 we also prove results about the illumination index of polynomials.

Comments: Submitted for publication to the International Journal of Pure and Applied Mathematics. 22 pages, no figures
Subjects: Classical Analysis and ODEs (math.CA)
MSC classes: 26A06 (primary)
Cite as: arXiv:1107.5614v1 [math.CA]

Submission history

From: Alan Horwitz [view email]
[v1] Thu, 28 Jul 2011 01:30:58 GMT (11kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

