Quantum Physics

Exact nonequilibrium steady state of a strongly driven open XXZ chain

Tomaz Prosen

(Submitted on 15 Jun 2011 (v1), last revised 19 Sep 2011 (this version, v2))
An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair of Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator of a finite system of size n is - apart from a normalization constant a polynomial of degree $2 \mathrm{n}-2$ in the coupling constant. Efficient computation of physical observables is faciliated in terms of a transfer operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, $1 / \mathrm{n}^{\wedge} 2$ scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)].

Comments: $\quad 5$ REVTeX pages; minor corrections + fig. 2 added, essentially
Subjects: Quantum Physics (quant-ph); Statistical Mechanics (cond-mat.statmech); Strongly Correlated Electrons (cond-mat.str-el); Exactly Solvable and Integrable Systems (nlin.SI)
Journal reference: Phys. Rev. Lett. 107, 137201 (2011)
Cite as: arXiv:1106.2978v2 [quant-ph]

Submission history

From: Tomaz Prosen [view email]
[v1] Wed, 15 Jun 2011 14:22:05 GMT (72kb,D)
[v2] Mon, 19 Sep 2011 16:19:12 GMT (158kb,D)
Which authors of this paper are endorsers?

Download:

- PDF
- Other formats

Current browse context:

quant-ph

< prev | next > new | recent | 1106

Change to browse by:
cond-mat
cond-mat.stat-mech cond-mat.str-el nlin nlin.SI

References \& Citations

- INSPIRE HEP (refers to | cited by)
- NASA ADS

Bookmark (what is this?)

Link back to: arXiv, form interface, contact.

