

Cornell University Library We gratefully acknowledge support from the Simons Foundation and member institutions

arXiv.org > math > arXiv:1107.4548

Mathematics > Dynamical Systems

Random fields on model sets with localized dependency and their diffraction

Yohji Akama, Shinji lizuka

(Submitted on 22 Jul 2011 (v1), last revised 24 Sep 2012 (this version, v2))

For a random field on a general discrete set, we introduce a condition that the range of the correlation from each site is within a predefined compact set D. For such a random field omega defined on the model set Lambda that satisfies a natural geometric condition, we develop a method to calculate the diffraction measure of the random field. The method partitions the random field into a finite number of random fields, each being independent and admitting the law of large numbers. The diffraction measure of omega consists almost surely of a pure-point component and an absolutely continuous component. The former is the diffraction measure of the expectation E[omega], while the inverse Fourier transform of the absolutely continuous component of omega turns out to be a weighted Dirac comb which satisfies a simple formula. Moreover, the pure-point component will be understood quantitatively in a simple exact formula if the weights are continuous over the internal space of Lambda Then we provide a sufficient condition that the diffraction measure of a random field on a model set is still pure-point.

Comments:	21 pages
Subjects:	Dynamical Systems (math.DS)
MSC classes:	52C23 (Primary) 37B50 (Secondary)
DOI:	10.1007/s10955-012-0588-5
Cite as:	arXiv:1107.4548 [math.DS]
	(or arXiv:1107.4548v2 [math.DS] for this version)

Submission history

From: Yohji Akama [view email] [v1] Fri, 22 Jul 2011 15:39:57 GMT (28kb) [v2] Mon, 24 Sep 2012 06:10:58 GMT (42kb)

Which authors of this paper are endorsers?

Search or Article-id

(Help | Advanced search) All papers

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.DS

< prev | next >

new | recent | 1107

Change to browse by:

References & CitationsNASA ADS
Bookmark(what is this?)

Link back to: arXiv, form interface, contact.