Mathematics > Functional Analysis

Average Number of Lattice Points in a Disk

Sujay Jayakar, Robert S. Strichartz

(Submitted on 7 Jun 2012)
The difference between the number of lattice points in a disk of radius \$\$sqrt $\{t\} / 2 \backslash \mathrm{pi} \$$ and the area of the disk $\$ \mathrm{t} / 4$ lpi\$ is equal to the error in the Weyl asymptotic estimate for the eigenvalue counting function of the Laplacian on the standard flat torus. We give a sharp asymptotic expression for the average value of the difference over the interval $\$ 0 \backslash$ leq t leq $R \$$. We obtain similar results for families of ellipses. We also obtain relations to the eigenvalue counting function for the Klein bottle and projective plane.

Download:

- PDF
- Other formats

Current browse context: math.FA
< prev | next > new | recent | 1206

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)

Comments: 11 pages, 12 figures
Subjects: Functional Analysis (math.FA)
MSC classes: 35J05, 42B99 (Primary)
Cite as: arXiv:1206.1613v1 [math.FA]

Submission history

From: Sujay Jayakar [view email]
[v1] Thu, 7 Jun 2012 20:56:27 GMT (1754kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

