
Journal of Intelligent and Robotic Systems 18: 105–126, 1997. 105
c 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Obstacle Collision Detection Using
Best Ellipsoid Fit

ELON RIMON
Dept. of Mechanical Engineering Technion, Israel Institute of Technology

STEPHEN P. BOYD
Dept. of Electrical Engineering Stanford University

(Received: 11 September 1995; in final form: 27 August 1996)

Abstract. This paper describes a method for estimating the distance between a robot and its
surrounding environment using best ellipsoid fit. The method consists of the following two stages.
First we approximate the detailed geometry of the robot and its environment by minimum-volume
enclosing ellipsoids. The computation of these ellipsoids is a convex optimization problem, for
which efficient algorithms are known. Then we compute a conservative distance estimate using an
important but little known formula for the distance of a point from and n-dimensional ellipse. The
computation of the distance estimate (and its gradient vector) is shown to be an eigenvalue problem,
whose solution can be rapidly found using standard techniques. We also present an incremental
version of the distance computation, which takes place along a continuous trajectory taken by the
robot. We have implemented the proposed approach and present some preliminary results.

Key words: ellipsoid fit, geometric approximation, collision detection.

1. Introduction

Knowledge of the distance between the robot and its environment is central
for planning collision-free paths. For example, Khatib [19], and Rimon and
Koditschek [31], use distance functions as an artificial potential function, whose
gradient vector field indicates a direction of repulsion from the obstacles. They
combine repulsive distance functions with an attractive potential at the goal, to
generate a navigation vector field suitable for a low-level reactive controller.
Another example is the work of Lin and Canny [21] and Rimon and Canny [30].
They construct a network of curves, called a roadmap, in the free configura-
tion space of a robot, by incrementally following the local maxima of distance
functions along a suitable sweep direction. Choset and Burdick [4] recently used
distance functions to construct a roadmap which generalizes the idea of Voronoi
diagram to configuration spaces of any dimension. Distance functions are also
useful in computer animation, where the animation software is required to gen-
erate smooth, collision-free paths between intermediate frames [1, 16].

VTEX(P) PIPS No.: 120343 MATHKAP
JINT1347.tex; 6/02/1997; 16:24; v.5; p.1

106 ELON RIMON AND STEPHEN P. BOYD

Figure 1. Five-link arm serving a rotating feeding table.

The traditional approach to distance computation consists of modeling the
various bodies by polyhedra and detecting collision by computing the distance
between the polyhedra. This approach has a long history in robotics. Work in
this area ranges from rapid numerical techniques [2, 13, 32], through various
approximate and hierarchical approaches [6, 8, 15], to closed-form distance esti-
mate expressions [3, 7, 23]. However, the description of complex shapes with
a polyhedral model often requires many planar faces and edges. For example,
each link in Figure 1 consists of about 30 planar faces. Each face is represented
in turn by triangles, and a total of 60–100 are used to describe each link. High-
er quality rendering of complex or curved shapes requires hundreds of planar
faces. It is therefore important to seek a simplification of polyhedral objects into
simpler shapes for which the distance can be estimated efficiently. Tradition-
al approaches use various polyhedral approximations for the simplification [10,
18, 24]. This paper proposes the use of minimum-volume enclosing ellipsoids
for shape simplification, and an efficient eigenvalue-based technique for distance
estimation.
The minimum-volume enclosing ellipsoid of a convex body (or of the convex

hull of a set of measurement points) is called the Löwner–John ellipsoid. Fitting
bodies with their Löwner–John ellipsoid is an intuitively appealing means to
lump their detailed geometry into a single quadratic surface [26]. The robot links,
for example, are often convex and their Löwner–John ellipsoid gives a suitable
conservative approximation. The obstacles, such as the table in Figure 1, are often
non-convex and they should be first decomposed into overlapping convex shapes.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.2

OBSTACLE COLLISION DETECTION 107

The attractive feature of the Löwner–John ellipsoid is that it can be computed as
a convex optimization problem, for which efficient general algorithms are known.
We give the ingredients necessary for implementing one such algorithm, called
the ellipsoid algorithm, in the computation of the Löwner–John ellipsoid.
Next we present a technique for computing a conservative distance estimate,

or a generalized distance, between the ellipsoids. The computation is based on a
formula for the distance of a point from an ellipse of any dimension. The imple-
mentation of the formula requires computation of the minimal eigenvalue of an
auxiliary matrix constructed from the geometrical data. This allows computation
of the distance estimate with standard and rapid eigenvalue techniques. Let us
describe the distance estimate that we compute.
Let El be an ellipsoid surrounding a link, and let Eb be an ellipsoid surrounding

an obstacle part. Then the solution of the associated eigenvalue problem yields
the points x∗ on Eb which is the closest to El with respect to the ellipsoidal
level-surfaces surrounding El. Second application of the point-to-ellipse formula
yields the point y∗ on El which is the closest to x∗. The function margin(El, Eb)

∆
=

kx∗ ⌧ y∗k, termed the free margin of El with respect to Eb, is positive when El
and Eb are disjoint, and zero when they touch. Moreover, its value provides
an estimate for the amount of separation between El and Eb. Another property
of margin(El, Eb) is that it is differentiable (actually smooth), and its gradient
vector is also computable as an eigenvalue problem. The gradient vector is often
used by reactive planning systems to determine a direction of repulsion from the
obstacles, and its rapid computation is another useful property of margin(El, Eb).
Finally, the robot typically computes its distance from the environment while

it moves along a continuous path. We therefore present an approach for the
incremental computation of margin(El, Eb) along a continuous trajectory. It is
interesting to compare our incremental distance computation between enclosing
ellipsoids with the incremental computation of the distance between polyhedra.
A recent incremental algorithm of Lin and Canny [22], computes the Euclidean
distance between two polyhedra by tracking their closest two features. Its time
complexity is constant, except when the identity of the closest two features
changes. Then it becomes linear in the number of vertices (in the worst case).
In contrast, the incremental computation of margin(El, Eb) always takes constant
time. Moreover, it does not require the substantial bookkeeping required to man-
age the polyhedral features. These gains come, of course, at the expense of using
approximate shapes and obtaining only a conservative estimate for the exact
Euclidean distance.
This paper is organized as follows. Section 2 describes the computation of

the Löwner–John ellipsoid as a convex optimization problem. Section 3 shows
how to compute margin(El, Eb) as an eigenvalue problem. Section 4 discusses the
incremental computation of margin(El, Eb) along a trajectory taken by the robot.
The concluding section discusses several open issues associated with this work.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.3

108 ELON RIMON AND STEPHEN P. BOYD

2. Computation of the Optimal Ellipsoid

Every compact set with non-empty interior possesses a unique minimum-volume
enclosing ellipsoid, called the Löwner–John ellipsoid, or the L–J ellipsoid [17].
This section focuses on the computation of the L–J ellipsoid of a convex poly-
hedron P , a problem which we call the L–J problem. After a short review of
convex optimization and the ellipsoid algorithm, we show that the L–J problem
is convex. Then we give the ingredients necessary for implementing the ellipsoid
algorithm to the L–J problem.

2.1. REVIEW OF CONVEX OPTIMIZATION

Convex optimization is concerned with computing the minimum of a convex
function subject to convex constraints. By definition, a scalar-valued function
f : Rk ! R is a convex function if f(λx1+(1 ⌧ λ)x2) � λf(x1)+(1 ⌧ λ)f(x2)
for all x1, x2 2 Rk and 0 � λ � 1. Convexity of f implies that for any constant
c, the sublevel set fx 2 Rk: f(x) � cg, if non-empty, is a convex set. Let
φ : Rk ! R be a convex function. A convex optimization problem is to compute
x∗ that minimizes φ(x), subject to the constraint that x be in K , where K ⇢ Rk
is a convex region. One general algorithm used to solve convex optimization
problems is the ellipsoid algorithm� [14, Ch. 3]. It requires that K be described
by a convex function ψ : Rk ! R in the form K = fx 2 Rk: ψ(x) � 0g.
The ellipsoid algorithm produces a sequence of k-ellipsoids whose centers,

denoted xi, converge to x∗. At the ith step it computes a separating hyperplane
passing through xi for one of the two convex regions

fx: φ(x) � φ(xi)g or fx: ψ(x) � ψ(xi)g.

The separating hyperplane is not necessarily unique, since the boundary of the
region may have a sharp corner at xi. In such situations the hyperplane’s normal
becomes a subgradient. By definition, if f : Rk ! R is convex, but not necessarily
differentiable, a vector n 2 Rk is a subgradient of f at x if it satisfies

f(z) � f(x) + nT (z ⌧ x) for all z 2 Rk. (1)

Note that the set of subgradient vectors reduces to the classical gradient vector
when f is differentiable at x.
The ellipsoid algorithm is initialized with a k-ellipsoid containing x∗, for

instance, a large ball containing K . At the ith step the center xi is checked
against the constraint function ψ. If the constraint is violated (ψ(xi) > 0), a
separating hyperplane passing through xi for the region fx: ψ(x) � ψ(xi)g is
computed. Otherwise, a separating hyperplane passing through xi for the region
fx: φ(x) � φ(xi)g is computed. Clearly, one side of the resulting hyperplane
contains the entirety of K in the first case, and it contains the minimizer x∗

� Nesterov and Nemirovsky’s recent interior-point algorithms promise to be much faster [25].

JINT1347.tex; 6/02/1997; 16:24; v.5; p.4

OBSTACLE COLLISION DETECTION 109

in the other case. In both cases the (i + 1)th k-ellipsoid is computed as the
minimum-volume ellipsoid that contains the intersection of the ith ellipsoid with
the halspace determined by the separating hyperplane. A closed-form formula
for this k-ellipsoid is known, and this formula is used by the algorithm.
A property of convex functions, φ in our case, allows the algorithm to compute

an upper bound on the error jφ(xi) ⌧ φ(x∗)j. The algorithm terminates when
jφ(xi) ⌧ φ(x∗)j � ε and ψ(xi) � 0, where ε > 0 is the desired accuracy. In
practice it is preferable to minimize log(φ) instead of φ. The minimizer is still
x∗, while ε becomes a desired relative accuracy: j log(φ(xi)) ⌧ log(φ(x∗))j =
j log(φ(xi)/φ(x∗))j � ε. Selecting ε = log(ρ) terminates the algorithm with
relative error ρ.
The run-time of the ellipsoid algorithm can be estimated as follows. At each

step the volume of the new k-ellipsoid reduces by a fixed factor. Using this factor,
it can be shown that the number of stepsK required to achieve ε-accurate solution
satisfiesK � 2k2 log(c/ε). In this expression c is a constant and k, the dimension
of the ambient space, is fixed for a given problem. Note that the bound on K
grows slowly with the accuracy ε. Note, too, that each step of the algorithm
requires an evaluation of ψ(xi). In the L–J problem this operation is linear in the
number of vertices of the polyhedron P . Letting m be the number of vertices,
we have that K � 2k2 log(c/ε)m.

2.2. THE LÖWNER–JOHN PROBLEM IS CONVEX

We show in this section that the computation of the L–J ellipsoid of a polyhedron
P ⇢ Rn is a convex optimization problem. This fact is mentioned in [25, p. 229],
but we provide a complete analysis of the problem with new proofs for the
key facts. First we introduce some notation. Let y = (y1, . . . , yn) and x =
(x1, . . . , xn+1) be points in Rn and Rn+1, respectively. Any n-ellipsoid can be
described by its center, a vector y0 2 Rn, and a matrix Y 2 Rn×n, which is
symmetric and positive definite (a condition written as Y > 0). This ellipsoid,
denoted En(y0, Y), is given by En(y0, Y) = fy 2 Rn: (y ⌧ y0)TY (y ⌧ y0) � 1g.
The basic idea is to embed the polyhedron P in Rn+1, in the n-dimensional

plane at height xn+1 = 1. Then to compute the minimum-volume (n + 1)-
ellipsoid centered at 0 2 Rn+1, En+1(0,X), which contains the embedded P .
We show below that the latter problem is convex. Finally, the resulting (n+ 1)-
ellipsoid determines the optimal n-ellipsoid by intersecting it with the hyperplane
xn+1 = 1 (Figure 2). This process is summarized in the following theorem.

THEOREM 1. Let En+1(0,X∗) be the minimum volume (n+ 1)-ellipsoid cen-
tered at the origin which contains the embedded P . Then En(y∗, Y ∗), obtained
by intersecting En+1(0,X∗) with xn+1 = 1, is the minimum volume n-ellipsoid
containing P .

JINT1347.tex; 6/02/1997; 16:24; v.5; p.5

110 ELON RIMON AND STEPHEN P. BOYD

Figure 2. The optimal n-ellipsoid is obtained by intersecting the optimal (n+ 1)-ellipsoid
centered at the origin with xn+1 = 1 (n = 2 in the figure).

Moreover, if En+1(0,X) is ε-optimal with respect to En+1(0,X∗), then
En(y, Y), obtained by intersecting En+1(0,X) with xn+1 = 1, is ε-optimal with
respect to En(y∗, Y ∗).

A proof of the theorem appears in the appendix. Henceforth we focus on
the computation of the optimal (n + 1)-ellipsoid En+1(0,X). The optimiza-
tion variables are the k distinct entries of the symmetric matrix X. Since X is
(n + 1) ⇥ (n + 1), k = (n + 1)(n + 2)/2 = 10 in our case where n = 3. The
optimization problem is thus to minimize the volume of En+1(0,X) over the
symmetric matrices X, subject to the constraints that X be positive-definite and
that the embedded P be inside En+1(0,X).
First let us verify that the volume of En+1(0,X) is a convex function of

the entries of X. This volume is given by βn+1/(detX)1/2, where βn+1 is the
volume of the unit ball in Rn+1. Since log (βn+1/(detX)1/2) = logβn+1 ⌧
(log(detX))/2, and since βn+1 is constant, the objective function is φ(X) =
⌧ log(detX). To show that φ is a convex function, we will use the following fact.
To check that a function f(x) is convex, it suffices to verify that f(12(x1+x2)) �
1
2(f(x1) + f(x2)) [9, p. 118]. Thus it suffices to show that:

⌧ log
�
det 12(X1 +X2)

�
� ⌧ 1

2
�
log det(X1) + log det(X2)

�
. (2)

The following lemma asserts that φ(X) has this property. The proof of the lemma
appears in the appendix.

LEMMA 2.1. If A and B are positive-definite matrices,

det
�1
2(A+B)

�
� det(AB)1/2,

JINT1347.tex; 6/02/1997; 16:24; v.5; p.6

OBSTACLE COLLISION DETECTION 111

where (AB)1/2 is the square-root matrix� of AB.
The logarithm of both sides gives the inequality (2). Hence

φ(X) = ⌧ log(detX)

is a convex function over the matrices X > 0.

Next we verify that the constraint X > 0 is convex. X > 0 iff its minimal
eigenvalue is positive. This is equivalent to the condition λmax(⌧X) < 0, where
λmax(⌧X) denotes the largest eigenvalue of the negated matrix ⌧X. By defini-
tion, λmax(⌧X) = max fvT [⌧X]vg over all unit-magnitude vectors v. For each
fixed vector v, vT [⌧X]v is linear in the entries of X and is therefore convex
with respect to X. Moreover, it is known that the maximum of a family of con-
vex functions is itself convex [5, p. 47]. Hence λmax(⌧X) is a convex function,
and the constraint X > 0 is therefore convex.
Last we verify that the containment of the embedded P in En+1(0,X) is

a convex constraint. Let v1, . . . , vm be the vertices of P , where vi 2 Rn for
i = 1, . . . ,m. In general, P is contained in En+1(0,X) iff the vertices of P are
in En+1(0,X). Since En+1(0,X) = fx 2 Rn+1: xTXx � 1g, the containment
condition is maxi=1,...,m fvTi Xvig � 1, where vi = (vi, 1) is the ith vertex of P
embedded in xn+1 = 1. But this constraint is the maximum of functions each of
which is linear in X. Hence it is a convex function of X, and the containment
constraint is also convex. To summarize, the following optimization problem is
convex. Minimize φ(X), where

φ(X) = ⌧ log(detX), (3)

subject to ψ1(X) < 0 and ψ2(X) � 0, where

ψ1(X)
∆
= λmax(⌧X) and ψ2(X)

∆
= max
i=1,...,m

fvTi Xvig ⌧ 1. (4)

2.3. COMPUTING THE LÖWNER–JOHN ELLIPSOID

This section provides the details necessary for implementing the ellipsoid algo-
rithm to the L–J problem. Recall that every step of the ellipsoid algorithm requires
the construction of a separating hyperplane. To compute a normal vector to this
hyperplane, we need expressions for the gradient of φ(X) and for the subgradient
of ψ1(X) and ψ2(X). First note that tangent vectors in the space of symmetric
matrices X are also symmetric matrices. Let V denote these tangent matrices.
Gradients (and subgradients) in this space are symmetric matrices, denoted G,
that map the tangent matrices V to the reals. It can be verified that in general G
� Given a positive-definite matrix P , P 1/2 is the positive-definite matrix satisfying P =

P 1/2P 1/2.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.7

112 ELON RIMON AND STEPHEN P. BOYD

acts on V according to the rule: V 7! tr(GTV), where tr denotes the trace of a
matrix. First consider the function φ. It is smooth, and the identity

X−1 =
1

det(X)
�
Xij
�T ,

where [Xij] is the matrix of cofactors of X, implies that its gradient, denoted
Gφ is:

Gφ = r
�

⌧ log(detX)
�
= ⌧X−1.

Next consider the function ψ1. According to Equation (1), its subgradient, denoted
Gψ1 , must satisfy

λmax(⌧Z) � λmax(⌧X) + tr
�
GTψ1(Z ⌧ X)

�
for all symmetric matrices Z. (5)

Let u0 be a unit-magnitude eigenvector of ⌧X corresponding to its maximal
eigenvalue. The following inequality is satisfied by all symmetric matrices Z,

λmax(⌧Z) � uT0 [⌧Z]u0 = uT0 [⌧X]u0 ⌧ uT0 (Z ⌧ X)u0
= λmax(⌧X) ⌧ uT0 (Z ⌧ X)u0.

But uT0 (Z ⌧ X)u0 is a scalar, and is equal to tr(uT0 (Z ⌧ X)u0). In general,
tr(AB) = tr(BA). Hence tr(uT0 (Z ⌧ X)u0) = tr(u0uT0 (Z ⌧ X)). Comparison
with (5) yields that Gψ1 = ⌧u0uT0 . Finally consider ψ2. It has the form ψ2 =
maxi=1,...,m fψ2ig ⌧ 1, where each ψ2i is a convex function in the entries of X.
In general, the subgradient of the maximum over a family of convex functions
ψ2i is the convex combination of the subgradients of those ψ2i which attain
the maximum value [5, p. 47]. In our case it suffices to find one vertex vi0 at
which vTi Xvi attains its maximum, and a subgradient for ψ2 would be the matrix
Gψ2 = vi0v

T
i0
.

A summary of the implementation of the ellipsoid algorithm to the L–J prob-
lem follows. We will use the following notation. (Xi,Πi) 2 (Rk,Rk×k) denotes
the center and matrix of the ith k-ellipsoid in the ellipsoid algorithm. For sim-
plicity, Xi also represents the matrix of the ith (n + 1)-ellipsoid, En+1(0,Xi).
We replace λmax(⌧Xi) by the equivalent expression λmin(Xi). We will also use
the following stack notation: if G 2 Rn×n is a matrix, Gs denotes the n2 ⇥ 1
vector obtained by stacking the columns of G over each other. The n2 ⇥ 1 vector
hi denotes the subgradient of ψ1 or ψ2, the vector gi denotes the gradient of φ,
and g̃ denotes the normal vector to the separating hyperplane. Some additional
details concerning the algorithm appear at the end of this section.

X1,Π1 an initial k-ellipsoid that contains the minimum;
i 0;
repeat f

JINT1347.tex; 6/02/1997; 16:24; v.5; p.8

OBSTACLE COLLISION DETECTION 113

i i+ 1;
if (λmin(Xi) � 0) f /∗ Xi is not positive definite ∗/
compute eigenvector u for λmin(Xi);
hi = (⌧uuT)s; /∗ compute the subgradient Gψ1 of ψ1

∗/

g̃ hi/
�
hTi Πihi;

g else f

if ((vTj0 , 1)Xi
� vj0
1
�
> 1 for some 1 � j0 � m) f /∗ Xi is infeasible ∗/

hi =
�� vj0

1
�
(vTj0 , 1)

�s
; /∗ compute the subgradient Gψ2 of ψ2

∗/

g̃ hi/
�
hTi Πihi;

g else f /∗ Xi is feasible ∗/
gi = r (⌧ log(detXi)) = (⌧X−1i)

s; /∗ compute the gradient Gφ of φ ∗/

g̃ gi/
�
gTi Πigi;

g
g
Xi+1 Xi ⌧ 1

K+1Πig̃; /
∗ compute the (i+ 1)th k-ellipsoid ∗/

Πi+1 K2

K2−1

�
Πi ⌧ 2

K+1Πig̃g̃
TΠi
�
;

g until ((λmin(Xi) > 0) and (no j0 exists) and (
�
gTi Πigi � ε)).

Example. We have implemented the ellipsoid algorithm and computed the L–J
ellipsoids for the objects in the scene of Figure 1. The scene includes a 5-link
robot arm serving a rotating feeding table. The L–J ellipsoid was computed for
each link with relative error of ρ = 1.001, and the results are shown in Figure 3.
The table was first decomposed into two convex pieces, consisting of its leg and
top. The L–J ellipsoids for these pieces was computed with the same relative error
of ρ = 1.001, and the results are also shown in Figure 3. In our implementation,
we have made no special effort to optimize our code, and a typical run time is
2–3 seconds per object. It is worth mentioning an exact algorithm for computing
the L–J ellipsoid by Post [27], which is quadratic in the number of vertices of
P . The ε-accurate algorithm used here is linear in the number of vertices.

We conclude with a mention of several details concerning the algorithm.
First we discuss the formula for the (i+ 1)th k-ellipsoid used in the algorithm.
Recall that this is the minimum-volume ellipsoid surrounding the intersection of
the ith k-ellipsoid with the halfspace determined by the separating hyperplane.
A formula for this ellipsoid is known [14], and we used this formula to compute

JINT1347.tex; 6/02/1997; 16:24; v.5; p.9

114 ELON RIMON AND STEPHEN P. BOYD

Figure 3. The Löwner–John ellipsoids of the scene in Figure 1.

the center, Xi+1, and the matrix, Πi+1, of the (i + 1)th k-ellipsoid. Note that
this formula depends on the data of the ith k-ellipsoid, Xi and Πi, and on the
normal to the separating hyperplane, g̃. Next we give a convenient choice of an
initial k-ellipsoid which contains the minimum. Let 0 < r < R be the radii of
two balls in Rn, such that the r-ball is contained in the polyhedron P and the
R-ball contains it. Then a choice of the initial center X1 as the (n+1) ⇥ (n+1)
matrix X1 = diag(1/(1+R2)), would give a feasible (n+1)-ellipsoid containing
the embedded P . As for the initial k ⇥ k matrix Π1, it is shown in [29] that a
good initial choice for it would be Π1 = diag(((n+ 1)max f1, 1/r2g)2). Finally,
the termination condition is derived as follows. For any convex problem, the
algorithm stops when jφ(xi) ⌧ φ(x∗)j � ε and the constraints are satisfied. An
upper bound on the error jφ(xi) ⌧ φ(x∗)j is obtained as follows. Let gi be a
subgradient of φ at xi. By definition of a subgradient (Equation (1)),

φ(x∗) � φ(xi) + gTi (x∗ ⌧ xi),

where x∗ is the point where φ attains its minimum. But x∗ lies in the ith k-
ellipsoid Ei. Hence

φ(xi) ⌧ φ(x∗) � ⌧gTi (x
∗ ⌧ xi) � max

x∈Ei
f ⌧gTi (x ⌧ xi)g.

The expression for the maximum on the right side is (gTi Πigi)1/2, and this expres-
sion is used in the algorithm.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.10

OBSTACLE COLLISION DETECTION 115

3. A Generalized Distance Between Ellipsoids

The generalized distance between two ellipsoids E1 and E2, margin(E1, E1), is
based on the distance of a point from an n-dimensional ellipse. We first show
that the distance of a point from an ellipse can be computed as an eigenvalue
problem. Then we show how to compute margin(E1, E1). Simulation results at the
end of the section show that margin(E1, E1) can be effectively computed using a
standard eigenvalue routine.

3.1. THE DISTANCE OF A POINT FROM AN n-ELLIPSE

We wish to compute the minimal Euclidean distance of a point x0 2 Rn from
an n-dimensional ellipsoid, E(a,A) = fx 2 Rn: (x ⌧ a)TA(x ⌧ a) � 1g,
where A > 0. It is convenient to assume that x0 lies outside of En(a,A), so
that the closest point necessarily lies on the boundary of En(a,A). Further, we
may assume that x0 is at the origin of Rn. The problem is thus to minimize
the function φ(x) = kxk subject to the constraint (x ⌧ a)TA(x ⌧ a) = 1. The
solution x∗ 2 En(a,A) must satisfy the following Lagrange multiplier rule:

x∗ = λA(x∗ ⌧ a) for some scalar λ. (6)

Equivalently, x∗ = λ[λA ⌧ I]−1Aa, where I is the identity matrix. It follows that
x∗ ⌧a = [λA⌧ I]−1a. Substituting for x∗ ⌧a in the constraint (x⌧a)TA(x⌧a) = 1
gives the following 2n-degree polynomial in the unknown λ,

ãT
� �A ⌧ λI

�−2ã = 1, (7)

where �A = A−1 and ã = A−1/2a. The two Equations (6) and (7) form a system
of n + 1 scalar equations in the unknowns x∗ 2 Rn and λ 2 R. The particular
root λ which corresponds to x∗ is characterized by the following identity.

LEMMA 3.1 ([11]). Let (xi, λi) and (xj , λj) be two solutions of Equations (6)–
(7). Then

φ2(xj) ⌧ φ2(xi) = kxjk2 ⌧ kxik2 = 1
2(λj ⌧ λi)(xj ⌧ xi)TA(xj ⌧ xi).

Since (xj ⌧ xi)TA(xj ⌧ xi) � 0, the root of the polynomial (7) which corre-
sponds to x∗ must be the minimal real root of the polynomial (7). Our goal now
is to show that this minimal root can be computed as an eigenvalue problem. We
will use for this purpose the method of Gander et al. [12]. Consider the following
two new variables w and z,

w
∆
=
� �A ⌧ λI

�−2ã and z
∆
=
� �A ⌧ λI

�−1ã. (8)

JINT1347.tex; 6/02/1997; 16:24; v.5; p.11

116 ELON RIMON AND STEPHEN P. BOYD

Expressing Equations (7)–(8) in terms of w, z, and λ, gives the following system
of equations

ãTw = 1
� �A ⌧ λI

�
z = ã (9)

� �A ⌧ λI
�
w ⌧ z = 0.

Substituting ãTw = 1 into the right side of the second equation gives
� �A ⌧ λI

�
z =

�
ããT
�
w. (10)

Combining the third equation in (9) with (10) yields an eigenvalue problem:
� �A ⌧ I

⌧ ããT �A

��
w
z

�
= λ
�
w
z

�
. (11)

Let M denote the 2n ⇥ 2n matrix in (11), and let λmin(M) be its eigenvalue
with minimal real part, termed the minimal eigenvalue. We show in the appendix
that λmin(M) is precisely the minimal real root of the polynomial (7). Thus, the
distance of a point x from an n-dimensional ellipse En(a,A) is given by the
formula

dst
�
x, En(a,A)

�
= kx ⌧ x∗k,

where x∗ = λmin(M)
�
λmin(M)A ⌧ I

�−1Aa.

3.2. CONVERSION TO DISTANCE ESTIMATE BETWEEN ELLIPSOIDS

We have shown that the distance of a point from an n-dimensional ellipse can
be computed as an eigenvalue problem. Now we compute the following distance
estimate between two n-ellipsoids, E1 = En(b,B) and E2 = En(c, C). First we
compute the point x∗ 2 E2 at which the ellipsoidal level surfaces surrounding
E1 first touch the ellipsoid E2. Next we compute the point y∗ 2 E1 which is the
closest to x∗. The resulting distance estimate is then margin(E1, E2) = kx∗ ⌧ y∗k.
To compute x∗, we assume that b, the center of E1, lies outside of E2. In

that cae x∗ lies on the boundary of E2. We therefore minimize the function
φ(x) = (x ⌧ b)TB(x ⌧ b) subject to the constraint (x ⌧ c)TC(x ⌧ c) = 1. First
we apply a coordinate transformation that translates b to the origin and deforms
E1 to a unit ball:

x̄ = B1/2(x ⌧ b) or x = b+B−1/2x̄, (12)
where B1/2 is the square-root matrix of B.
In the new coordinates, x̄, the problem is to minimize the function φ(x̄) =

kx̄k2 such that (x̄ ⌧ c̄)TC(x̄ ⌧ c̄) = 1, where C = B−1/2CB−1/2 and c̄ = B1/2(c⌧
b). This is exactly the point-to-ellipse distance problem of the previous section,
which yields the point x∗ 2 E2. The point y∗ 2 E1 closest to x∗ is obtained by
second application of the point-to-ellipse distance formula. The computation of
margin(E1, E2) is summarized in the following proposition.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.12

OBSTACLE COLLISION DETECTION 117

Figure 4. Snapshots showing the points x∗ and y∗, that determine margin(E1; E2).

PROPOSITION 3.2. Given two n-ellipsoids E1 = En(b,B) and E2 = En(c, C),
the point x∗ 2 E2 is: x∗ = b+ λ1B−1/2[λ1I ⌧ �C]−1c̄, where �C = C−1 and λ1 is
the minimal eigenvalue of the 2n ⇥ 2n matrix

� �C ⌧ I
⌧ c̃c̃T �C

�
such that c̃ = C−1/2c̄. (13)

The point y∗ 2 E1 is: y∗ = x∗ +µ1[µ1I ⌧ �B]−1b, where �B = B−1 and µ1 is the
minimal eigenvalue of the 2n ⇥ 2n matrix

� �B ⌧ I
⌧ b̃b̃T �B

�
such that b̃ = B−1/2b. (14)

The resulting distance estimate, margin(E1, E2) = kx∗ ⌧ y∗k, is positive when
E1 and E2 are disjoint, and zero when E1 and E2 touch such that their interiors
are disjoint.

Another useful property of margin(E1, E2) is that its gradient can also be
computed as an eigenvalue problem. We discuss this computation in the next
section.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.13

118 ELON RIMON AND STEPHEN P. BOYD

Example. We have implemented the formula for margin(E1, E2). In our imple-
mentation, we used the standard QR method [28, pp. 385–392] to compute the
minimal eigenvalue of the two matrices appearing in Equations (13)–(14). Then
we computed the distance estimate between the L–J ellipsoids surrounding the
robot links and the ones surrounding the table in Figure 3. Snapshots showing
the points x∗ and y∗ for several arm positions are shown in Figure 4. The QR
method computes all the eigenvalues of each 2n ⇥ 2n matrix in roughly 4(2n)3
operations, where n = 3 in our case. The average time for one distance compu-
tation was 1.5 msec, of which 1.0 msec were taken by the minimal eigenvalue
computation (on a Silicon Graphics Indigo machine).

4. Incremental Computation of margin(E1, E2)

The computation time ofmargin(E1, E2) can be significantly improved by tracking
the minimal eigenvalue of the matrices associated with margin(E1, E2), along a
continuous trajectory taken by the robot. To explain the principle of the method,
we focus on the incremental computation of the distance from the origin of Rn
to an ellipsoid En(a,A) whose data, (a,A), varies continuosly with time. LetM
be the 2n ⇥ 2n matrix associated with (a,A) (Equation (11)):

M =
� �A ⌧ I

⌧ ããT �A

�
where �A = A−1, ã = A−1/2a. (15)

Suppose that the minimal eigenvalue of M at the previous trajectory point has
been computed. We wish to use it in the computation of the minimal eigenvalue
at the current trajectory point.
One particular eigenvalue technique, called the inverse iteration method [28,

p. 394], is ideally suited for this purpose. It is initialized with an estimate for
the minimal eigenvalue ofM , denoted �λ1, and an estimate for the corresponding
eigenvector, denoted �v(0). The eigenvector estimate is then repetitively updated
according to the rule: �v(k) = [M ⌧ �λ1I]−1�v(k ⌧ 1). Since M and [M ⌧ �λ1I]−1
share the same eigenvectors, an eigenvalue λi ofM corresponds to an eigenvalue
1/(λi ⌧ �λ1) of [M ⌧ �λ1I]−1. Hence, if λ1 is the true minimal eigenvalue of
M and �λ1 is closer to λ1 than to any other eigenvalue of M , the eigenvector
estimate, v̂(k), converges exponentially to the true eigenvector. However, for
this method to be of practical use, we must characterize the distance between λ1
and the other eigenvalues of M . The following theorem, which is new to our
knowledge, asserts that λ1 is the only eigenvalue of M in the left-hand side of
the complex plane. In the following, Re fzg denotes the real part of a complex
number z.

THEOREM 2. Let λ1 be the minimal eigenvalue of the matrix M defined in
Equation (15) (i.e. λ1 is the eigenvalue with minimal real part). Then λ1 is nega-

JINT1347.tex; 6/02/1997; 16:24; v.5; p.14

OBSTACLE COLLISION DETECTION 119

tive real whenever the center, a, of En(a,A) lies outside the unit ball. Moreover,
all the other eigenvalues of M satisfy

Re fλig � κ1 > 0 for i = 2, . . . , 2n,

where κ1 is the minimal eigenvalue of �A = A−1.

The proof of the theorem appears in the appendix. The theorem guarantees
that λ1 is isolated from the other eigenvalues ofM by a disc of radius larger than
jλ1 j + κ1. Thus, all the initial guesses of �λ1 in the disc of half that radius will
converge to λ1. The theorem also implies the following corollary, which asserts
that λ1 is a smooth function of the geometrical data.

COROLLARY 4.1. The minimal eigenvalue ofM, λ1, (and consequentlymargin
(E1, E2)) is a real analytic function of the geometrical data, (a,A). Moreover,
the gradient of λ1 is:

∂λ1(a,A)

∂a
= ⌧

1
α
�AT−2a and ∂λ1(a,A)

∂A
=
1
α
T−2ããTT−2, (16)

where T = �A ⌧ λ1I and α = ãTT−3ã.
Proof. According to Theorem 2, λ1 is an isolated root of the characteristic

polynomial of M . It is known from function theory that an isolated root of a
polynomial is an analytic function of its coefficients [20, p. 125]. The formu-
la for the gradient is derived by implicit differentiation of the polynomial in
Equation (7), ãT [�A ⌧ λ1(a,A)I]−2ã = 1, which is satisfied by λ1 according to
Lemma B.1 in the appendix.

The gradient of margin(E1, E2) can be computed by applying the chain rule
to margin(E1, E2) and then using (16). While we do not explicitly derive the
gradient formula, it is clearly forthcoming. Let us discuss now an important
implementation detail of the inverse iteration method. Efficient implementation
of the inverse iteration method requires the following formula:

�
M ⌧ �λ1I

�−1 =
�
PQ P

QPQ ⌧ I QP

�
,

where Q = �A ⌧ �λ1I and

P =
�
Q2 ⌧ ããT

�−1 = Q−2 +
1

1+ ãTQ−2ã
Q−2ããTQ−2.

If R is the orthogonal matrix that diagonalizes �A into a diagonal matrix Λ,
Λ = RT �AR, knowledge of R allows computation of Q−2 as Q−2 = R(Λ ⌧
�λ1I)−2RT . Hence the inverse iteration method requires only a series of matrix-
vector multiplications, each taking n2 operations. The number of steps required

JINT1347.tex; 6/02/1997; 16:24; v.5; p.15

120 ELON RIMON AND STEPHEN P. BOYD

by the inverse iteration method to achieve an ε-accurate estimate is c log(1/ε),
where c is a constant which depends on �λ1. The total number of operations
required by the inverse iteration method is thus cn2 log(1/ε), compared with
4(2n)3 for the QR method.

Example. We have implemented the inverse iteration method and tested it
on the L–J ellipsoids of Figure 3. We took the robot configurations at the snap-
shots shown in Figure 4 as vertices in the robot’s joint space. Then we connected
these vertices by straight lines and arbitrarily discretized each line by 100 equally
spaced points. The robot was then moved along the resulting joint-space trajec-
tory, and we computed its distance from the obstacles using the inverse iteration
method. The computation at each trajectory point was terminated when the mag-
nitude of the error between successive eigenvector estimates became less than
10−6. Using an Indigo machine, the average time for one distance computation
was .7 msec, of which 0.35 msec were taken by the eigenvalue computation.

To summarize, the incremental computation of the minimal eigenvalue with
the inverse iteration method is significantly faster than the static computation.
However, we have merely depicted the principle of the method, and other improve-
ments can be introduced. For example, the derivative of λ1 as a function of the
robot configuration can be computed from Equation (16). The derivative can
then provide an estimate for the variation in λ1 between successive trajectory
points. Comparison of the variation with the conversion disc will ensure that the
step size is sufficiently small for the inverse iteration method to converge to the
correct solution.

5. Concluding Discussion

We have shown that the optimal enclosing ellipsoid, E , of a polyhedron, P , can be
effectively computed as a convex optimization problem, and that it often provides
a suitable approximation for convex polyhedra (Figure 3). An important topic
for further research is concerned with measures for the tightness of the optimal
E about P . The following two properties of the optimal ellipsoid provide some
measure for the tightness of the fitting. The first is that P always contains the
ellipsoid formed by shrinking E from its center by a factor of 1/n [17]. The other
is that E touches at least n+ 1 vertices of P , such that the center of E lies at the
geometrical center of these vertices [17]. While there is a limit to the tightness
of an approximation by ellipsoids, its advantage lies in the rapid computation of
the distance estimate.
We have also shown that a generalized distance between two ellipsoids can be

computed as an eigenvalue problem. Standard techniques for computing eigenval-
ues are so rapid that they are generally considered to be ‘closed form’ solutions.
Moreover, the classical collision detection approaches which compute the dis-
tance between polyhedra take time which is linear in the number of vertices (in

JINT1347.tex; 6/02/1997; 16:24; v.5; p.16

OBSTACLE COLLISION DETECTION 121

worst case) [22], while margin(E1, E1) always takes constant time to compute,
regardless of the complexity of the underlying polyhedra. The ellipsoid approach
is thus useful for real-time applications, where basic computations are expected
to end within a specific time interval.
Further, polyhedral approaches which compute the exact distance must retain

the entire data structure of the polyhedra. However, typical polyhedra contain
hundreds of faces, while the ellipsoid approach uses a single quadratic enclos-
ing surface as the data structure. Of course, the simpler data structure comes
at the price of obtaining only a conservative distance estimate. In the future,
collision-detection systems should be able to exploit the advantages of each rep-
resentational approach according to the task characteristics, taking into account
competing factors such as computation time and desired accuracy.

Appendix A: Details Concerning the Optimal Ellipsoid

This appendix contains proofs of statements made about the optimal ellipsoid.
We begin with a proof of Theorem 1, for which the following lemma will be
needed. The lemma gives a formula for the n-ellipsoid obtained by intersecting
the (n+1)-ellipsoid En+1(0,X) with xn+1 = 1. We will use the following block
partition of the (n+ 1) ⇥ (n+ 1) matrix X:

X =
�
X11 X12
XT12 X22

�
,

where X11 is n ⇥ n, X12 is n ⇥ 1, and X22 is a scalar.

LEMMA A.1. Let En(y0, Y) be the n-ellipsoid obtained by intersecting the
(n+ 1)-ellipsoid En+1(0,X) with xn+1 = 1. Then y0 and Y are given by

y0 = ⌧X−111 X12 and Y =
1

1 ⌧ ρ(X)
X11,

where ρ(X) = X22 ⌧ XT12X
−1
11 X12. Moreover, ρ(X) satisfies 0 < ρ(X) < 1.

Proof. By definition, all the points x = (x1, . . . , xn+1) in En+1(0,X) at
height xn+1 = 1 satisfy

(yT 1)
�
X11 X12
XT12 X22

��
y

1

�

� 1 where y = (x1, . . . , xn).

Expanding this inequality gives

(yT 1)
�
X11 X12
XT12 X22

��
y

1

�

= kX1/211 yk
2 + 2

�
X1/211 y

�TX−1/211 X12 +X22

=
�
y +X−111 X12

�TX11
�
y +X−111 X12

�
+X22 ⌧ XT12X

−1
11 X12 � 1,

JINT1347.tex; 6/02/1997; 16:24; v.5; p.17

122 ELON RIMON AND STEPHEN P. BOYD

or equivalently,

�
y +X−111 X12

�T
�

1
1 ⌧ (X22 ⌧ XT12X

−1
11 X12)

X11

�
�
y +X−111 X12

�
� 1.

A proof that ρ(X) = X22 ⌧ XT12X
−1
11 X12 satisfies 0 < ρ(X) < 1 appears

in [29].

We are now ready to prove the theorem.

THEOREM 1. Let En+1(0,X∗) be the minimum volume (n+ 1)-ellipsoid cen-
tered at the origin which contains the enbedded P . Then En(y∗, Y ∗), obtained
by intersecting En+1(0,X∗) with xn+1 = 1, is the minimum volume n-ellipsoid
containing P .

Moreover, if En+1(0,X) is ε-optimal with respect to En+1(0,X∗), then
En(y, Y), obtained by intersecting En+1(0,X) with xn+1 = 1, is ε-optimal with
respect to En(y∗, Y ∗).

Proof. According to Lemma A.1, each (n + 1)-ellipsoid En+1(0,X) deter-
mines an n-ellipsoid En(y(X), Y (X)) at height xn+1 = 1, as well as a scalar
ρ(X) such that 0 < ρ(X) < 1. On the other hand, every n-ellipsoid En(y, Y) and
a scalar 0 < ρ < 1 determine an (n + 1)-ellipsoid En+1(0,X) which coincides
with En(y, Y) in the hyperplane xn+1 = 1. It can be verified that the matrix X
is given in terms of En(y, Y) and ρ by the formula:

X(y, Y, ρ) =

�
(1 ⌧ ρ)Y ⌧ (1 ⌧ ρ)Y y

⌧ (1 ⌧ ρ)(Y y)T ρ+ (1 ⌧ ρ)yTY y

�

. (17)

Let us compute the determinant of X(y, Y, ρ),

det
�
X(y, Y, ρ)

�

= (1 ⌧ ρ)n � detY � fρ+ (1 ⌧ ρ)yTY y ⌧ (1 ⌧ ρ)yTY yg
= ρ(1 ⌧ ρ)n detY, (18)

where we have used the identity

det
�
A B
C D

�
= det(A) det(D ⌧ CA−1B).

Recall that the (n+1)-ellipsoid attains minimal volume when det(X) is maximal.
Using Equation (18), the maximum of det(X) can be written in the following
way

max
ρ,Y

fρ(1 ⌧ ρ)n detY g = max
ρ

fρ(1 ⌧ ρ)ngmax
Y

f detY g.

It follows that detX(y, Y, ρ) attains its maximal value precisely when detY
attains its maximal value. Hence En+1(0,X) attains minimal volume precisely

JINT1347.tex; 6/02/1997; 16:24; v.5; p.18

OBSTACLE COLLISION DETECTION 123

when the corresponding n-ellipsoid, En(y, Y), attains its minimal volume. A
proof that and ε-optimal (n+ 1)-ellipsoid gives an ε-optimal n-ellipsoid appears
in [29].

LEMMA 2.1. If A and B are positive-definite matrices,

det
�1
2(A+B)

�
� det(AB)1/2.

Proof. Since A > 0, we may write it as A = A1/2A1/2. Use of the identity
det(P1P2) = det(P1) det(P2) gives

det
�1
2(A+B)

�
= det(A1/2) det

�1
2(I +A

−1/2BA−1/2)
�
det(A1/2).

Since det(AB)1/2 = det(B1/2A1/2) = det(B1/2) det(A1/2), it suffices to show
that

det
�1
2(I +A

−1/2BA−1/2)
�
� det(B1/2) det(A−1/2). (19)

But A−1/2BA−1/2 = (B1/2A−1/2)TB1/2A−1/2 and det(B1/2) det(A−1/2) =
det(B1/2A−1/2). Hence the matrices in both sides of (19) share the same eigen-
vectors. Letting σ1, . . . , σn denote the eigenvalues of the matrix B1/2A−1/2, (19)
can be written as: 1/2

�n
i=1(1+σ2i) �

�n
i=1 σi. But

�n
i=1(1+σ2i) � 1+

�n
i=1 σ

2
i .

Hence it suffices to show that 1+
�n
i=1 σ

2
i � 2

�n
i=1 σi. But this is the inequality

(1+
�n
i=1 σi)

2 � 0, which is always satisfied.

Appendix B: Details Concerning margin(E1, E1)

This appendix contains the proof of Theorem 2, for which we will need the
following lemma.

LEMMA B.1. The characteristic polynomial of the 2n ⇥ 2n matrix M defined
in Equation (15) is: q(λ) = q21(λ)q2(λ), where q1(λ) is the characteristic poly-
nomial of �A, and q2(λ) = 1 ⌧ ãT [�A ⌧ λI]−2ã.

Proof. We have to compute the polynomial det(M ⌧ λI) where λ is a scalar.
First we exchange the top n rows with the bottom n rows,

det(M ⌧ λI) = (⌧1)n det
�

⌧ ããT �A ⌧ λI
�A ⌧ λI ⌧ I

�
.

Next we use the identity

det
�
X Y
W Z

�
= det(Z) det(X ⌧ Y Z−1W),

det(M ⌧ λI) = det
�

⌧ ããT + [�A ⌧ λI]2
�

= det2(�A ⌧ λI) det
�

⌧ [�A ⌧ λI]−1ããT [�A ⌧ λI]−1 + I
�
.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.19

124 ELON RIMON AND STEPHEN P. BOYD

Finally, we use the identity det(uvT + I) = 1+ u � v to obtain the result.

Note that the polynomial q2(λ) in the lemma is precisely the 2n-degree poly-
nomial (7). Moreover, it is shown below that q2(λ) has a root which lies to the
left of all the roots of the polynomial q1(λ). Hence the minimal eigenvalue of
M is the minimal root of the polynomial (7).

THEOREM 2. Let λ1 be the minimal eigenvalue of M (i.e. the eigenvalue with
minimal real part). Then λ1 is negative real whenever the center, a, of En(a,A)
lies outside the unit ball. Moreover, all the other eigenvalues of M satisfy

Re fλig � κ1 > 0 for i = 2, . . . , 2n,

where κ1 is the minimal eigenvalue of �A = A−1.
Proof. First we establish that det(M) < 0. This would imply that M has at

least one negative real eigenvalue. Using the characteristic polynomial given by
Lemma B.1, det(M) = q(λ)jλ=0 = det2(�A)(1 ⌧ ãTA2ã), where we substituted
A−1 for �A. Substituting A−1/2a for ã gives: det(M) = det2(�A)(1 ⌧ kak2). Since
kak > 1 by hypothesis, det(M) < 0. Next we show that λ1 is isolated. Let
κ1, . . . , κn be the eigenvalues of �A, and let R be the orthogonal matrix which
diagonalizes �A, RT �AR = diag(κ1, . . . , κn). Then the characteristic polynomial
of M , written in terms of a complex variable z, is:

q(z) = q21(z)
�
1 ⌧ ãTR

�
RT �AR ⌧ λI

�−2RT ã
�

=

�
n�

i=1
(z ⌧ κi)2

��

1 ⌧
n�

i=1

ā2i
(z ⌧ κi)2

�

,

where ā = RT ã. Let R be the region of the complex plane defined by Re fzg <
κ1 where, recall, κ1 > 0 is the minimal eigenvalue of �A and Re fzg is the real
part of z. Since Re fzg ⌧ κi < 0 for i = 1, . . . , n and z 2 R , q1 is non-zero
in R . Only q2 can vanish in R . Let Im fzg denote the imaginary part of z, and
let z̄ denote the complex conjugate of z. The ith summand of q2 can be written
as

ā2i
(z ⌧ κi)2

= ā2i
(z̄ ⌧ κi)2

(jz j2 + κ2i)2

= ā2i
(Re fzg ⌧ κi)2 ⌧ Im fzg2 + 2j(Re fzg ⌧ κi)Im fzg

(jz j2 + κ2i)2
,

where j =
p

⌧1. It follows that the imaginary part of q2(z) is

Im fq2(z)g = 2Im fzg
n�

i=1
ā2i
Re fzg ⌧ κi
(jz j2 + κ2i)2

. (20)

JINT1347.tex; 6/02/1997; 16:24; v.5; p.20

OBSTACLE COLLISION DETECTION 125

Since Re fzg ⌧ κi < 0 for i = 1, . . . , n, it follows from (20) that the roots of
q2 in R must be real. Let q2(s) = 1 ⌧

�n
i=1 ā

2
i /(s ⌧ κi)2 be the restriction of

q2 to the reals. Then q2(s) has exactly one root in the interval (⌧ 1 , κ1). This
observation is made in [12] and is a consequence of the following two facts. The
first is that lims→−∞ q2(s) = 1 and lims→κ-1

q2(s) = ⌧ 1 . It implies that q2(s)
has at least one root in (⌧ 1 , κ1). The second is that

d
ds q2

(s) = 2
n�

i=1
ā2i/(s ⌧ κi)3.

Since s ⌧ κi < 0 for s 2 (⌧ 1 , κ1), the derivative is negative and q2(s) is
strictly decreasing. Hence q2(s) has exactly one root in (⌧ 1 , κ1), which must
be negative since det(M) < 0.

References
1. Baraff, D.: Curved surfaces and coherence for nonpenetrating rigid body simulation, Computer

Graphics (Proc. SIGGRAPH) 24(4) (1990), 19–28.
2. Bobrow, J. E.: A direct minimization approach for obtaining the distance between convex
polyhedra, International Journal of Robotics Research 8(3) (1989), 65–76.

3. Canny, J. F.: Collision detection for moving polyhedra, IEEE Transactions on PAMI 8 (1986),
200–209.

4. Choset, H. and Burdick, J. W.: Sensor based planning, Part ii: Incremental construction of
the generalized voronoi graph, in: IEEE Int. Conference on robotics and Automation, Nagoya,
Japan, 1995, pp. 1643–1649.

5. Clarke, F. H.: Optimization and Nonsmooth Analysis, SIAM Publications, 1990.
6. Dobkin, D. P. and Kirpatrick, D. G.: Fast detection of polyhedral intersection, Theoretical

Computer Science 27 (1983), 241–253.
7. Donald, B. R.: Motion planning with six degrees of freedom, Research Report AI-TR-791,
Artificial Intelligence Lab., MIT, 1984.

8. Faverjon, B.: Hierarchical object models for efficient anti-collision algorithms, in: IEEE Int.
Conference on Robotics and Automation, Scottsdale, AZ, 1989, pp. 333–340.

9. Fleming, W.: Functions of Several Variables, Springer-Verlag, New York, 1987.
10. Flynn, P. J. and Jain, A. K.: CAD-based computer vision – from CAD models to relational

graphs, IEEE Transactions on PAMI 13(2) (1991), 114–132.
11. Gander, W.: Least squares with a quadratic constraint, Numerische Mathematik 36 (1981),

291–307.
12. Gander, W., Golub, G. H., and Matt, U.: A constrained eigenvalue problem, Linear Algebra

and Its Applications, 1989, pp. 815–839.
13. Gilbert, E. G., Johnson, D. W., and Keerthi, S. S.: A fast procedure for computing the distance

between objects in three-dimensional space, IEEE Transactions on Robotics and Automation
4 (1988), 193–203.

14. Grotschel, M., Lovasz, L., and Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization, Springer-Verlag, New York, 1988.

15. Henrich, D. and Cheng, X.: Fast distance computation for on-line collision detection with
multi-arm robots, in: IEEE Int. Conference on Robotics and Automation, Nice, France, 1992,
pp. 2514–2519.

16. Hubbard, P.: Interactive collision detection, in: IEEE Symposium on Research Frontiers in
Virtual Reality, 1993, pp. 24–31.

17. John, F.: Extremum problems with inequalities as subsidiary conditions (1948), in: J. Moser
(ed.), Fritz John Collected Papers, Ch. 2, Birkhauser, Boston, 1985, pp. 543–560.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.21

126 ELON RIMON AND STEPHEN P. BOYD

18. Kalvin, A. D. and Taylor, R. H.: Superfaces: Polyhedral approximation with bounded error,
in: SPIE Conference on Medical Imaging, Vol. 2164, Newport Beach, CA, 1994, pp. 1–13.

19. Khatib, O.: Real time obstacle avoidance for manipulators and mobile robots, International
Journal of Robotics Research 5(1) (1986), 90–99.

20. Knopp, K.: Theory of Functions II, Dover, New York, 1947.
21. Lin, M. C. and Canny, J. F.: An opportunistic global path planner, in: IEEE Int. Conference

on Robotics and Automation, Cincinnati, OH, 1990, pp. 1554–1558.
22. Lin, M. C. and Canny, J. F.: A fast algorithm for incremental distance calculation, in: IEEE

Int. Conference on Robotics and Automation, Sacramento, CA, 1991, pp. 1008–1014.
23. Lozano-Pérez, T.: Spatial planning: A configuration space approach, IEEE Transactions on

Computers 32(2) (1983), 108–120.
24. Martin, R. R. and Stephenson, P. C.: Containment algorithm for objects in rectangular boxes, in:

Theory and Practice of Geometric Modeling, Springer-Verlag, New York, 1989, pp. 307–325.
25. Nesterov, Y. E. and Nemirovsky, A. S.: Interior Point Polynomial Methods in Convex Pro-

gramming: Theory and Applications, Springer-Verlag, New York, 1992.
26. Pentland, A. P.: Perceptual organization and the representation of natural form, in: Readings

in Computer Vision, Kaufmann, Los Altos, CA, 1987, pp. 680–699.
27. Post, M. J.: Minimum spanning ellipsoids, in: ACM Symposium on Theory of Computing,

Washington, DC, 1984, pp. 108–116.
28. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical Recipes in

C, Cambridge Univ. Press, NY, 1988.
29. Rimon, E. and Boyd, S. P.: Efficient distance computation using best ellipsoid fit, Technical

report, Information Systems Laboratory, Stanford University, 1992.
30. Rimon, E. and Canny, J. F.: Construction of c-space roadmaps from local sensory data: What

should the sensors look for?, in: IEEE Int. Conf. on Robotics and Automation, San Diego, CA,
1994, pp. 117–123.

31. Rimon, E. and Koditschek, D. E.: Exact robot navigation using artificial potential functions,
IEEE Transactions on Robotics and Automation 8(5) (1992), 501–518.

32. Zeghloul, S., Rambeaud, P., and Lallemand, J.: A fast distance calculation between convex
objects by optimization approach, in: IEEE Int. Conference on Robotics and Automation Nice,
France, 1992, pp. 2520–2525.

JINT1347.tex; 6/02/1997; 16:24; v.5; p.22

