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1 Act I. The maximum principle enters

We will have two main characters in these notes: the maximum principle and the sliding
method. The latter has a twin, the moving plane method – they are often so indistinguishable
that we will count them as one character. They will be introduced separately, and then
blended together to prove the symmetry properties of the solutions of elliptic equations. In
this introductory section, we recall the what the maximum principle is. This material is very
standard and can be found in almost any undergraduate or graduate PDE text, such as the
books by Evans [7], Han and Lin [10], and Pinchover and Rubinstein [11].

We will consider equations of the form

∆u+ F (x, u) = 0 in Ω, (1.1)

u = g on ∂Ω.

Here, Ω is a bounded domain in Rn and ∂Ω is its boundary. There are many applications where
such problems appear. We will mention just two – one is in the realm of probability theory,
where u(x) is an equilibrium particle density for some stochastic process, and the other is in
classical physics. In this short course, we will mostly appeal to the physical interpretation
rather than probabilistic, because of the time restrictions. In this context, one may think
of u(x) as the equilibrium temperature distribution inside the domain Ω. The term F (x, u)
corresponds to the heat sources or sinks inside Ω, while g(x) is the (prescribed) temperature
on the boundary ∂Ω. The maximum principle reflects a basic observations known to any child
– first, if F (x, u) = 0 (there are neither heat sources nor sinks), or if F (x, u) ≤ 0 (there are
no heat sources but there may be heat sinks), the temeprature inside Ω may not exceed that
on the boundary – without a heat source inside a room, you can not heat the interior of a
room to a warmer temperature than its maximum on the boundary. Second, if one considers
two prescribed boundary conditions and heat sources such that

g1(x) ≤ g2(x) and F1(x, u) ≤ F2(x, u),
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then the corresponding solutions will satisfy u1(x) ≤ u2(x) – stronger heating leads to warmer
rooms. It is surprising how such mundane considerations may lead to rather beautiful math-
ematics.

The maximum principle in complex analysis

Most mathematicians are first introduced to the maximum principle in a complex analysis
course. Recall that the real and imaginary parts of an analytic function f(z) have the following
property.

Proposition 1.1 Let f(z) = u(z) + iv(z) be an analytic function in a smooth bounded
domain Ω ∈ C, continuous up to the boundary Ω. Then u(z) = Ref(z), v(z) = Imf(z)
and w(z) = |f(z)| all attain their respective maxima over Ω on its boundary. In addition,
if any of these functions attains its maximum inside Ω, it has to be equal identically to a
constant in Ω.

This proposition is usually proved via the mean-value property of analytic functions (which
itself is a consequence of the Cauchy integral formula): for any disk B(z0, r) contained in Ω
we have

f(z0) =

∫ 2π

0

f(z0 +reiθ)
dθ

2π
, u(z0) =

∫ 2π

0

u(z0 +reiθ)
dθ

2π
, v(z0) =

∫ 2π

0

v(z0 +reiθ)
dθ

2π
, (1.2)

and

w(z) ≤
∫ 2π

0

w(z0 + reiθ)
dθ

2π
. (1.3)

It is immediate to see that (1.2) and (1.3) imply that if one of the functions u, v and w attains
a local maximum at a point z0 inside Ω, it has to be equal to a constant in a disk around z0.
Thus, the set where it attains its maximum is both open and closed, hence it is all of Ω and
this function equals identically to a constant.

The above argument while incredibly beautiful and simple, relies very heavily on the
rigidity of analytic functions that is reflected in the mean-value principle. The same rigidity
is reflected in the fact that the real and imaginary parts of an analytic function satisfy the
Laplace equation

∆u = 0, ∆v = 0,

while w2 = u2 + v2 is subharmonic: it satisfies

∆(w2) ≥ 0.

We will see next that the mean-value principle is associated to the Laplace equation and not
analyticity in itself, and thus applies to harmonic (and, in a modified way, to subharmonic)
functions in higher dimensions as well. This will imply the maximum principle for solutions
of the Laplace equation in an arbitrary dimension. One may ask whether a version of the
mean-value principle also holds for the solutions of general elliptic equations rather than just
for the Laplace equation – the answer is “yes if understood properly”, and the mean value
property survives as the general elliptic regularity theory, an equally beautiful sister of the
complex analysis which is occasionally misunderstood as “technical”. We will not discuss it
here.
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Interlude: a probabilistic connection digression

Another good way to understand how the Laplace equation comes about, as well as many
of its properties, including the maximum principle, is via its connection to the Brownian
motion. It is easy to understand in terms of the discrete equations, which requires only very
elementary probability theory. Consider a system of many particles on the n-dimensional
integer lattice Zn. They all perform a symmetric random walk: at each integer time t = k
each particle jumps (independently from the others) from its current site x ∈ Zn to one of
its 2n neighbors, x ± ek (ek is the unit vector in the direction of the xk-axis), with equal
probability 1/(2n). At each step we may also insert new particles, the average number of
inserted (or eliminated) particles per unit time at each site is F (x). Let now um(x) be the
average number of particles at the site x at time m. The balance equation for um+1(x) is

um+1(x) =
1

2n

n∑
k=1

[un(x+ ek) + un(x− ek)] + F (x).

If the system is in an equilibrium, so that un+1(x) = un(x) for all x, then u(x) (dropping the
subscript n) satisfies the discrete equation

1

2n

n∑
k=1

[u(x+ ek) + u(x− ek)− 2u(x)] + F (x) = 0.

If we now take a small mesh size h, rather than one, the above equation becomes

1

2n

n∑
k=1

[u(x+ hek) + u(x− hek)− 2u(x)] + F (x) = 0.

Doing a Taylor expansion in h leads to

h2

2n

n∑
k=1

∂2u(x)

∂x2
k

+ F (x) = lower order terms.

Adjusting F (x) → h2/(2n)F (x) – this prevents us from inserting or removing too many
particles, we arrive, in the limit h ↓ 0, at

∆u+ F (x) = 0. (1.4)

In this model, we interpret u(x) as the local particle density, and F (x) as the rate at which
the particles are inserted (if F (x) > 0), or removed (if F (x) < 0). When equation (1.4) is
posed in a bounded domain Ω we need to supplement it with a boundary condition

u(x) = g(x) on ∂Ω.

Here, it means the particle density on the boundary is prescribed – the particles are injected
or removed if there “too many” or “too little” particles at the boundary, to keep u(x) at the
given prescribed value g(x).
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The mean value property for sub-harmonic and super-harmonic functions

We now return to the world of analysis. A function u(x), x ∈ Ω ⊂ Rn is harmonic if it satisfies
the Laplace equation

∆u = 0 in Ω. (1.5)

This is equation (1.1) with F ≡ 0, thus a harmonic function describes a heat distribution
in Ω with neither heat sources nor sinks in Ω. We say that u is sub-harmonic if it satisfies

−∆u ≤ 0 in Ω, (1.6)

and it is super-harmonic if it satisfies

−∆u ≥ 0 in Ω, (1.7)

In other words, a sub-harmonic function satisfies

∆u+ F (x) = 0, in Ω,

with F (x) ≤ 0 – it describes a heat distribution in Ω with only heat sinks present, and no
heat sources, while a super-harmonic function satisfies

∆u+ F (x) = 0, in Ω,

with F (x) ≥ 0 – it describes an equilibrium heat distribution in Ω with only heat sources
present, and no sinks.

Exercise 1.2 Give an interpretation of the sub-harmonic and super-harmonic functions in
terms of particle probability densities.

Note that any sub-harmonic function in one dimension is convex:

−u′′ ≤ 0,

and then, of course, for any x ∈ R and any l > 0 we have

u(x) ≤ 1

2
(u(x+ l) + u(x− l)) ≤ 1

2l

∫ x+l

x−l
u(y)dy.

The following generalization to sub-harmonic functions in higher dimensions shows that lo-
cally u(x) is bounded from above by its spatial average. A super-harmonic function will be
locally above its spatial average. A word on notation: for a set S we denote by |S| its volume
(or area), and, as before, ∂S denotes its boundary.

Theorem 1.3 Let Ω ⊂ Rn be an open set and let B(x, r) be a ball centered at x ∈ Rn of
radius r > 0 contained in Ω. Assume that the function u(x) satisfies

−∆u ≤ 0, (1.8)

for all x ∈ Ω and that u ∈ C2(Ω). Then we have

u(x) ≤ 1

|B(x, r)|

∫
B(x,r)

udy, u(x) ≤ 1

|∂B(x, r)|

∫
∂B(x,r)

udS. (1.9)
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If the function u(x) is super-harmonic:

−∆u ≥ 0, (1.10)

for all x ∈ Ω and that u ∈ C2(Ω). Then we have

u(x) ≥ 1

|B(x, r)|

∫
B(x,r)

udy, u(x) ≥ 1

|∂B(x, r)|

∫
∂B(x,r)

udS. (1.11)

Moreover, if the function u is harmonic: ∆u = 0, then we have equality in both inequalities
in (1.9).

One reason to expect the mean-value property is from physics – if Ω is a ball with no heat
sources, it is natural to expect that the temperature in the center of the ball may not exceed
the average temperature over any sphere concentric with the ball. The opposite is true if
there are no heat sinks (this is true for a super-harmonic function). Another can be seen from
the discrete version of inequality (1.8):

u(x) ≤ 1

2n

n∑
j=1

(u(x+ hej) + u(x− hej)).

Here, h is the mesh size, and ej is the unit vector in the direction of the coordinate axis
for xj. This discrete equation says exactly that the value u(x) is smaller than the average
of the values of u at the neighbors of the point x on the lattice with mesh size h, which is
similar to the statement of Theorem 1.3 (though there is no meaning to “nearest” neighbor
in the continuous case).

Proof. We will only treat the case of a sub-harmonic function. Let us fix the point x ∈ Ω
and define

φ(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(z)dS(z). (1.12)

It is easy to see that, since u(x) is continuous, we have

lim
r↓0

φ(r) = u(x). (1.13)

Therefore, we would be done if we knew that φ′(r) ≥ 0 for all r > 0 (and such that the
ball B(x, r) is contained in Ω). To this end, passing to the polar coordinates z = x + ry,
with y ∈ ∂B(0, 1), we may rewrite (1.12) as

φ(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

u(x+ ry)dS(y).

Then, differentiating in r gives

φ′(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

y · ∇u(x+ ry)dS(y).

Going back to the z-variables gives

φ′(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

1

r
(z − x) · ∇u(z)dS(z) =

1

|∂B(x, r)|

∫
∂B(x,r)

∂u

∂ν
dS(z).
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Here, we used the fact that the outward normal to B(x, r) at a point z ∈ ∂B(x, r) is

ν = (z − x)/r.

Using Green’s formula∫
U

∆gdy =

∫
U

∇ · (∇g) =

∫
∂U

(ν · ∇g) =

∫
∂U

∂g

∂ν
dS,

gives now

φ′(r) =
1

|∂B(x, r)|

∫
B(x,r)

∆u(y)dy ≥ 0.

It follows that φ(r) is a non-decreasing function of r, and then (1.13) implies that

u(x) ≤ 1

|∂B(x, r)|

∫
∂B(x,r)

udS, (1.14)

which is the second identity in (1.9).
In order to prove the first equality in (1.9) we use the polar coordinates once again:

1

|B(x, r)|

∫
B(x,r)

udy =
1

|B(x, r)|

∫ r

0

(∫
∂B(x,s)

udS

)
ds ≥ 1

|B(x, r)|

∫ r

0

u(x)nα(n)sn−1ds

= u(x)
nα(n)rn

nα(n)rn
= u(x).

We used above two facts: first, the already proved identity (1.14) about averages on spherical
shells, and, second, that the area of an (n − 1)-dimensional unit sphere is nα(n). Now, the
proof of (1.9) is complete. The proof of the mean-value property for subharmonic functions
works identically. �

The weak maximum principle

The first consequence of the mean value property is the maximum principle that says that a
sub-harmonic function attains its maximum over any domain on the boundary and not inside
the domain1. Once again, in one dimension this is obvious: a smooth convex function does
not have any local maxima.

Theorem 1.4 (The weak maximum principle) Let u(x) be a sub-harmonic function in
a connected domain Ω and assume that u ∈ C2(Ω) ∩ C(Ω̄). Then

max
x∈Ω

u(x) = max
y∈∂Ω

u(y). (1.15)

Moreover, if u(x) achieves its maximum at a point x0 in the interior of Ω, then u(x) is
identically equal to a constant in Ω. Similarly, if u ∈ C2(Ω) ∩ C(Ω̄) is a super-harmonic
function in Ω, then

min
x∈Ω

u(x) = min
y∈∂Ω

u(y). (1.16)

Moreover, if u(x) achieves its minimum at a point x0 in the interior of Ω, then u(x) is
identically equal to a constant in Ω.

1A sub-harmonic function is nothing but the heat distribution in a room without heat sources, hence it is
very natural that it attains its maximum on the boundary (the walls of the room)
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Proof. Again, we only treat the case of a sub-harmonic function. Suppose that u(x) attains
its maximum at an interior point x0 ∈ Ω, and set

M = u(x0).

Then, for any r > 0 sufficiently small (so that the ball B(x0, r) is contained in Ω), we have

M = u(x) ≤ 1

|B(x0, r)|

∫
B(x0,r)

udy ≤M,

with the equality above holding only if u(y) = M for all y in the ball B(x0, r). Therefore,
the set S of points where u(x) = M is open. Since u(x) is continuous, this set is also closed.
Since S us both open and closed in Ω, and Ω is connected, it follows that S = Ω, hence
u(x) = M at all points x ∈ Ω. �

We will often have to deal with slightly more general operators than the Laplacian, of the
form

Lu = ∆u(x) + c(x)u. (1.17)

We may ask the same question: when is it true that the inequality

−∆u(x)− c(x)u(x) ≤ 0 in Ω (1.18)

guarantees that u(x) attains its maximum on the boundary of Ω? It is certainly not always
true that any function satisfying (1.18) attains its maximum on he boundary: consider the
function u(x) = sin x on the interval (0, π). It satisfies

u′′(x) + u(x) = 0, u(0) = u(π) = 0, (1.19)

but achieves its maximum at x = π/2. In order to understand this issue a little better,
consider the following exercise.

Exercise 1.5 Consider the boundary value problem

−u′′ − au = f(x), 0 < x < 1, u(0) = u(1) = 0,

with a given non-negative function f(x), and a constant a ≥ 0. Show that if a < π2, then the
function u(x) is positive on the interval (0, 1).

One possible answer to our question below (1.18) comes from our childish attempts at
physics: if u(x) ≥ 0, we may interpret u(x) as a heat distribution in Ω. Then, u(x) should not
be able to attain its maximum inside Ω if there are no heat sources in Ω. If u(x) satisfies (1.18),
the only possible heat source is c(x)u(x). Keeping in mind that u(x) ≥ 0, we see that absence
of heat sources is equivalent to the condition c(x) ≤ 0 (this, in particular, rules out the
counterexample (1.19)). Mathematically, this is reflected in the following.

Corollary 1.6 Suppose that c(x) ≤ 0 in Ω, and a function u ∈ C2(Ω)∩C(Ω) satisfies u ≥ 0
and

∆u(x) + c(x)u(x) ≥ 0 in Ω.

Then u attains its maximum on ∂Ω. Moreover, if u(x) attains its maximum inside Ω then u
is identically equal to a constant.

Proof. A non-negative function u(x) that satisfies (1.18) is sub-harmonic, and application
of Theorem 1.4 finishes the proof.

Exercise 1.7 Give an interpretation of this result in terms of particle densities.
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2 Act II. The moving plane method

2.1 The isoperimeteric inequality and sliding

We now bring in our second set of characters, the moving plane and sliding methods. As
an introduction, we show how the sliding method can work alone, without the maximum
principle. Maybe the simplest situation when the sliding idea proves useful is in an elegant
proof of the isoperimetric inequality. We follow here the proof given by X. Cabré in [4]2.
The isoperimetric inequality says that among all domains of a given volume the ball has the
smallest perimeter.

Theorem 2.1 Let Ω be a smooth bounded domain in Rn. Then,

|∂Ω|
|Ω|(n−1)/n

≥ |∂B1|
|B1|(n−1)/n

, (2.1)

where B1 is the open unit ball in Rn, |Ω| denotes the measure of Ω and |∂Ω| is the perimeter
of Ω (the (n − 1)-dimensional measure of the boundary of Ω). In addition, equality in (2.1)
holds if and only if Ω is a ball.

A technical aside: the area formula

The proof will use the area formula (see [8] for the proof), a generalization of the usual change
of variables formula in the multi-variable calculus. The latter says that if f : Rn → Rn is a
smooth one-to-one map (a change of variables), then∫

Rn

g(x)Jf(x)dx =

∫
Rn

g(f−1(y))dy. (2.2)

For general maps we have

Theorem 2.2 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
function g ∈ L1(Rn) we have

∫
Rn

g(x)Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

g(x)

 dy. (2.3)

We will, in particular, need the following corollary.

Corollary 2.3 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
measurable set A ⊂ Rn we have

|f(A)| ≤
∫
A

Jf(x)dx. (2.4)

2Readers with ordinary linguistic powers may consult [5].
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Proof. For a given set S we define its characteristic functions as

χS(x) =

{
1, for x ∈ S,
0, for x 6∈ S,

We use the area formula with g(x) = χA(x):

∫
A

Jf(x)dx =

∫
Rn

χA(x)Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

χA(x)

 dy
=

∫
Rn

[#x ∈ A : f(x) = y] dy ≥
∫
Rn

χf(A)(y)dy = |f(A)|,

and we are done. �
A more general form of this corollary is the following.

Corollary 2.4 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
nonnegative function p ∈ L1(Rn) and each measurable set A, we have∫

f(A)

p(y)dy ≤
∫
A

p(f(x))Jf(x)dx. (2.5)

Proof. The proof is as in the previous corollary. This time, we apply the area formula to the
function g(x) = p(f(x))χA(x):

∫
A

p(f(x))Jf(x)dx =

∫
Rn

χA(x)p(f(x))Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

χA(x)p(f(x))

 dy
=

∫
Rn

[#x ∈ A : f(x) = y] p(y)dy ≥
∫
f(A)

p(y)dy,

and we are done. �

The proof of the isoperimetric inequality

We now proceed with Cabré’s proof of the isoperimetric inequality in Theorem 2.1.
Step 1: sliding. Let v(x) be the solution of the Neumann problem

∆v = k, in Ω, (2.6)

∂v

∂ν
= 1 on ∂Ω.

Integrating the first equation above and using the boundary condition, we obtain

k|Ω| =
∫

Ω

∆vdx =

∫
∂Ω

∂u

∂ν
= |∂Ω|.

Hence, solution exists only if

k =
|∂Ω|
|Ω|

. (2.7)
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It is a classical result that with this particular value of k there exist infinitely many solutions
that differ by addition of an arbitrary constant. We let v be any of them. As Ω is a smooth
domain, v is also smooth.

Let Γv be the lower contact set of v, that is, the set of all x ∈ Ω such that the tangent
hyperplane to the graph of v at x lies below that graph in all of Ω̄. More formally, we define

Γv = {x ∈ Ω : v(y) ≥ v(x) +∇v(x) · (y − x) for all y ∈ Ω̄.} (2.8)

The crucial observation is that
B1 ⊂ ∇v(Γv). (2.9)

Here, B1 is the open unit ball centered at the origin. The geometric reason for this is as
follows: take any p ∈ B1 and consider the graphs of the functions

rc(y) = p · y + c.

We will now slide this plane upward – we will start with a “very negative” c, and start
increasing it, moving the plane up. Note that there exists M > 0 so that if c < −M , then

rc(y) < v(y)− 100 for all y ∈ Ω̄,

that is, the plane is below the graph in all of Ω, and, on the other hand,

rc(y) > v(y) + 100 for all y ∈ Ω̄,

in other words, the plane is above the graph in all of Ω if c > M . Let

α = sup{c ∈ R : rc(y) < v(y) for all y ∈ Ω̄}

be the largest c so that the plane lies below the graph of v in all of Ω. It is easy to see that
the plane rα(y) = p · y + α has to touch the graph of v: there exists a point y0 ∈ Ω̄ such
that rα(y0) = v(y0) and

rα(y) ≤ v(y) for all y ∈ Ω̄. (2.10)

Furthermore, the point y0 can not lie on the boundary ∂Ω. Indeed, for all y ∈ ∂Ω we have∣∣∣∂rc
∂ν

∣∣∣ = |p · ν| ≤ |p| < 1 and
∂v

∂ν
= 1.

This means that if rc(y) = v(y) for some c, and y is on the boundary ∂Ω, then there is
a neighborhood U ∈ Ω of y such that rc(y) > v(y) for all y ∈ U . Comparing to (2.10),
we see that c 6= α, hence it is impossible that y0 ∈ ∂Ω. Thus, y0 is an interior point
of Ω, and, moreover, the graph of rα(y) is the tangent plane to v at y0. In particular, we
have ∇v(y0) = p, and (2.10) implies that y0 is in the contact set of v: y0 ∈ Γv. We have now
shown the inclusion (2.9): B1 ⊂ ∇v(Γv). Note that the only information about the function
v(x) we have used so far is the Neumann boundary condition

∂v

∂ν
= 1 on ∂Ω,

but not the Poisson equation for v in Ω.
Step 2: using the area formula. A trivial consequence of (2.9) is that

|B1| ≤ |∇v(Γv)|. (2.11)

Now, we will apply Corollary 2.3 to the map∇v : Γv → ∇v(Γv), whose Jacobian is |det[D2v]|.
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Exercise 2.5 Show that if Γv is the contact set of a smooth function v(x), then det[D2v] is
non-negative for x ∈ Γv, and, moreover, all eigenvalues of D2v are nonnegative on Γv.

As det[D2v] is non-negative for x ∈ Γv, we conclude from Corollary 2.3 and (2.11) that

|B1| ≤ |∇v(Γv)| ≤
∫

Γv

det[D2v(x)]dx. (2.12)

It remains to notice that by the classical arithmetic mean-geometric mean inequality applied
to the (nonnegative) eigenvalues λ1, . . . , λn of the matrix D2v(x), x ∈ Γv we have

det[D2v(x)] = λ1λ2 . . . λn ≤
(
λ1 + λ2 + · · ·+ λn

n

)n
. (2.13)

However, by a well-known formula from linear algebra,

λ1 + λ2 + · · ·+ λn = Tr[D2v],

and, moreover, Tr[D2v] is simply the Laplacian ∆v. This gives

det[D2v(x)] ≤
(

Tr[D2v]

n

)n
=

(
∆v

n

)n
for x ∈ Γv. (2.14)

However, v is the solution of (2.15):

∆v = k, in Ω, (2.15)

∂v

∂ν
= 1 on ∂Ω.

with

k =
|∂Ω|
|Ω|

.

Going back to (2.12), we deduce that

|B1| ≤
∫

Γv

det[D2v(x)]dx ≤
∫

Γv

(
∆v

n

)n
dx ≤

(
k

n

)n
|Γv| =

(
|∂Ω|
n|Ω|

)n
|Γv| ≤

(
|∂Ω|
n|Ω|

)n
|Ω|.

However, for the unit ball we have |∂B1| = n|B1|, hence the above implies

|∂B1|n

|B1|n−1
≤ |∂Ω|n

|Ω|n−1
, (2.16)

which is nothing but the isoperimetric inequality (2.1).
In order to see that the inequality in (2.16) is strict unless Ω is a ball, we observe that it

follows from the above argument that for the equality to hold in (2.16) we must have equality
in (2.13), and, in addition, Γv has to coincide with Ω. This means that for each x ∈ Ω all
eigenvalues of the matrix D2v(x) are equal to each other. That is, D2v(x) is a multiple of the
identity matrix for each x ∈ Ω.

11



Exercise 2.6 Show that if v(x) is a smooth function such that

∂2v(x)

∂x2
i

=
∂2v(x)

∂x2
j

,

for all 1 ≤ i, j ≤ n and x ∈ Ω, and
∂2v(x)

∂xi∂xj
= 0,

for all i 6= j and x ∈ Ω, then there exists a = (a1, . . . , an) ∈ Rn and b ∈ R, so that

v(x) = b
[
(x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2

]
, (2.17)

for all x ∈ Ω.

Our function v(x) satisfies the assumptions of Exercise 2.6, hence it must have the form (2.17).
Finally, the boundary condition ∂v/∂ν = k on ∂Ω implies that Ω is a ball centered at the
point a ∈ Rn. �

3 Act III. Their first meeting

The maximum principle returns, and we study it in a slightly greater depth. At the end of
this act the maximum principle and the moving plane method are introduced to each other.

The strong maximum principle

Let us begin with the following exercises.

Exercise 3.1 Show that if the function u(x) satisfies an ODE of the form

u′′ + c(x)u = 0, a < x < b, (3.1)

and u(x0) = 0 for some x0 ∈ (a, b) then u can not attain its maximum (or minimum) over
the interval (a, b) at the point x0.

This exercise is relatively easy – one has to think about the initial value problem for (3.1)
with the data u(x0) = u′(x0) = 0. Now, look at the next exercise, which is slightly harder.

Exercise 3.2 Show that, once again, in one dimension, if u(x), x ∈ R satisfies an ODE of
the form

u′′ + c(x)u ≥ 0, a < x < b,

and u(x0) = 0 for some x0 ∈ (a, b) then u can not attain its maximum over the interval (a, b)
at the point x0.

A slightly more delicate argument leads to the strong maximum principle whose proof we
omit for the sake of time (it can be found in any PDE textbook, such as [7], [10] or [11]).

12



Theorem 3.3 (The Strong maximum principle) Assume that c(x) ≤ 0 in Ω, and the func-
tion u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u(x) + c(x)u(x) ≥ 0 in Ω.

Then, if the maximum of u over Ω̄ is non-negative, it may only be attained on ∂Ω unless u is
a constant.

Without going into the proof of the strong maximum principle, we mention that it relies
crucially on the Hopf lemma which guarantees that the point on the boundary where the
maximum is attained is not a critical point of u.

Theorem 3.4 (The Hopf Lemma) Let B = B(y, r) be an open ball in Rn with x0 ∈ ∂B, and
assume that c(x) ≤ 0 in B. Suppose that a function u ∈ C2(B) ∩ C(B ∪ x0) satisfies

∆u(x) + c(x)u(x) ≥ 0 in B,

and that u(x) < u(x0) for any x ∈ B and u(x0) ≥ 0. Then, we have

lim inf
t→0+

u(x0)− u(x0 − tm)

t
> 0

for each outward direction m: m · ν(x0) > 0.

Remark 3.5 If the normal derivative exists at x0 then
∂u

∂ν
(x0) < 0.

The restriction c(x) ≤ 0 may be eliminated if we know already that u ≤ 0, and only need
to eliminate the possibility that u(x) = 0 for some x inside Ω: the next corollary applies
independent of the sign of c(x). Note that this statement is more delicate than our baby
physics arguments – we make no assumption on whether c(x)u(x) is a heat source or sink.

Corollary 3.6 (Another version of the strong maximum principle) Let u ∈ C2(Ω) ∩ C(Ω̄)
satisfy

∆u(x) + c(x)u(x) ≥ 0 in Ω, (3.2)

with u ≤ 0 in Ω, with a bounded function c(x). Then either u ≡ 0 in Ω or u < 0 in Ω.
Similarly, if u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u(x) + c(x)u(x) ≤ 0 in Ω, (3.3)

with u ≥ 0 in Ω, with a bounded function c(x). Then either u ≡ 0 in Ω or u > 0 in Ω.

Proof. If c(x) ≤ 0, this follows directly from the strong maximum principle. As u ≤ 0 in Ω,
the inequality (3.2) implies that, for any M > 0 we have

−∆u− c(x)u−Mu ≥ −Mu ≥ 0.

However, if M > ‖c‖L∞(Ω) then the zero order coefficient satisfies

c1(x) = c(x)−M ≤ 0,

13



hence we may conclude, again from the strong maximum principle that either u < 0 in Ω
or u ≡ 0 in Ω. The proof in the case (3.3) holds is identical. �

It is easy to understand the strong maximum principle from the point of view of (3.3) –
in this case, a non-negative u(x) can be interpreted as a particle density, and c(x)u(x) is the
rate at which the particles are inserted (where c(x) > 0) or eliminated (where c(x) < 0). The
strong maximum principle says that no matter how negative c(x) is, the random particles will
always access any point in the domain with a positive density.

Separating sub- and super-solutions

A very common use of the strong maximum principle is to re-interpret it as the “untouch-
ability” of a sub-solution and a super-solution of a linear or nonlinear problem – the basic
principle underlying what we will see below. Assume that the functions u(x) and v(x) satisfy

∆u+ f(x, u) ≥ 0, ∆v + f(x, v) ≤ 0 in Ω. (3.4)

We say that u(x) is a sub-solution, and v(x) is a super-solution. Assume that, in addition,
we know that

u(x) ≤ v(x) for all x ∈ Ω, (3.5)

that is, the sub-solution sits below the super-solution. In this case, we are going to rule out
the possibility that they touch inside Ω (they can touch on the boundary, however): there can
not be an x0 ∈ Ω so that u(x0) = v(x0). If the function f(x, s) is differentiable (or Lipschitz),
the quotient

c(x) =
f(x, u(x))− f(x, v(x))

u(x)− v(x)

is a bounded function, and the difference w(x) = u(x)− v(x) satisfies

∆w + c(x)w ≥ 0 in Ω. (3.6)

As w(x) ≤ 0 in all of Ω, the strong maximum principle implies that w(x) < 0 in Ω, that
is, we have a strict inequality: u(x) < v(x) for all x ∈ Ω. In other words, a sub-solution
and a super-solution can not touch at a point – this very simple principle will be extremely
important in what follows.

Let us illustrate an application of the strong maximum principle, with a cameo appearance
of the sliding method in a disguise as a bonus. Consider the boundary value problem

−u′′ = eu, 0 < x < L, (3.7)

with the boundary condition
u(0) = u(L) = 0. (3.8)

If we think of u(x) as a temperature distribution, then the boundary condition means that
the boundary is “cold”. On the other hand the positive term eu is a “heating term”, which
competes with the cooling by the boundary. A nonnegative solution u(x) corresponds to
an equilibrium between these two effects. We would like to show that if the length of the
interval L is sufficiently large, then no such equilibrium is possible – the physical reason is
that the boundary is too far from the middle of the interval, so the heating term wins. This
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absence of an equilibrium is interpreted as an explosion, this model was introduced exactly
in that context in late 30’s-early 40’s. It is convenient to work with the function w = u + ε,
which satisfies

−w′′ = e−εew, 0 < x < L, (3.9)

with the boundary condition
w(0) = w(L) = ε. (3.10)

Consider a family of functions

vλ(x) = λ sin
(πx
L

)
, λ ≥ 0, 0 < x < L.

These functions satisfy (for any λ ≥ 0)

v′′λ +
π2

L2
vλ = 0, vλ(0) = vλ(L) = 0. (3.11)

Therefore, if L is so large that

π2

L2
s ≤ e−εes, for all s ≥ 0,

we have

w′′ +
π2

L2
w ≤ 0, (3.12)

that is, w is a super-solution for (3.11). In addition, when λ > 0 is sufficiently small, we have

vλ(x) ≤ w(x) for all 0 ≤ x ≤ L. (3.13)

Let us now start increasing λ until the graphs of vλ and w touch at some point:

λ0 = sup{λ : vλ(x) ≤ w(x) for all 0 ≤ x ≤ L.} (3.14)

The difference
p(x) = vλ0(x)− w(x)

satisfies

p′′ +
π2

L2
p ≥ 0,

and p(x) ≤ 0 for all 0 < x < L. In addition, there exists x0 such that p(x0) = 0, and, as
vλ(0) = vλ(L) = 0 < ε = w(0) = w(L), it is impossible that x0 = 0 or x0 = L. We conclude
that p(x) ≡ 0, which is a contradiction. Hence, no solution of (3.9)-(3.10) may exist when L
is sufficiently large.

In order to complete the picture, the reader may look at the following exercise.

Exercise 3.7 Show that there exists L1 > 0 so that a nonnegative solution of (3.9)-(3.10)
exists for all 0 < L < L1, and does not exist for all L > L1.
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The maximum principle for narrow domains

Before we allow the moving plane method to return, we describe the maximum principle for
narrow domains, which is an indispensable tool in this method. Its proof will utilize the
“ballooning method” we have seen in the analysis of the explosion problem. As we have
discussed, the usual maximum principle in the form “∆u + c(x)u ≥ 0 in Ω, u ≤ 0 on ∂Ω
implies either u ≡ 0 or u < 0 in Ω” can be interpreted physically as follows. If u is the
temperature distribution then the boundary condition u ≤ 0 means that ”the boundary is
cold” while the term c(x)u can be viewed as a heat source if c(x) ≥ 0 or as a heat sink
if c(x) ≤ 0. The conditions u ≤ 0 on ∂Ω and c(x) ≤ 0 together mean that both the boundary
is cold and there are no heat sources – therefore, the temperature is cold everywhere, and we
get u ≤ 0. On the other hand, if the domain is such that each point inside Ω is ”close to the
boundary” then the effect of the cold boundary can dominate over a heat source, and then,
even if c(x) ≥ 0 at some (or all) points x ∈ Ω, the maximum principle still holds.

Mathematically, the first step in that direction is the maximum principle for narrow do-
mains. We use the notation c+(x) = max[0, c(x)].

Theorem 3.8 (The maximum principle for narrow domains) Let e be a unit vector. There
exists d0 > 0 that depends on the L∞-norm ‖c+‖∞ so that if |(y−x) ·e| < d0 for all (x, y) ∈ Ω
then the maximum principle holds for the operator ∆ + c(x). That is, if u ∈ C2(Ω) ∩ C1(Ω̄)
satisfies

∆u(x) + c(x)u(x) ≥ 0 in Ω,

and u ≤ 0 on ∂Ω then either u ≡ 0 or u < 0 in Ω.

The main observation here is that in a narrow domain we need not assume c ≤ 0 – but “the
largest possible narrowness”, depends, of course, on the size of the positive part c+(x) that
competes against it.

Proof. Note that, according to the strong maximum principle in the form of Corollary 3.6
(which has no assumptions on the sign of c(x)), it suffices to show that u(x) ≤ 0 in Ω. For
the sake of contradiction, suppose that

sup
x∈Ω

u(x) > 0. (3.15)

Without loss of generality we may assume that e is the unit vector in the direction x1 so that

Ω̄ ⊂ {0 < x1 < d}.

Suppose that d is so small that

c(x) ≤ π2/d2, for all x ∈ Ω, (3.16)

and consider the function
w(x) = sin

(πx1

d

)
.

It satisfies

∆w +
π2

d2
w = 0, (3.17)
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and w(x) > 0 in Ω̄, in particular
inf
Ω̄
w(x) > 0. (3.18)

A consequence of the above is
∆w + c(x)w ≤ 0, (3.19)

Given λ ≥ 0, let us set wλ(x) = λw(x). As a consequence of (3.18), there exists Λ > 0 so large
that Λw(x) > u(x) for all x ∈ Ω. Now we are going to push wλ down until it touches u(x):
set

λ0 = inf{λ : wλ(x) > u(x) for all x ∈ Ω.}

Note, that, because of (3.15), we know that λ0 > 0. The difference

v(x) = u(x)− wλ0(x)

satisfies
∆v + c(x)v ≥ 0.

The difference between u(x), which satisfies the same inequality, and v(x) is that we know
already that v(x) ≤ 0 – hence, we may conclude from the strong maximum principle (Corol-
lary 3.6 again) that v(x) < 0 in Ω. As v(x) < 0 also on the boundary ∂Ω, there exists ε0 > 0
so that v(x) < −ε0 for all x ∈ Ω̄, that is,

u(x) + ε0 < wλ0(x) for all x ∈ Ω̄.

But then we may choose λ′ < λ0 so that we still have

wλ′(x) > u(x) for all x ∈ Ω.

This contradicts the minimality of λ0. Thus, it is impossible that u(x) > 0 for some x ∈ Ω,
and we are done. �

The maximum principle for small domains

The maximum principle for narrow domains can be extended, dropping the requirement that
the domain is narrow and replacing it by the condition that the domain has a small volume.
We begin with the following lemma, which measures how far from the maximum principle a
force can push you.

Lemma 3.9 (The baby ABP Maximum Principle) Assume that c(x) ≤ 0 for all x ∈ Ω, and
let u ∈ C2(Ω) ∩ C(Ω̄) satisfy

∆u+ c(x)u ≥ f in Ω, (3.20)

and u ≤ 0 on ∂Ω. Then
sup

Ω
u ≤ Cdiam(Ω)

∥∥f−∥∥
Ln(Ω)

, (3.21)

with the constant C that depends only on the dimension n (but not on the function c(x) ≤ 0).
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Proof. The idea is very similar to what we did in the proof of the isoperimetric inequality.
If M := supΩ u ≤ 0, then there is nothing to prove, hence we assume that M > 0. The
maximum is achieved at an interior point x0 ∈ Ω, M = u(x0), as u(x) ≤ 0 on ∂Ω. Consider
the function v = −u+, then v ≤ 0 in Ω, v ≡ 0 on ∂Ω and

−M = inf
Ω
v = v(x0).

We proceed as in the proof of the isoperimetric inequality. Let Γ be the lower contact set of
the function v. As v ≤ 0 in Ω, we have v < 0 on Γ, hence v is smooth on Γ, and

∆v = −∆u ≤ −f(x) + c(x)u ≤ −f(x), for x ∈ Γ, (3.22)

as c(x) ≤ 0 and u(x) ≥ 0 on Γ. The analog of the inclusion (2.9) that we will now prove is

B(0;M/d) ⊂ ∇v(Γ), (3.23)

with d = diam(Ω) and B(0,M/d) the open ball centered at the origin of radius M/d. One
way to see that is by sliding: let p ∈ B(0;M/d) and consider the hyperplane that is the graph
of

zk(x) = p · x− k.
Clearly, zk(x) < v(x) for k sufficiently large. As we decrease k, sliding the plane up, let k̄
be the first value when the graphs of v(x) and zk̄(x) touch at a point x1. Then we have
v(x) ≥ zk̄(x) for all x ∈ Ω. If x1 is on the boundary ∂Ω then v(x1) = zk̄(x1) = 0, and we have

p · (x0 − x1) = zk(x0)− zk(x1) ≤ v(x0)− 0 = −M,

whence |p| ≥ M/d, which is a contradiction. Therefore, x1 is an interior point, which means
that x1 ∈ Γ (by the definition of the lower contact set), and p = ∇v(x1). This proves the
inclusion (3.23).

Mimicking the proof of the isoperimetric inequality we use the area formula (cn is the
volume of the unit bal in Rn):

cn

(
M

d

)n
= |B(0;M/d)| ≤ |∇v(Γ)| ≤

∫
Γ

|det(D2v(x))|dx. (3.24)

Now, as in the aforementioned proof, for every point x in the contact set Γ, the matrix D2v(x)
is non-negative definite, hence (note that (3.22) implies that f(x) ≤ 0 on Γ)

|det[D2v(x)]| ≤
(

∆v

n

)n
≤ (−f(x))n

nn
. (3.25)

Integrating (3.25) and using (3.24), we get

Mn ≤ (diam(Ω))n

cnnn

∫
Γ

|f−(x)|ndx, (3.26)

which is (3.21). �
An important consequence of Lemma 3.9 is a maximum principle for a domain with a

small volume [1]. Despite a simple proof and beautiful applications it has been observed only
fairly recently, at least in the West where it was discovered in the 1990’s by Varadhan3.

3It was first noted by Bakelman in USSR.
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Theorem 3.10 (The maximum principle for domains of a small volume) Let u ∈ C2(Ω) ∩
C(Ω̄) satisfy

∆u(x) + c(x)u(x) ≥ 0 in Ω,

and assume that u ≤ 0 on ∂Ω. Then there exists a positive constant δ which depends on the
spatial dimension n, the diameter of Ω, and ‖c+‖L∞, so that if |Ω| ≤ δ then u ≤ 0 in Ω.

Proof. If c ≤ 0 then u ≤ 0 by the standard maximum principle. In general, assume
that u+ 6≡ 0, and write c = c+ − c−. We have

∆u− c−u ≥ −c+u.

Lemma 3.9 implies that (with a constant C that depends only on the dimension n)

sup
Ω
u ≤ Cdiam(Ω)‖c+u+‖Ln(Ω) ≤ Cdiam(Ω)‖c+‖∞|Ω|1/n sup

Ω
u ≤ 1

2
sup

Ω
u,

when the volume of Ω is sufficiently small:

|Ω| ≤ 1

(2Cdiam(Ω)‖c+‖∞)n
. (3.27)

We deduce that supΩ u ≤ 0 contradicting the assumption u+ 6≡ 0, Hence, we have u ≤ 0 in Ω
under the condition (3.27). �

4 Act IV. Dancing together

We will now use a combination of the maximum principle (mostly for small domains) and
the moving plane method to prove some results on the symmetry of the solutions to elliptic
problems. We show just the tip of the iceberg – a curious reader will find many other results
in the literature, the most famous being, perhaps, the De Giorgi conjecture, a beautiful
connection between geometry and applied mathematics.

4.1 The Gidas-Ni-Nirenberg theorem

The following result on the radial symmetry of non-negative solutions is due to Gidas, Ni and
Nirenberg. It is a basic example of a general phenomenon that positive solutions of elliptic
equations tend to be monotonic in one form or other. We present the proof of the Gidas-
Ni-Nirenberg theorem from [3]. The proof uses the moving plane method combined with the
maximum principles for narrow domains, and domains of small volume.

Theorem 4.1 Let B1 ∈ Rn be the unit ball, and u ∈ C(B̄1) ∩ C2(B1) be a positive solution
of

∆u+ f(u) = 0 in B1 (4.1)

u = 0 on ∂B1

with the function f that is locally Lipschitz in R. Then, the function u is radially symmetric
in B1 and

∂u

∂r
(x) < 0 for x 6= 0.
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Exercise 4.2 Show that the conclusion that u is radially symmetric is false without the as-
sumption that the function u is positive.

The proof is based on the following lemma, which applies to general domains with a planar
symmetry, not just balls.

Lemma 4.3 Let Ω be a bounded domain that is convex in the x1-direction and symmetric
with respect to the plane {x1 = 0}. Let u ∈ C(Ω̄) ∩ C2(Ω) be a positive solution of

∆u+ f(u) = 0 in Ω (4.2)

u = 0 on ∂Ω

with the function f that is locally Lipschitz in R. Then, the function u is symmetric with
respect to x1 and

∂u

∂x1

(x) < 0 for any x ∈ Ω with x1 > 0.

Proof of Theorem 4.1. Theorem 4.1 follows immediately from Lemma 4.3. Indeed,
Lemma 4.3 implies that u(x) is decreasing in any given radial direction, since the unit ball
is symmetric with respect to any plane passing through the origin. It also follows from the
same lemma that u(x) is invariant under a reflection with respect to any hyperplane passing
through the origin – this trivially implies that u is radially symmetric. �

Proof of Lemma 4.3

We use the coordinate system x = (x1, y) ∈ Ω with y ∈ Rn−1. We will prove that

u(x1, y) < u(x∗1, y) for all x1 > 0 and −x1 < x∗1 < x1. (4.3)

This, obviously, implies monotonicity in x1 for x1 > 0. Next, letting x∗1 → −x1, we get the
inequality

u(x1, y) ≤ u(−x1, y) for any x1 > 0.

Changing the direction, we get the reflection symmetry: u(x1, y) = u(−x1, y).
We now prove (4.3). Given any λ ∈ (0, a), with a = supΩ x1, we take the “moving plane”

Tλ = {x1 = λ},

and consider the part of Ω that is “to the right” of Tλ:

Σλ = {x ∈ Ω : x1 > λ}.

Finally, given a point x, we let xλ be the reflection of x = (x1, x2, . . . , xn) with respect to Tλ:

xλ = (2λ− x1, x2, . . . , xn).

Consider the difference
wλ(x) = u(x)− u(xλ) for x ∈ Σλ.
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The mean value theorem implies that wλ satisfies

∆wλ = f(u(xλ))− f(u(x)) =
f(u(xλ))− f(u(x))

u(xλ)− u(x)
wλ = −c(x, λ)wλ

in Σλ. This is a recurring trick: the difference of two solutions of a semi-linear equation
satisfies a ”linear” equation with an unknown function c. However, we know a priori that the
function c is bounded:

|c(x)| ≤ Lip(f), for all x ∈ Ω. (4.4)

The boundary ∂Σλ consists of a piece of ∂Ω, where wλ = −u(xλ) < 0 and of a part of Tλ,
where x = xλ, thus wλ = 0. Summarizing, we have

∆wλ + c(x, λ)wλ = 0 in Σλ (4.5)

wλ ≤ 0 and wλ 6≡ 0 on ∂Σλ,

with a bounded function c(x, λ). We will show that

wλ < 0 inside Σλ for all λ ∈ (0, a). (4.6)

This implies in particular that wλ assumes its maximum (equal to zero) over Σ̄λ along Tλ.
The Hopf lemma implies then

∂wλ
∂x1

∣∣∣∣
x1=λ

= 2
∂u

∂x1

∣∣∣∣
x1=λ

< 0.

Given that λ is arbitrary, we conclude that

∂u

∂x1

< 0, for any x ∈ Ω such that x1 > 0.

Therefore, it remains only to show that wλ < 0 inside Σλ to establish monotonicity of u in x1

for x1 > 0. Another consequence of (4.6) is that

u(x1, x
′) < u(2λ− x1, x

′) for all λ such that x ∈ Σλ,

that is, for all λ ∈ (0, x1), which is the same as (4.3).
In order to show that wλ < 0 one would like to apply the maximum principle to the

boundary value problem (4.5). However, a priori the function c(x, λ) does not have a sign, so
the usual maximum principle may not be used. On the other hand, there exists δc such that
the maximum principle for narrow domains holds for the operator

Lu = ∆u+ c(x)u,

and domains of the width δc in the x1-direction. Note that δc depends only on ‖c‖L∞ that is
controlled in our case by (4.4). Moreover, when λ is sufficiently close to a:

a− δc < λ < a,
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the domain Σλ does have the width in the x1-direction which is smaller than δ0. Thus, for
such λ the maximum principle for narrow domains implies that wλ < 0 inside Σλ. This is
because wλ ≤ 0 on ∂Σλ, and wλ 6≡ 0 on ∂Σλ.

Let us now decrease λ (move the plane Tλ to the left, hence the name “the moving
plane” method), and let (λ0, a) be the largest interval of values so that wλ < 0 inside Σλ for
all λ ∈ (λ0, a). If λ0 = 0 then we are done – (4.6) follows. Next, assume, for the sake of a
contradiction, that λ0 > 0. Then, by continuity, we still know that

wλ0 ≤ 0 in Σλ0 .

Moreover, wλ0 is not identically equal to zero on ∂Σλ0 . The strong maximum principle implies
that

wλ0 < 0 in Σλ0 . (4.7)

We will show that then
wλ0−ε < 0 in Σλ0−ε (4.8)

for sufficiently small ε < ε0. This will contradict our choice of λ0 (unless λ0 = 0).
Here is the key idea and the reason why the maximum principle for domains of small

volume is useful: choose a simply connected closed set K in Σλ0 , with a smooth boundary,
which is “nearly all” of Σλ0 , in the sense that

|Σλ0\K| < δ/2

with δ > 0 to be determined. Inequality (4.7) implies that there exists η > 0 so that

wλ0 ≤ −η < 0 for any x ∈ K.

By continuity, we have

wλ0−ε < −
η

2
< 0 for any x ∈ K. (4.9)

Let us now see what happens in Σλ0−ε \K. As far as the boundary is concerned, we have

wλ0−ε ≤ 0

on ∂Σλ0−ε – this is true for ∂Σλ for all λ ∈ (0, a), and, in addition,

wλ0−ε < 0 on ∂K,

because of (4.9) We conclude that

wλ0−ε < 0 on ∂(Σλ0−ε\K).

However, when ε is sufficiently small we have |Σλ0−ε\K| < δ. Choose δ (once again, solely
determined by ‖c‖L∞(Ω)), so small that we may apply the maximum principle for domains of
small volume to the function wλ0−ε in the domain Σλ0−ε\K. Then, we obtain

wλ0−ε ≤ 0 in Σλ0−ε\K.

The strong maximum principle implies that

wλ0−ε < 0 in Σλ0−ε\K.

Putting two and two together we see that (4.8) holds. This, however, contradicts the choice
of λ0. The proof of the Gidas-Ni-Nirenberg theorem is complete. �
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4.2 The sliding method

The sliding method differs from the moving plane method in that one compares translations
of a function rather than its reflections with respect to a plane. We will illustrate it on an
example taken from [3], which is maybe the simplest application of the method.

Theorem 4.4 Let Ω be an arbitrary bounded domain in Rn which is convex in the x1-
direction. Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of

∆u+ f(u) = 0 in Ω (4.10)

u = η(x) on ∂Ω

with f ∈ C1. Assume that for any three points x′ = (x′1, y), x = (x1, y) and x′′ = (x′′1, y) lying
on a segment parallel to the x1-axis, x′1 < x1 < x′′1 with x′, x′′ ∈ ∂Ω, the following hold:

η(x′) < u(x) < η(x′′) if x ∈ Ω (4.11)

and
η(x′) ≤ η(x) ≤ η(x′′) if x ∈ ∂Ω. (4.12)

Then u is monotone in x1 in Ω:

u(x1 + τ) > u(x1, y) for (x1, y), (x1 + τ, y) ∈ Ω and τ > 0.

Finally, u is the unique solution of (4.10) in C2(Ω) ∩ C(Ω̄) satisfying (4.11).

Assumption (4.11) is usually checked in applications from the maximum principle and is not
as unverifiable and restrictive in practice as it might seem at a first glance. For instance,
consider (4.10) in a rectangle D = [−a, a]x × [0, 1]y with the Dirichlet data

η(−a, y) = 0, η(a, y) = 1,

prescribed at the vertical boundaries, while the data prescribed along the horizontal lines y = 0
and y = 1: η0(x) = u(x, 0) and η1(x) = u(x, 1) are monotonic in x. The function f is assumed
to vanish at u = 0 and u = 1:

f(0) = f(1) = 0, f(s) ≤ 0 for u /∈ [0, 1].

The maximum principle implies that then 0 ≤ u ≤ 1 so that both (4.11) and (4.12) hold.
Then Theorem 4.4 implies that the solution u(x, y) is monotonic in x.

Proof. The philosophy of the proof is very similar to what we did in the proof of the
Gidas-Ni-Nirenberg theorem. For τ ≥ 0, we let uτ (x1, y) = u(x1 + τ, y) be a shift of u to the
left. The function uτ is defined on the set Ωτ = Ω− τe1 obtained from Ω by sliding it to the
left a distance τ parallel to the x1-axis. The monotonicity of u may be restated as

uτ > u in Dτ = Ωτ ∩ Ω for any τ > 0, (4.13)

and this is what we will prove. As before, we first establish (4.13) for τ close to the largest
value τ0 – that is, those that have been slid almost all the way to the left, and the domain Dτ
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is both narrow and small. This will be done using the maximum principle for domains of a
small volume. Then we will start decreasing τ , sliding the domain Ωτ to the right, and will
show that you may go all the way to τ = 0 keeping (4.13) enforced.

Consider the function

wτ (x) = uτ (x)− u(x) = u(x1 + τ, y)− u(x1, y),

defined in Dτ . Since uτ satisfies the same equation as u, we have from the mean value theorem

∆wτ + cτ (x)wτ = 0 in Dτ (4.14)

wτ ≥ 0 on ∂Dτ

where

cτ (x) =
f(uτ (x))− f(u(x))

uτ (x)− u(x)

is a uniformly bounded function:
|cτ (x)| ≤ Lip(f). (4.15)

The inequality on the boundary ∂Dτ in (4.14) follows from assumptions (4.11) and (4.12).
Let

τ0 = sup{τ > 0 : Dτ 6= ∅}

be the largest shift of Ω to the left that we can make so that Ω and Ωτ still have a non-zero
intersection. The volume |Dτ | is small when τ is close to τ0. As in the moving plane method,
since the function cτ (x) is uniformly bounded by (4.15), we may apply the maximum principle
for small domains to wτ in Dτ for τ close to τ0, and conclude that wτ > 0 for such τ .

Then we start sliding Ωτ back to the right, that is, we decrease τ from τ0 to a critical
position τ1: let (τ1, τ0) be a maximal interval with τ1 ≥ 0 so that

wτ ≥ 0 in Dτ for all τ ∈ (τ1, τ0].

We want to show that τ1 = 0 and argue by contradiction assuming that τ1 > 0.
Continuity implies that wτ1 ≥ 0 in Dτ1 . Furthermore, (4.11) implies that

wτ1(x) > 0 for all x ∈ Ω ∩ ∂Dτ1 .

The strong maximum principle then implies that wτ1 > 0 in Dτ1 .
Now we use the same idea as in the proof of Lemma 4.3: choose δ > 0 so that the maximum

principle holds for any solution of (4.14) in a domain of volume less than δ. Carve out of Dτ1

a closed set K ⊂ Dτ1 so that
|Dτ1\K| < δ/2.

We know that wτ1 > 0 on K, hence for ε small wτ1−ε is also positive on K. Moreover, for ε > 0
small, we have

|Dτ1−ε\K| < δ.

Furthermore, since
∂(Dτ1−ε\K) ⊂ ∂Dτ1−ε ∪K,
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we see that
wτ1−ε ≥ 0 on ∂(Dτ1−ε\K).

Thus, wτ1−ε satisfies

∆wτ1−ε + cτ1−ε(x)wτ1−ε = 0 in Dτ1−ε\K (4.16)

wτ1−ε ≥ 0 on ∂(Dτ1−ε\K).

The maximum principle for domains of small volume implies that

wτ1−ε ≥ 0 on Dτ1−ε\K.

Hence, we have
wτ1−ε ≥ 0 in all of Dτ1−ε,

and, as
wτ1−ε 6≡ 0 on ∂Dτ1−ε,

it is positive in Dτ1−ε. However, this contradicts the choice of τ1. Therefore, τ1 = 0 and the
function u is monotone in the x1-variable.

Finally, to show that such solution u is unique, we suppose that v is another solution.
We argue exactly as before but with wτ = uτ − v. The same proof shows that uτ ≥ v for
all τ ≥ 0. In particular, u ≥ v. Interchanging the role of u and v we conclude that u = v. �
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