PRODUCTS OF UNBOUNDED NORMAL OPERATORS

MOHAMMED HICHEM MORTAD

Abstract

The present paper partly constitutes an "unbounded" follow-up of a paper by I. Kaplansky dealing with bounded products of normal operators. Results on the normality of unbounded products are also included.

1. Introduction

In this paper we are concerned with the normality of the products $A B$ and $B A$ for two operators, where B is unbounded. The problems of this sort lie among the most fundamental questions in the Hilbert space theory and were explored by many authors, especially in the bounded case (see [7, 8, 19, 20]). See also the paper [3] and the references therein. Nonetheless, only a few shy attempts where made in the unbounded case. See the very recent papers [6] and [?].

We also cite the reference [11] where the following result (among others) has been obtained

Theorem 1.

(1) Assume that B is a unitary operator. Let A be an unbounded normal operator. If B and A commute (i.e. $B A \subset A B$), then $B A$ is normal.
(2) Assume that A is a unitary operator. Let B be an unbounded normal operator. If A and B commute (i.e. $A B \subset B A$), then $B A$ is normal.

For results involving normality and self-adjointness of unbounded operator products, see [9, 10, 11, 6]. For similar papers on the sum of two normal operators, see [12] and (14].

One purpose of this paper is to try to get an analog for unbounded operators of the following result

Theorem 2. [Kaplansky, [7]/ Let A and B be two bounded operators on a Hilbert space such that $A B$ and A are normal. Then B commutes with $A A^{*}$ iff $B A$ is normal.

In order to do that and to allow a broader audience to read the present paper, we recall basic definitions and results on unbounded operators. Some important references are [1, 4, 5, 17].

All operators are assumed to be densely defined (i.e. having a dense domain) together with any operation involving them or their adjoints. Bounded operators are assumed to be defined on the whole Hilbert space. If A and B are two unbounded operators with domains $D(A)$ and $D(B)$ respectively, then B is called an extension of A, and we write $A \subset B$, if $D(A) \subset D(B)$ and if A and B coincide on $D(A)$. We

2000 Mathematics Subject Classification. Primary 47A05. Secondary 47B15, 47B20.
Key words and phrases. Product of operators. Normal, hyponormal, subnormal operators. Fuglede-Putnam theorem.
write $A \subseteq B$ if $A \subset B$ or $A=B$ (meaning that $D(A)=D(B)$ and $A x=B x$ for all $x \in D(A))$.

If $A \subset B$, then $B^{*} \subset A^{*}$. An unbounded operator A is said to be closed if its graph is closed; self-adjoint if $A=A^{*}$ (hence from known facts self-adjoint operators are automatically closed); normal if it is closed and $A A^{*}=A^{*} A$ (this implies that $D\left(A A^{*}\right)=D\left(A^{*} A\right)$).

A densely defined operator A is said to be hyponormal if $D(A) \subset D\left(A^{*}\right)$ and $\left\|A^{*} x\right\| \leq\|A x\|$ for $x \in D(A)$. We say that a densely defined operator S in a Hilbert space H is subnormal if there is another Hilbert space $L \supset H$ and a normal operator N in L such that $S \subset N$. It is wellknown that each subnormal operator is hyponormal and that each hyponormal operator is closable

The Fuglede-Putnam theorem (see [2] and [16]) is important to prove our results so we recall it here

Theorem 3. Let A be a bounded operator. Let N and M be two unbounded normal operators. If $A N \subseteq M A$, then $A N^{*} \subseteq M^{*} A$.

We digress a little bit to say that a new version of this famous theorem has been obtained by the author where all the operators involved are unbounded. See [13].

It is also convenient to recall the following theorem which appeared in [18], but we state it in the form we need.

Theorem 4. If T is a closed subnormal (resp. closed hyponormal) operator and S is a closed hyponormal (resp. closed subnormal) operator verifying $X T^{*} \subset S X$ where X is a bounded operator, then both S and T^{*} are normal once $\operatorname{ker} X=\operatorname{ker} X^{*}=\{0\}$.

2. Main Results

We start by giving a counterexample that shows that the same assumptions, as in Theorem 2 would not yield the same results if B is an unbounded operator, let alone the case where both operators are unbounded.

What we want is a normal bounded operator A and an unbounded (and closed) operator B such that $B A$ is normal, $A^{*} A B \subset B A^{*} A$ but $A B$ is not normal.

Example 1. Let

$$
B f(x)=e^{x^{2}} f(x) \text { and } A f(x)=e^{-x^{2}} f(x)
$$

on their respective domains

$$
D(B)=\left\{f \in L^{2}(\mathbb{R}): e^{x^{2}} f \in L^{2}(\mathbb{R})\right\} \text { and } D(A)=L^{2}(\mathbb{R})
$$

Then A is bounded and self-adjoint (hence normal). B is self-adjoint (hence closed).
Now $A B$ is not normal for it is not closed as $A B \subset I . B A$ is normal as $B A=I$ (on $L^{2}(\mathbb{R})$). Hence $A B \subset B A$ which implies that

$$
A A B \subset A B A \Longrightarrow A A B \subset A B A \subset B A A
$$

Now, we state and prove the generalization of Theorem 2. We have
Theorem 5. Let B be an unbounded closed operator and A a bounded one such that $A B$ (resp. BA) and A are normal. Then

$$
B A \text { normal }(\text { resp. } A B) \Longrightarrow A^{*} A B \subset B A^{*} A
$$

Proof. Since $A B$ and $B A$ are normal, the equation

$$
A(B A)=(A B) A
$$

implies that

$$
A(B A)^{*}=(A B)^{*} A
$$

by the Fuglede-Putnam theorem. Hence

$$
A A^{*} B^{*} \subset B^{*} A^{*} A \text { or } A^{*} A B \subset B A^{*} A
$$

We already observed in Example 1 that the converse in the previous theorem does not hold. An extra hypothesis combined with a result by Stochel [18] yield the following

Theorem 6. If B is an unbounded closed operator and and if A is a bounded one such that $A B$ and A are normal, and if further $B A$ is hyponormal (resp. subnormal), then

$$
B A \text { normal } \Longleftarrow A^{*} A B \subset B A^{*} A
$$

Proof. The idea of proof is similar in core to Kaplansky's ([7]). Let $A=U R$ be the polar decomposition of A, where U is unitary and R is positive (remember that they also commute and that $\left.R=\sqrt{A^{*} A}\right)$, then one may write

$$
U^{*} A B U=U^{*} U R B U=R B U \subset B R U=B A
$$

or

$$
U^{*} A B=U^{*} \overline{A B}=U^{*}\left((A B)^{*}\right)^{*} \subset B A U^{*}
$$

(by the closedness of $A B$). Since $(A B)^{*}$ is normal, it is closed and subnormal. Since B is closed and A is bounded, $B A$ is closed. Since it is hyponormal, Theorem 4 applies and yields the normality of $B A$ as U is invertible.

The proof is very much alike in the case of subnormality.
Now, if we assume that A is unitary, then we have the following interesting result (cf Theorem (1) that bypasses the commutativity of operators. Besides, this constitutes generalization of Theorem 2 with the assumption A unitary.

Theorem 7. If A is unitary and B is an unbounded normal operator, then

$$
B A \text { is normal } \Longleftrightarrow A B \text { is normal. }
$$

Proof. First, recall that self-adjoint operators are maximally symmetric, that is, if T is self-adjoint and S is symmetric, then $T \subset S \Rightarrow T=S$ (we shall call this the MS-property). Second, if T is closed, then $T^{*} T$ and $T T^{*}$ are both self-adjoint (see [17] for both results).

Now, assume that $B A$ is normal. To show that $A B$ is normal observe that it is first closed (which is essential) thanks to the invertibility of A and the closedness of B. We then have

$$
(A B)^{*} A B=B^{*} A^{*} A B=B^{*} B
$$

and

$$
A B(A B)^{*}=A B B^{*} A^{*}
$$

and we must show the equality of the two quantities. We have

$$
A^{*} B^{*} B A \subset(B A)^{*} B A \text { and } B B^{*} \subset B A(B A)^{*}
$$

By the closedness of B and that of $B A$, and the MS-property

$$
B B^{*}=B A(B A)^{*}
$$

By the normality of $B A$, we obtain

$$
A^{*} B^{*} B A \subset B B^{*} \text { or } A^{*} B^{*} B \subset B B^{*} A^{*}
$$

Hence

$$
A B(A B)^{*}=A B B^{*} A^{*} \supset A A^{*} B^{*} B=B^{*} B=(A B)^{*} A B
$$

Therefore, and by the MS-property again, we must have

$$
A B(A B)^{*}=(A B)^{*} A B
$$

To prove the converse, we may argue similarly with some minor changes. Suppose that $A B$ is normal and let us show that $B A$ is normal too.

Firstly, note that $B A$ is closed, but this time, since B is closed and A is bounded.
Secondly, and by the normality of $A B$, we have

$$
(A B)^{*} A B=B^{*} B=A B(A B)^{*}=A B B^{*} A^{*}
$$

and hence

$$
A B B^{*}=B^{*} B A
$$

Accordingly, we have

$$
(B A)^{*} B A \supset A^{*} B^{*} B A=A^{*} A B B^{*}=B B^{*}
$$

and

$$
B A(B A)^{*} \supset B B^{*}
$$

By the MS-property, we must have

$$
(B A)^{*} B A=B B^{*} \text { and } B A(B A)^{*}=B B^{*}
$$

proving the normality of $B A$. The proof is complete.

References

1. J. B. Conway, A Course in Functional Analysis, Springer, 1990 (2nd edition).
2. B. Fuglede, A Commutativity Theorem for Normal Operators, Proc. Nati. Acad. Sci., 36 (1950) 35-40.
3. A. Gheondea, When are the products of normal operators normal? Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52(100)/2 (2009) 129-150.
4. I. Gohberg, S. Goldberg, M. A. Kaashoek, Basic Classes of Linear Operators, Birkhäuser Verlag, Basel, 2003.
5. S. Goldberg, Unbounded Linear Operators, McGraw-Hill, 1966.
6. K. Gustafson, M. H. Mortad, On Products of Unbounded Operators, (submitted).
7. I. Kaplansky, Products of normal operators, Duke Math. J., 20/2 (1953) 257-260.
8. F. Kittaneh, On the normality of operator products, Linear and Multilinear Algebra, 30/1-2 (1991) 1-4.
9. M. H. Mortad, An application of the Putnam-Fuglede theorem to normal products of selfadjoint operators, Proc. Amer. Math. Soc., 131/10, (2003) 3135-3141.
10. M. H. Mortad, On some product of two unbounded self-adjoint operators, Integral Equations Operator Theory, 64/3, (2009) 399-408.
11. M. H. Mortad, On the closedness, the self-adjointness and the normality of the product of two unbounded operators, Demonstratio Math., 45/1 (2012), 161-167.
12. M. H. Mortad, On the normality of the sum of two normal operators, Complex Anal. Oper. Theory, $\mathbf{6 / 1}$ (2012), 105-112. DOI: 10.1007/s11785-010-0072-7.
13. M. H. Mortad, An all-unbounded-operator Vversion of the Fuglede-Putnam theorem, Complex Anal. Oper. Theory, (to appear). DOI: 10.1007/s11785-011-0133-6.
14. M. H. Mortad, The sum of two unbounded linear operators: closedness, self-adjointness, normality and much more, (submitted). arXiv:1203.2545
15. M. H. Mortad, Kh. Madani, More on the normality of the unbounded product of two normal operators, (submitted). arXiv: 1202.6142.
16. C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math., 73 (1951) 357-362.
17. W. Rudin, Functional analysis, McGraw-Hill, 1991 (2nd edition).
18. J. Stochel, An asymmetric Putnam-Fuglede theorem for unbounded operators, Proc. Amer. Math. Soc., 129/8 (2001) 2261-2271.
19. N.A. Wiegmann, Normal products of matrices. Duke Math J., 15, (1948) 633-638.
20. N.A. Wiegmann, A note on infinite normal matrices. Duke Math. J., 16 (1949) 535-538.

Département de Mathématiques, Université d'Oran, B.P. 1524, El Menouar, Oran 31000, Algeria.
Mailing address:
Dr Mohammed Hichem Mortad
BP 7085 Seddikia Oran
31013
Algeria
E-mail address: mhmortad@gmail.com, mortad@univ-oran.dz.

