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Self-organization of decaying surface corrugations: A numerical study
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We study numerically the interplay of surface topography and kinetics in the relaxation of crystal surface
corrugations below roughening in two independent space dimensions. The kinetic processes are isotropic

diffusion of adatoms across terraces and attachment-detachment of atoms at steps. We simulate the correspond-

ing anisotropic partial differential equation for the surface height via the finite element method. The numerical

results show a sharp transition from initially biperiodic surface profiles to one-dimensional surface morpholo-
gies. This transition is found to be enhanced by an applied electric field. Our predictions demonstrate the
dramatic influence on morphological relaxation of geometry-induced asymmetries in the adatom fluxes trans-

verse and parallel to step edges.
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I. INTRODUCTION

The drive toward fabrication of nanostructures for data
and energy storage, computing, and sensor arrays has stimu-
lated active interest in the self-assembly and self-
organization of crystal surface structures. A common practice
for realizing these phenomena is to use templates on which
each nanostructure evolves controllably. The template pro-
duction requires understanding how various competing fac-
tors such as geometric, kinetic, and energetic effects can be
tuned to direct self-organization [1].

Below the roughening temperature, the cause of crystal
surface morphological evolution is the microscale motion of
steps [2,3]. These move by mass conservation as adsorbed
atoms (adatoms) diffuse on nanoscale terraces, and attach-
detach at step edges. The combined effect of topography and
kinetics underlies observations of decaying surface corruga-
tions [4—6].

Our starting point is a partial differential equation (PDE)
for the surface height profile. This PDE was derived from the
motion of steps in two independent space dimensions (2D)
[7,8]. Tts distinct ingredient, which is absent from previous
continuum treatments (e.g., [9-11]), is the tensorial mobility
relating the large-scale adatom flux to the step chemical po-
tential gradient. This anisotropy emerges as a geometric ef-
fect from coarse-graining different microscale fluxes trans-
verse and parallel to steps, even if the physics of terraces is
isotropic.

In this Rapid Communication, we study numerically this
relaxation PDE via the finite element method (FEM) in a 2D
periodic setting. We emphasize universal (nonsensitive to
material details) aspects of surface relaxation. A prominent
prediction from our simulations is a fopographic transition: a
sharp passage from 2D to almost one-dimensional (1D) sur-
face profiles at finite times. This transition is controlled by (i)
the surface aspect ratio, (ii) the material kinetic parameters,
and (iii) an applied electric field. Most other continuum re-
laxation treatments rely on a scalar surface mobility. Our
PDE theory (stemming directly from coarse-graining steps in
2D) embodies the distinct behaviors of fluxes normal and
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parallel to step edges and, thus, allows for a geometry-
induced bias of evolution to 1D morphologies.

II. MODEL
The PDE for the height, h(x,y,1), is [7,8]

Gh=BV .{A-V[&V (&) +V-(|Vh|Vh)”,

83 |Vh|
(1)
2
where  V=(d,,4,), B:%(length4 /time), D, is the
(scalar) terrace diffusivity, C; is the equilibrium adatom den-
. . D, , . o
sity at a straight step, and M=_1<B_TA is the tensor mobility

(length?/energy/time); g, expresses the step line tension, g;
expresses entropic and elastic dipole step interactions, and ()
is the atomic volume. Note that (by &, :=d.h)
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where q=% and k is the kinetic rate of atom attachment-
detachment at steps [3]. Equation (1) is the limit of step
dynamics outside facets, i.e., macroscopically flat surface re-
gions. Furthermore, Eq. (1) holds in a variational sense for
all Vi and ensures the fastest decrease in the surface free
energy E=[dA[g,|Vh|+(g5/3)|VA]*] (dA=dxdy), which
comes from a small-slope expansion for the step energy den-
sity [3]. PDE (1) can also be derived via: (i) the chemical
potential u=QO(S5E/ 6h), the variation of E; (ii) the constitu-
tive law J=—-CM-Vu; and (iii) mass conservation,
dh+QJ=0, where J is the adatom flux. Equation (2) for A
(and M) comes directly from coarse graining the step kinet-
ics [7.8].
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III. NUMERICAL METHOD

We exploit this variational framework to simulate PDE
(1) by using the FEM in space [12] and finite differences in
time. PDE (1) is split into two equations: one for the height
h, from mass conservation and the constitutive law for J, and
another for the chemical potential u, the variational deriva-
tive of the energy functional E[4]. We apply a semi-implicit
Euler scheme to express Eq. (1) as a system in the updated
variables (A", u™"') where A"~h(-,n7") and 7' is the
(adaptive) time step. The mobility M and the energy E[h] are
evaluated by use of (A",u") to ensure linearity with
(h™', w™'). We apply periodic boundary conditions in the
box B=[0,\,]X[0,\,]: the initial data for A are periodic
with wavelengths N\, \, (in x and y). The equations for & and
w are recast to their “weak form,” i.e., via multiplication by
a periodic test function ¢ and integration by parts over 3. If
£1=0 the FEM equations for (4, u) read

fdA[M”+1¢—Qg3|Vh”|Vh”” -V$]=0, 3)

n+l _ pn
JdA[mef(Vh")Vu"“-V(z) =0, 4

where A"*! and w™' are continuous piecewise linear, and

M(Vh) is a regularized mobility.

An issue is that u (for g, #0) and S (and thus M) com-
puted directly from derivatives of h are ill-defined as
Vh—0. To circumvent this difficulty, we regularize the
Vh-dependent terms in question by analytic expressions hav-
ing a small positive parameter, €. We apply three different
regularization schemes, all of which give practically identi-
cal results [13]. (A scheme for w similar to one of our
schemes is used in [14—16] with a scalar mobility.)

Other numerical treatments of surface relaxation in 2D
invoke the scalar mobility Mo=(1+4[Vh)™ [9-11,16].
Noteworthy are Fourier series expansions for the height pro-
file [10,11,17], which yield nonlinear differential equations
for the requisite coefficients. Our FEM approach is of similar
variational nature, is of low order in space, and offers the
computational advantage of solving the linear system of Egs.
(3) and (4).

The FEM variational description is consistent with the
near-equilibrium step dynamics in the absence of facets (if
g1=0) [18]. The collapse of individual steps on top of facets
influence the surface profile macroscopically via a micro-
scale condition at the facet free boundary [18,19], which is
not included in the FEM or previous variational methods
[9-11]. This case is further discussed below.

We now discuss our numerical method for g;=0, i.e.,
without facets. As a criterion for terminating each simulation
we require that R; < &;, where R, =h,,(r)/hy is the ratio of the
maximum height, 4,,(z), to the initial height peak, ki, and &,
is given (8, <<1). For comparison purposes, we simulate Eq.
(1) both for M=M 1 (“scalar case™) [9-11] and the tensor M
of Eq. (2) (“tensor case”); see Fig. 1. The time dependence of
the height peak h,,(r) and surface energy E(r) are shown in
Fig. 2.
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FIG. 1. (Color online) Relaxing height profile in box B (¢ in-
creases from left to right); g;=0, ¢=10% h(x,y,0)
=hgy cos(kx)cos(kyy), ko/ky=N{/N,=11/24. Top: scalar case,
where the 2D structure of the initial profile is preserved. Bottom:
tensor case, where a transition to an almost 1D profile occurs.

For the tensor case, a prominent feature of surface relax-
ation from our numerics is the sharp transition of a fully 2D
morphology to an almost 1D surface height profile (see Fig.
1). The final profile is along the y direction of the largest
wavelength (\,). The corresponding decay for the maximum
height and surface energy switches abruptly from an expo-
nential behavior to another, as shown in Fig. 2. This change
occurs at the time of the topographic transition. By contrast,
the scalar mobility preserves the 2D structure of the initial
profile.

To detect reliably a transition in simulations, we quantify
how close the height profile is to a perfectly 1D morphology.
So, we define the geometric ratio Ry= [ zdA(h,)?/ [ gdA(h,)>.
We assert that a transition occurs in the numerics if we find
R,< &, while Ry =6, (where 8, and &, are chosen suffi-
ciently small).
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FIG. 2. Log plots for nondimensional maximum height,
hy (1)=h,(1)/hy (left axis), and nondimensional surface energy,
E*(t):E(t))\i/ (h?)g_;)\v) (right axis), vs nondimensional time
t*=thT)\?/(h0Dsng:;QZ), for scalar (iso) and tensor (ani) cases
without and with electric field [drift velocity v#0 in Eq. (5)]; g,
=0, ¢=10% h(x,y,0)=hg cos(k;x)cos(kyy), kylki=Ni/Ny=11/24,
u=(0,u,)=\,v/D, and 8;=107>. The presence of electric field
causes an earlier transition (see Figs. 3 and 4).
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FIG. 3. Threshold values of (scaled) parameter ¢*=ghy/\| vs
domain aspect ratio @=N\;/N,=k,/k; for a transition to occur, in the
absence (solid line) and presence (dashed line) of electric field E, in
the y direction [drift velocity v#0 and u=(0,u,)=\;v/D,]. The
downward shift of the threshold ¢* curve indicates the enhancement
by E, of the transition. Transition is prohibited (permitted) for val-
ues of ¢* 3 units below (above) each curve, with & =8,=103.

IV. EFFECT OF PARAMETERS

We now explore how the transition is affected by the as-
pect ratio a=\;/\, and the material parameter ¢. For defi-
niteness, consider 0 <a<1. With fixed «, §, and &,, the
transition is suppressed by the decrease in ¢, since the mo-
bility M approaches a constant diagonal tensor. So, we ex-
pect that for given « a transition occurs only if ¢ exceeds a
threshold, gy,(@). This claim is verified by our numerics. In-
terestingly, the computed hyg(@)/ N, is nonmonotonic, hav-
ing a local maximum at a=0.3, as shown in Fig. 3. An
explanation of this behavior is as yet elusive.

Our observations motivate the question: What is the pre-
cise cause of the transition? An analytic answer is not clear
to us at the moment. We recognize that the tensor character
of the mobility has an appreciable effect on the relative mag-
nitudes of the adatom fluxes normal and parallel to step
edges. In the scalar case, the predominant flux component is
always normal to step edges, inducing isotropic changes to
the height level sets (curves where h=const). By contrast, in
the tensor case the longitudinal flux prevails initially, appar-
ently following the geometry of the level sets (see Fig. 4).
The transition seems to be correlated with the onset of a
significant normal flux, which accompanies the gradual mer-
gence of adjacent height level sets. This behavior is accen-
tuated by the decrease in the aspect ratio « (see Fig. 3).

V. EFFECT OF ELECTRIC FIELD

The role of asymmetry in the adatom fluxes for the tensor
case can be demonstrated via application of a constant elec-
tric field, E,. The idea is to reinforce fluxes of charged ada-
toms in a prescribed direction and, thus, accelerate the ob-
served transition. Further, the electric field is a common
controllable parameter in experimental settings (see, e.g.,
[20]).
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FIG. 4. Snapshots of height level sets (first and third rows) and
adatom vector flux streamlines, i.e., curves tangential to flux (sec-
ond and fourth rows) during transition, shown in the box
[0,N;/2]X[0,\,/2]. Streamlines are not normal to level sets,
thereby reflecting the tensor nature of mobility and exhibit a ten-
dency to align with the y axis for increasing time (from left to
right). Upper two rows: E,=0. Lower two rows: E, # 0 in y direc-
tion with |u|=\,|v|/D,=1073 [see Eq. (5)]. Parameter values: g,
=0, g=10% h(x,y,0)=h cos(k,x)cos(k,y), kp/ky=11/24. The time
scale for E, # 0 is shorter than for E,=0 (see also Fig. 2).
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The E, field is incorporated directly in PDE (1) leaving
essentially intact its variational structure. Main ingredients of
the PDE remain the chemical potential wu=Q(SE/Sh)
(E: surface free energy) and the mass conservation law
d,h+QV -J=0. However, the relation between J, the surface
flux, and u now becomes [21]

J=—CSM{V,u—kD—TV<1+kL)] (5)
S B

where v=D,|Z"¢|E,/ (kgT) is the drift velocity and Z*e is the
effective adatom charge [20]. Hence, the PDE acquires a
convective (linear in v) term. If u=\;v/Dy is the nondimen-
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FIG. 5. Log plots for nondimensional maximum height, /,(7)
=h,,(1)/hy (left axis), and nondimensional surface energy, E*(r)
=E(t))\_%/ (hggﬁ\v) (right axis), for tensor case with facets:
(g1/83)(\i/ho)2=107%, g=10% and h(x,y,0)=hq cos(kix)cos(kyy),
kolki=N;/Ny=11/24, and 8,=1075, 5,=0.

sional velocity and p is the mesh size, then the numerical
Péclet number P,=p|v|/D,=plu|/\, quantifies the relative
importance of convection to diffusion. In most applications
with semiconductor surfaces, P,<<1 [20]. Details on our nu-
merics can be found in [13].

We take E, in the y direction, of the largest wavelength, to
reinforce the fluxes in this direction (see Fig. 2). The thresh-
old gy (a;E,) decreases with |E,| and exhibits a plateau for
small « (in striking contrast with the case E,=0), as shown
in Fig. 3. This indicates that varying the aspect ratio « (for a
fixed material) can lead to a fast and sharp topographic tran-
sition via suitable tuning of E,. This prediction may be fest-
able experimentally.
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VI. OPEN QUESTIONS

Our numerics are restricted to situations with step line
tension g;=0, without facets. Preliminary computations by
the FEM indicate that the transition persists continuously
with nonzero yet small g;, as shown in Fig. 5. Theoretical
understanding of the transition for any g, is still lacking. A
study of g;#0 strictly requires the incorporation into the
variational framework of a microscale condition for the col-
lapse times of individual steps [18,19]. This task calls for a
hybrid (discrete/continuum) approach.

It is of interest to test our simulations against experiments
of decaying surface corrugations. Available data for relaxing
Si surface profiles with different aspect ratios and E,=0
[4-6] suggest that the parameter a plays a key role in the
height decay. Similar experiments may be carried out for
nonzero E,, possibly enabling a transition. A perhaps more
appealing candidate system is GaAs. Step parameters such as
g1 and g5 are not widely known for GaAs surfaces [22].
Experimental observations [23] indicate that GaAs(001) un-
dergoes a preroughening transition at a temperature close to
500 °C, at which g,/g; becomes small. It is conceivable to
use our predictions to relate observed decay rates and pos-
sible transition times with material parameters, e.g., g,/g3,
and thereby estimate these parameters for GaAs.
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