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Abstract. Factorial Schur functions are generalizations of Schur functions that have, in

addition to the usual variables, a second family of “shift” parameters. We show that a

factorial Schur function times a deformation of the Weyl denominator may be expressed

as the partition function of a particular statistical-mechanical system (six-vertex model).

The proof is based on the Yang-Baxter equation. There is a deformation parameter t

which may be specialized in different ways. If t = −1, then we recover the expression of

the factorial Schur function as a ratio of alternating polynomials. If t = 0, we recover

the description as a sum over tableaux. If t = ∞ we recover a description of Lascoux

that was previously considered by the second author. We also are able to prove using the

Yang-Baxter equation the asymptotic symmetry of the factorial Schur functions in the

shift parameters. Finally, we give a proof using our methods of the dual Cauchy identity

for factorial Schur functions. Thus using our methods we are able to give thematic proofs

of many of the properties of factorial Schur functions.

Dedicated to Professor Fumihiro Sato

1 Introduction

Factorial Schur functions are generalizations of ordinary Schur functions
sλ(z) = sλ(z1, · · · , zn) for which a surprising amount of the classical theory
remains valid. In addition to the usual spectral parameters z = (z1, · · · , zn)
and the partition λ they involve a set α = (α1, α2, α3, · · · ) of shifts that can
be arbitrary complex numbers (or formal variables), and are denoted sλ(z|α).
In the original paper of Biedenharn and Louck [BL], only the special case
where αn = 1 − n was considered. Their motivation, inspired by questions
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from mathematical physics, was to the decomposition of tensor products of
representations with using particular bases. It turns out that factorial Schur
functions are the same as double Schubert polynomials for Grassmannian
permutations, and in this form they appeared even earlier in Lascoux and
Schützenberger [LS1], whose motivation (from algebraic geometry) was com-
pletely different.

Other early foundational papers are Chen and Louck [CL], who gave
new foundations based on divided difference operators, and Goulden and
Hamel [GH] where the analogy between Schur functions and factorial Schur
functions was further developed. In particular they gave a Jacobi-Trudi
identity. See Louck [Lou] for further historical remarks.

Biedenharn and Louck (in the special case αn = 1 − n) defined sλ(z|α)
to be a sum over Gelfand-Tsetlin patterns, and this definition extends to
the general case. Translated into the equivalent language of tableaux, their
definition is equivalent to (14) below. It was noticed independently by Mac-
donald [Mcd1] and by Goulden and Greene [GG] that one could generalize
the factorial Schur functions of Biedenharn and Louck by making use of an
arbitrary set α of shifts. Macdonald observed an alternative definition of the
factorial Schur functions as a ratio of two alternating polynomials, general-
izing the Weyl character formula. This definition is (7) below.

Both Macdonald and Goulden and Greene also noticed a relationship
with what are called supersymmetric Schur functions . These are symmetric
functions in two sets of variables, z = (z1, z2, · · · ) and w = (w1, w2, · · · ).
They are defined in terms of the ordinary Schur functions by

sλ(z‖w) =
∑
µ,ν

cλµν sµ(z)sν′(w),

where cλµν is the Littlewood-Richardson coefficient, µ and ν run through
partitions and ν ′ is the conjugate partition. The relationship between the
factorial Schur functions and the supersymmetric Schur functions is this:
although the sλ(z|α) are symmetric in the zi they are not symmetric in the
αi. Nevertheless, as the number n of the parameters zi tends to infinity, they
become symmetric in the αi in a certain precise sense, and in the limit, they
stabilize. Thus in a suitable sense

lim
n−→∞

sλ(z|α) = sλ(z‖α). (1)

Another important variant of the factorial Schur functions are the shifted
Schur functions that were proposed by Olshanskii, and developed by Ok-
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ounkov and Olshanskii [OO2], [OO1]. Denoted s∗λ(x1, · · · , xn), they are es-
sentially the same as the factorial Schur functions of Biedenharn and Louck,
but incorporate shifts in the parameters so that they are no longer symmetric
in the usual sense, but at least satisfy the stability property s∗λ(x1, · · · , xn) =
s∗λ(x1, · · · , xn, 0). These were applied to the representation theory of the
infinite symmetric group.

Molev and Sagan [MS] give various useful results for factorial Schur
functions, including a Littlewood-Richardson rule. A further Littlewood-
Richardson rule was found by Kreiman [Kr]. Knutson and Tao [KT] show
that factorial Schur functions correspond to Schubert classes in the equiv-
ariant cohomology of Grassmanians. See also Mihalcea [Mi] and Ikeda and
Naruse [IN].

Tokuyama [To] gave a formula for Schur functions that depends on a
parameter t. This formula may be regarded as a deformation of the Weyl
character formula. It was shown by Hamel and King [HK] that Tokuyama’s
formula could be generalized and reformulated as the evaluation of the par-
tition function for a statistical system based on the six-vertex model in the
free-fermionic regime. Brubaker, Bump and Friedberg [BBF] gave further
generalizations of the results of Hamel and King, with new proofs based on
the Yang-Baxter equation. More specifically, they used the fact that the
six-vertex model in the free-fermionic regime satisfies a parametrized Yang-
Baxter equation with nonabelian parameter group GL(2) × GL(1) to give
statistical-mechanical systems whose partition functions were Schur func-
tions times a deformation of the Weyl denominator. This result generalizes
the results of Tokuyama and of Hamel and King.

Our main new result (Theorem 1) is a Tokuyama-like formula for factorial
Schur functions. This is a simultaneous generalization of [BBF] and of the
representations of Lascoux [La2] and of McNamara [McN]. As in [BBF] we
will consider partition functions of statistical-mechanical systems in the free-
fermionic regime. A significant difference between this paper and that was
that in [BBF] the Boltzmann weights were constant along the rows, depend-
ing mainly on the choice of a parameter zi. Now we will consider systems in
which we assign a parameter zi to each row, but also a shift parameter αj to
each column. Furthermore, we will make use of a deformation parameter t
that applies to the entire system. We will show that the partition function
may be expressed as the product of a factor (depending on t) that may be
recognized as a deformation of the Weyl denominator, times the factorial
Schur function sλ(z|α).
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The proof of Theorem 1 depends on the Yang-Baxter equation. We feel
that it is significant that the Yang-Baxter equation can be made a central
tool in the theory of factorial Schur functions. The results in the paper after
Theorem 1 are mainly already known, but we will reprove them using our
methods—either deducing them from Theorem 1 or giving proofs using the
same tool (free-fermionic Yang-Baxter equation).

By specializing t in the formula of Theorem 1, we will obtain different
formulas for the factorial Schur functions. Taking t = −1, we obtain the
representation as a ratio of alternating polynomials, which was Macdonald’s
generalization of the Weyl character formula. This is the formula we take as
the definition of the factorial Schur functions, though other definitions are
possible.

There are two specializations t in which the Weyl denominator in The-
orem 1 reduces to a monomial. Taking t = 0, we obtain the tableau def-
inition of the factorial Schur functions. When t = ∞ we recover another
representation of the factorial Schur functions. Indeed Lascoux [La2] found
six-vertex model representations of Grassmannian Schubert polynomials. A
proof of this representation based on the Yang-Baxter equation was subse-
quently found by McNamara [McN]. It is this representation that we obtain
when t =∞.

Although we do not prove the supersymmetric limit (1), we will at least
prove the key fact that the sλ(z|α) are asymptotically symmetric in the αj
as the number n of parameters zi tends to infinity. We will obtain this by
another application of the Yang-Baxter equation. We also give a proof of the
dual Cauchy identity for factorial Schur functions using our methods.

In addition to [La2] and [McN], Zinn-Justin [ZJ1], [ZJ2] gave another
interpretation of factorial Schur functions as transition matrices for a lattice
model that may be translated into a free-fermionic five-vertex model. It
is unclear whether Zinn-Justin’s representation may also be obtained from
Theorem 1 ours by specialization, but it is certainly very similar.

We would like to thank H. Naruse for helpful comments on this paper
and the referee for careful reading. This work was supported in part by JSPS
Research Fellowship for Young Scientists and by NSF grants DMS-0652817
and DMS-1001079.
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2 Yang-Baxter equation

We review the six-vertex model and a case of the Yang-Baxter equation
from [BBF]. We will consider a planar graph. Each vertex v is assumed to
have exactly four edges adjacent to it. Interior edges adjoin two vertices, and
around the boundary of the graph we allow boundary edges that adjoin only a
single vertex. Every vertex has six numbers a1(v), a2(v), b1(v), b2(v), c1(v), c2(v)
assigned to it. These are called the Boltzmann weights at the vertex. By a
spin we mean an element of the two-element set {+,−}. In addition to
the graph, the Boltzmann weights at each vertex, we will also assign a spin
to each boundary edge. Once we have specified the graph, the Boltzmann
weights at the vertices, and the boundary spins, we have specified a statistical
system S.

A state s of the system will be an assignment of spins to the interior
edges. Given a state of the system, every edge, boundary or interior, has a
spin assigned to it. Then every vertex will have a definite configuration of
spins on its four adjacent edges, and we assume these to be in one of the two
orientations listed in (2). Then let βs(v) equal a1(v), a2(v), b1(v), b2(v), c1(v)
or c2(v) depending on the configuration of spins on the adjacent edges. If v
does not appear in the table, the weight is zero.

a1(v) a2(v) b1(v) b2(v) c1(v) c2(v)

(2)

The Boltzmann weight of the state β(s) is the product
∏

v βs(v) of the
Boltzmann weights at every vertex. We only need to consider configurations
in which the spins adjacent to each vertex are in one of the configurations
from the above table; if this is true, the state is called admissible. A state
that is not admissible has Boltzmann weight zero.

The partition function Z(S) is
∑

s β(s), the sum of the Boltzmann weights
of the states. We may either include or exclude the inadmissible states from
this sum, since they have Boltzmann weight zero.
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If at the vertex v we have

a1(v)a2(v) + b1(v)b2(v)− c1(v)c2(v) = 0,

the vertex is called free-fermionic. We will only consider systems that are
free-fermionic at every vertex.

Korepin, Boguliubov and Izergin [KBI] describe a nonabelian parametrized
Yang-Baxter equation for the free-fermionic six-vertex model with parameter
group Γ = SL(2,C). Concretely this means that there is a map R : Γ →
End(V ⊗V ), where V is a two-dimensional vector space, such that if γ, δ ∈ Γ
then

R(γ)12R(γδ)13R(δ)23 = R(δ)23R(γδ)13R(γ)12,

where if R ∈ End(V ⊗ V ) then Rij means R× IV acting on V ⊗ V ⊗ V with
R acting on the i, j tensor components, and the identity on the remaining
component. Scalar matrices can obviously be added to Γ so their actual
group is SL(2,C)×C×. A statement with a slightly larger parameter group
GL(2,C) × C× is in Brubaker, Bump and Friedberg [BBF]. The nonzero
components of R(γ) if written with respect to a standard basis of V ⊗V will
be the Boltzmann weights of a free-fermionic vertex. This has the following
explicit reformulation:

Proposition 1. [BBF, Theorem 3] Let v, w be vertices with free-fermionic
Boltzmann weights. Define another type of vertex u with

a1(u) = a1(v)a2(w) + b2(v)b1(w),

a2(u) = b1(v)b2(w) + a2(v)a1(w),

b1(u) = b1(v)a2(w)− a2(v)b1(w),

b2(u) = −a1(v)b2(w) + b2(v)a1(w),

c1(u) = c1(v)c2(w),

c2(u) = c2(v)c1(w).

Then for any assignment of edge spins εi ∈ {±} (i = 1, 2, 3, 4, 5, 6) the
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following two configurations have the same partition function:

ε2

ε1

ν

µ

ε3

γ

ε6

ε4

ε5

u

v

w

δ

ψ

φ

ε2

ε1

ε3

ε6

ε4

ε5

w

v

u

. (3)

Note that by the definition of the partition function, the interior edge
spins (labeled ν, γ, µ and δ, ψ, φ) are summed over, while the boundary edge
spins, labeled εi are invariant. In order to obtain this from Theorem 3
of [BBF] one replaces the R-matrix π(R) in the notation of that paper by a
constant multiple.

3 Bijections

In this section we will define some combinatorial bijections that we will need
later. One of the sets is the set of states of a statistical-mechanical system,
as in the last section, and we start by defining that.

We will make use of two special n-tuples of integers, namely

ρ = (n, · · · , 3, 2, 1), δ = (n− 1, n− 2, · · · , 2, 1, 0).

Let λ = (λ1, · · · , λn) be a partition, so λ1 > . . . > λn > 0. Let us consider a
lattice with n rows and n+ λ1 columns. We will index the rows from 1 to n.
We will index the columns from 1 to n + λ1, in reverse order . We put the
vertex vΓ(i, j, t) at the vertex in the i row and j column.

We impose the following boundary edge spins. On the left and bottom
boundaries, every edge is labeled +. On the right boundary, every edge
is labeled −. On the top, we label the edges indexed by elements of form
λj + n − j + 1 for j = 1, 2, · · · , n with a − spin. These are the entries in
λ+ ρ. The remaining columns we label with a + spin.

For example, suppose that n = 3 and that λ = (5, 4, 1), so λ+ρ = (8, 6, 2).
Since λj +n− j+1 has the values 8, 6 and 2, we put − in these columns. We
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label the vertex vΓ(i, j, t) in the i row and j column by ij as in the following
diagram:

+

+

+

− + − + + + − +

+ + + + + + + +

−

−

−

1112131415161718

2122232425262728

3132333435363738

(4)

Let this system be called SΓ
λ,t.

We recall that a Gelfand-Tsetlin pattern is an array

T =


p11 p12 · · · p1n

p22 p2n

. . . . . .

pnn

 (5)

in which the rows are interleaving partitions. The pattern is strict if each
row is strongly dominant, meaning that pii > pi,i+1 > · · · > pin.

A staircase is a semistandard Young tableau of shape (λ1 + n, λ1 + n −
1, . . . , λ1)′ filled with numbers from {1, 2, . . . , λ1 + n} with the additional
condition that the diagonals are weakly decreasing in the south-east direction
when written in the French notation.

An example of a staircase for λ = (5, 4, 1) is

8

7 8

6 7 8

5 6 6 7

4 5 5 5

3 3 3 4

2 2 2 3

1 1 1 1
(6)
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Proposition 2. Let λ be a partition of length 6 n. There are natural bijec-
tions between the following three sets of combinatorial objects

1. States of the six-vertex model SΓ
λ,t,

2. Strict Gelfand-Tsetlin patterns with top row λ+ ρ, and

3. Staircases whose rightmost column consists of the integers between 1
and λ1 + n that are not in λ+ ρ.

Proof. Suppose we start with a state of the six-vertex model SΓ
λ,t. Let us

record the locations of all minus spins that live on vertical edges. Between
rows k and k+1, there are exactly n−k such minus spins for each k. Placing
the column numbers of the locations of these minus spins into a triangular
array gives a strict Gelfand-Tsetlin pattern with top row λ+ ρ.

Given a strict Gelfand-Tsetlin pattern T = (tij) with top row λ + ρ, we
construct a staircase whose rightmost column is missing λ+ρ in the following
manner: We fill column j + 1 with integers u1, . . . , un−j+λ1 such that

{1, 2, . . . , n+ λ1} = {u1, . . . , un−j+λ1} t {tn+1−j,1, . . . tn+1−j,j}.

It is easily checked that these maps give the desired bijections.

We give an example. As before let n = 3 and λ = (5, 4, 1). Here is an
admissible state:

+

+

+

+ − + + − + + +

− + − + + + − +

+ + + + − + + +

+ + + + + + + +

−

−

−

− + − − + + −

+ − − − − − −

+ + + + − − −

1112131415161718

2122232425262728

3132333435363738

Then the entries in the i-th row of T are to be the columns j in which a −
appears above the (i, j) vertex. Therefore

T =


8 6 2

7 4
4

 .
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Taking the complements of the rows (including a fourth empty row) gives
the following sets of numbers:

7 5 4 3 1
8 6 5 3 2 1
8 7 6 5 3 2 1
8 7 6 5 4 3 2 1

so the corresponding staircase is (6).

4 A Tokuyama-like formula for Factorial Schur

Functions

A good primary reference for factorial Schur functions is Macdonald [Mcd1].
They are also in Macdonald [Mcd2], Ex. 20 in Section I.3 on p.54.

Let α1, α2, α3, · · · be a sequence of complex numbers or formal variables.
If z ∈ C let

(z|α)r = (z + α1) · · · (z + αr).

Macdonald [Mcd1] gives two formulas for factorial Schur functions that we
will also prove to be equivalent by our methods. Let µ = (µ1, · · · , µn) where
the µi are nonnegative integers. Let z1, · · · , zn be given. Define

Aµ(z|α) = det((zi|α)µj)i,j

where 1 6 i, j 6 n in the determinant. We will also use the notation

zµ =
∏
i

zµii .

Let δ = (n − 1, n − 2, · · · , 0) and let λ = (λ1, · · · , λn) be a partition of
length at most n. Define

sλ(z|α) =
Aλ+δ(z|α)

Aδ(z|α)
. (7)

The denominator here is actually independent of α and is given by the Weyl
denominator formula:

Aδ(z|α) =
∏
i<j

(zi − zj) (8)
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Indeed, it is an alternating polynomial in the zi of the same degree as the
right-hand side, and so the ratio is a polynomial in α that is independent of
zi. To see that the ratio is independent of α, one may compare the coefficients
of zδ on both sides of (8). Since both the numerator and the denominator is
an alternating function of the zi, the ratio sλ(z|α) is a symmetric polynomial
in z1, · · · , zn.

Now let us consider two types of Boltzmann weights. Let z1, · · · , zn be
given, and let α1, α2, α3, · · · another sequence of complex numbers, and t
another parameter. If 1 6 i, k 6 n and if j > 0 are integers, we will use the
following weights.

vΓ(i, j, t)

ij ij ij ij ij ij

1 zi − tαj t zi + αj zi(t+ 1) 1

vΓΓ(i, k, t)

k i

i k

k i

i k

k i

i k

k i

i k

k i

i k

k i

i k

tzi + zk tzk + zi t(zk − zi) zi − zk (t+ 1)zi (t+ 1)zk

Lemma 1. We may take u = vΓΓ(i, k, t), v = vΓ(i, j, t) and w = vΓ(k, j, t)
in Proposition 1.

Proof. The relation a1(u) = a1(v)a2(w) + b2(v)b1(w) becomes

tzi + zk = 1 · (zk − tαj) + (zi + αj)t,

and all the other relations are checked the same way.

Proposition 3. The function[∏
i>j

(tzj + zi)

]
Z(SΓ

λ,t), (9)

is symmetric under permutations of the zi.

Proof. Let S = SΓ
λ,t. It is sufficient to show that (9) is invariant under

the interchange of zi and zi+1. The factors in front are permuted by this
interchange with one exception, which is that tzi+zi+1 is turned into tzi+1+zi.
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Therefore we want to show that (tzi+zi+1)Z(S) = (tzi+1+zi)Z(S′) where S′

is the system obtained from S by interchanging the weights in the i, i+1 rows.
Now consider the modified system obtained from S by attaching vΓΓ(i, i+1, t)
to the left of the i, i+1 rows. For example, if i = 1, this results in the following
system:

+

+

+

− + − + + + − +

+ + + + + + + +

−

−

−

1112131415161718

2122232425262728

3132333435363738

Referring to (2), there is only one admissible configuration for the two in-
terior edges adjoining the new vertex, namely both must be +, and so the
Boltzmann weight of this vertex will be tzi+zi+1. Thus the partition function
of this new system equals (tzi + zi+1)Z(S). Applying the Yang-Baxter equa-
tion repeatedly, this equals the partition function of the system obtained
from S′ by adding vΓΓ(i, i + 1, t) to the right of the i, i + 1 rows, that is,
(tzi+1 + zi)Z(S′), as required. This proves that (9) is symmetric.

Theorem 1. We have

Z(SΓ
λ,t) =

[∏
i<j

(tzj + zi)

]
sλ(z|α).

Proof. We show that the ratio

Z(SΓ
λ,t)∏

i<j(tzj + zi)
(10)

is a polynomial in the zi, and that it is independent of t. Observe that
(9) is an element of the polynomial ring C[z1, · · · , zn, t], which is a unique
factorization domain. It is clearly divisible by tzj + zi when i > j, and since
it is symmetric, it is therefore divisible by all tzj + zi with i 6= j. These are
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coprime, and therefore it is divisible by their product, in other words (10) is
a polynomial. We note that the numerator and the denominator have the
same degree in t, namely 1

2
n(n − 1). For the denominator this is clear and

for the numerator, we note that each term is a monomial whose degree is
the number of vertices with a − spin on the vertical edge below. This is the
number of vertical edges labeled − excluding those at the top, that is, the
number of entries in the Gelfand-Tsetlin pattern in Lemma 2 excluding the
first row. Therefore each term in the sum Z(SΓ

λ,t) is a monomial of degree
1
2
n(n− 1) and so the sum has at most this degree; therefore the ratio (10) is

a polynomial of degree 0 in t, that is, independent of t.
To evaluate it, we may choose t at will. We take t = −1.
Let us show that if the pattern occurs with nonzero Boltzmann weight,

then every row of the pattern (except the top row) is obtained from the row
above it by discarding one element. Let µ and ν be two partitions that occur
as consecutive rows in this Gelfand-Tsetlin pattern:{

µ1 µ2 · · · · · · µn−i+1

ν1 ν2 · · · νn−i

}
,

where µk are the column numbers of the vertices (i, µk) that have a − spin
on the edge above the vertex, and νk are the column numbers of the vertices
(i, νk) that have a − spin on the edge below it. Because t = −1, the pattern

ij

does not occur, or else the Boltzmann weight is zero, and the term may be
discarded. Therefore every − spin below the vertex in the i-th row must be
matched with a − above the vertex. It follows that every νi equals either µi
or µi+1. Thus the partition ν is obtained from µ by discarding one element.

Let µk be the element of µ that is not in ν. It is easy to see that in the
horizontal edges in the i-th row, we have a − spin to the right of the µk-th
column and + to the left. Since t = −1, the Boltzmann weights of the two
patterns:

ij ij
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both have the same Boltzmann weight zi+αj. We have one such contribution
from every column to the right of µk and these contribute

µk−1∏
j=1

(zi + αj) = (zi|α)µk−1.

For each column j = µl with l < k we have a pattern

ij

and these contribute −1. Therefore the product of the Boltzmann weights
for this row is

(−1)k−1(zi|α)µk−1.

Since between the i-th row µ and the (i + 1)-st row ν of the Gelfand-
Tsetlin pattern one element is discarded, there is some permutation σ of
{1, 2, 3, · · · , n} such that ν is obtained by dropping the σ(i)-th element of µ.
In other words,

µk − 1 = (λ+ ρ)σ(i) − 1 = (λ+ δ)σ(i)

and we conclude that

Z(SΓ
λ,−1) =

∑
σ∈Sn

±
∏
i

(zi|α)(λ+δ)σ(i) .

The signs may be determined as follows. First, take all αi = 0 and t =

−1. The term corresponding to σ is then ±
∏

i z
(λ+δ)σ(i)
i . The ratio (10) is

symmetric, and with t = −1 the denominator is antisymmetric. This shows

Z(SΓ
λ,−1) = ±

∑
σ∈Sn

(−1)l(σ)
∏
i

(zi|α)(λ+δ)σ(i) = ±Aλ+δ(z|α).

We still need to determine the leading ±. Using (8) we see that (10) equals
±sλ(z|α). To evaluate the sign, we may take t = 0 and all zi = 1. Then
the partition function is a sum of positive terms, and sλ(1, · · · , 1) is positive,
proving that (10) equals sλ(z|α).
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5 The Combinatorial Definition of Factorial

Schur Functions

Macdonald also gives a combinatorial formula for the factorial Schur function
as a sum over semi-standard Young tableaux of shape λ in {1, 2, · · · , n}. Let
T be such a tableau. This generalizes the well-known combinatorial formula
for Schur functions. If i, j are given such that j 6 λi, let T (i, j) be the entry
in the i-th row and j-th column of T . Let

T ∗(i, j) = T (i, j) + j − i, (11)

and define
(z|α)T =

∏
(i,j)

(zT (i,j) + αT ∗(i,j)). (12)

For example, if λ = (4, 2, 0) and n = 3, then we might have

T =
1 1 1 3

2 2
, T ∗ =

1 2 3 6

1 2
(13)

and

(z|α)T = (z1 + α1)(z1 + α2)(z1 + α3)(z3 + α6)(z2 + α1)(z2 + α2).

Theorem 2. Let λ be a partition. Then

sλ(z|α) =
∑
T

(z|α)T , (14)

where the sum is over semistandard Young tableaux with shape λ in 1, 2, 3, · · · , n.

This formula, expressing the factorial Schur function as a sum over semi-
standard Young tableaux, is equivalent (in a special case) to a formula of
Biedenharn and Louck [BL], who made it the definition of the factorial Schur
function. For them, the sum was over the set of Gelfand-Tsetlin patterns with
prescribed top row, but this is in bijection with tableaux. In this generality,
the formula is due to Macdonald [Mcd1].

When t = 0, the Boltzmann weight for
ij

is zero, so we are limited

to states omitting this configuration. If T = Tλ+ρ is the Gelfand-Tsetlin
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pattern corresponding to this state, and if the entries of T in are denoted
pik as in (5), it is easy to see that the equality pi−1,k−1 = pi,k would cause
this configuration to appear at the i, j position, where j = pi,k. Therefore
pi−1,k−1 > pi,k. This inequality implies that we may obtain another Gelfand-
Tsetlin pattern Tλ with top row λ by subtracting ρn−i+1 = (n − i + 1, n −
i, · · · , 1) from the i-th row of Tλ+ρ.

Consider the example of λ = (4, 2, 0) with n = 3. Then

if Tλ+ρ =


7 4 1

5 3
4

 then Tλ =


4 2 0

3 2
3

.
We associate with Tλ a tableau T (Tλ) of shape λ. In this tableau, removing
all boxes labeled n from the diagram produces a tableau whose shape is the

second row of Tλ. Then removing boxes labeled n− 1 produces a tableau
whose shape is the third row of Tλ, and so forth. Thus in the example, T (Tλ)
is the tableau T in (13). Let w0 denote the long element of the Weyl group
Sn, which is the permutation i 7→ n+ 1− i.

Proposition 4. Let t = 0, and let s = s(Tλ+ρ) be the state corresponding to
a special Gelfand-Tsetlin pattern Tλ+ρ. With Tλ as above and T = T (Tλ) we
have

w0

(∏
v∈s

βs(v)

)
= zw0(δ)(z|a)T . (15)

Before describing the proof, let us give an example. With Tλ+ρ as above,
the state s(Tλ+ρ) is

+

+

+

− + + − + + −

+ + − + − + +

+ + + − + + +

+ + + + + + +

−

−

−

− − + − + +

+ + − + − −

+ + + − − −

11121314151617

21222324252627

31323334353637
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The locations labeled ◦ produce powers of zi, and the locations labeled •
produce shifts of the form zi + αj. The weight of this state is∏

v∈s

βs(v) = z2
1z2(z1 + α6)(z2 + α2)(z2 + α1)(z3 + α3)(z3 + α2)(z3 + α1).

Applying w0 interchanges zi ←→ z4−i. The factor z2
1z2 becomes z2

3z2 = zw0(δ),
and the terms that remain agree with∏

(i,j)

(zT (i,j) + αT ∗(i,j)).

Proof. We are using the following Boltzmann weights.

Gamma
Ice

ij ij ij ij ij ij

Boltzmann
weight

1 zi 0 zi + αj zi 1

We have contributions of zi from vertices that have − on the vertical edge
below, and there is one of these for each entry in the Gelfand-Tsetlin pattern.
These contribute a factor of zδ. Applying w0 to z leads to zw0(δ).

Considering the contribution from the (i, j) vertex, there will be a factor

of zi + αj when the vertex has the configuration
ij

. In the above

example, the locations are labeled by •.
Let Tλ+ρ be the Gelfand-Tsetlin pattern (5). Let Tλ and T = T (Tλ) be as

described above, and let T ∗ be as in (11). Let the entries in Tλ+ρ and Tλ be
denoted pi,j and qi,j, with the indexing as in (5). Thus qi,j = pi,j −n+ j− 1.
We will make the convention that qi,n+1 = pi,n+1 = 0. The condition for •
in the i, j position of the state is that for some k with i 6 k 6 n we have
pi+1,k+1 < j < pi,k. Translating this in terms of the qi,j = pi,j − n+ j − 1 the
condition becomes qi+1,k+1 + n − k + 1 6 j < qi,k + n − k. The effect of w0

is to interchange zi ↔ zn−i+1, and therefore

w0

(∏
v∈s

βs(v)

)
= zw0(δ)

n∏
i=1

n∏
k=i

qi,k+n−k∏
j=qi+1,k+1+n−k+1

(zn+1−i + αj). (16)
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On the other hand, in the tableau T , the location of the entries equal to
n+ 1− i in the (k+ 1− i)-th row is between columns qi+1,k+1 + 1 through
qi,k, and if j is one of these columns then

T (k + 1− i, j) = n+ 1− i, T ∗(k + 1− i, j) = n+ j − k.

Therefore in the notation (12) we have

(z|α)T =
n∏
i=1

n∏
k=i

qi,k∏
j=qi+1,k+1+1

(zn+1−i + αn+j−k).

This equals (16) and the proof is complete.

We now give the proof of Theorem 2. Summing over states, the last
Proposition implies that

Zλ(w0(z), α, 0) = zw0(δ)
∑
T

(z|a)T .

Since sΓ
λ(z, α, 0) = sΓ

λ(w0(z), α, 0) we have

sΓ
λ(z, α, 0) =

Zλ(w0(z), α, 0)∏
i>j w0(z)j

=
zw0(δ)

∑
T (z|a)T

zw0(δ)
=
∑
T

(z|a)T ,

and the statement follows.

6 The limit as t tends to infinity

Let µ be a partition, and let αµ denote the sequence

αµ = (αµ1+n, αµ2+n−1, · · · , αµn+1).

If λ is a partition then λ′ will denote the conjugate partition whose Young
diagram is the transpose of that of λ.

Theorem 3. (Vanishing Theorem) We have

sλ(−αµ|α) =

{
0 if λ 6⊂ µ,∏

(i,j)∈λ(αn−i+λi+1 − αn−λ′j+j) if λ = µ.
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See Okounkov [Ok] Section 2.4 and Molev and Sagan [MS]. In view of
the relationship between Schubert polynomials for Grassmannian permuta-
tions and factorial Schur functions, this is equivalent to an older vanishing
statement for Schubert polynomials. Vanishing properties for Schubert poly-
nomials are implied by Theorem 9.6.1 and Proposition 9.6.2 of Lascoux [La1],
which are related to the results of Lascoux and Schützenberger [LS2, LS3].
We will prove it in this section by our methods.

We examine the behavior of our six-vertex model as we send the pa-
rameter t to infinity. The first result of this section may be construed as
a rederivation of a theorem of Lascoux [La2, Theorem 1]. However the ap-
proach we take is to interpret it as giving us a proof of the equivalence of
factorial Schur functions and double Schubert polynomials for Grassman-
nian permutations. We also obtain the vanishing theorem for factorial Schur
functions (Theorem 3).

We start with two simple lemmas. To state these, we describe the six
admissible arrangements of edge spins around a vertex as types a1, a2, b1, b2,
c1 and c2 respectively, when reading from left to right in the diagram (2).

Lemma 2. In each state, the total number of sites of type a2, b1 and c1 is
equal to n(n− 1)/2.

Proof. This number is equal to the number of minus spins located in the
interior of a vertical string.

Let µ be the partition (λ+ δ)′.

Lemma 3. In each state, the number of occurrences of a2, b2 and c1 patterns
in the i-th column is equal to µi.

Proof. This number is equal to the number of minus spins located on a
horizontal string between the strings labeled i and i + 1. This count is
known since for any rectangle, knowing the boundary conditions on the top,
bottom and rightmost sides determines the number of such spins along the
leftmost edge.

As a consequence of Lemma 2, the result of taking the limit as t→∞ can
be interpreted as taking the leading degree term in t for each of the Boltzmann
weights vΓ(i, j, t) as in Section 4. Thus with the set of Boltzmann weights
(1,−αj, 1, zi + αj, zi, 1) and corresponding partition function Z(SΓ

λ,∞), we
have

Z(SΓ
λ,∞) = zδsλ(z|α).
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By Lemma 3, if we consider our ice model with the series of Boltzmann
weights in the following diagram, then the corresponding partition function
is given by dividing Z(SΓ

λ,∞) by (−α)µ.

Gamma
Ice

ij ij ij ij ij ij

Boltzmann
weight

1 1 1 −zi/αj − 1 −zi/αj 1

Let us denote the partition function for this set of Boltzmann weights by
Z(SΓ′

λ,∞(z|α)). Thus we obtain the result of [McN, Theorem 1.1],

Z(SΓ′

λ,∞(z|α)) =
zδ

(−α)(λ+δ)′
sλ(z|α). (17)

We now pause to introduce the notions of double Schubert polynomials
and Grassmannian permutations so that we can make the connection to [La2,
Theorem 1] precise.

A permutation is Grassmannian if it has a unique (right) descent.
Let n and m be given and let λ = (λ1, · · · , λn) be a partition such that

λ1 6 m. Then there is associated with λ a Grassmannian permutation
wλ ∈ Sn+m. This is the permutation such that

wλ(i) =

{
λn+1−i + i if i 6 n,
i− λ′i−n if i > n,

where λ′ is the conjugate partition. This has wλ(n+1) < wλ(n) and no other
descent.

Let x1, · · · , xn+m and y1, · · · , yn+m be parameters. We define the divided
difference operators as follows. If 1 6 i < n + m and f is a function of the
xi let

∂if(x1, · · · , xn+m) =
f − sif
xi − xi+1

where sif is the function obtained by interchanging xi and xi+1. Then if
w ∈ Sn+m, let w = si1 · · · sik be a reduced expression of w as a product of
simple reflections. Then let ∂w = ∂i1 · · · ∂ik . This is well-defined since the
divided difference operators ∂i satisfy the braid relations. Let w0 be the long
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element of Sn+m. Then the double Schubert polynomials, which were defined
by Lascoux and Schützenberger [LS1] are given by

Sw(x, y) = ∂w−1w0

( ∏
i+j6n+m

(xi − yj)

)
.

The theory of factorial Schur functions is a special case of the theory
of double Schubert polynomials developed by Lascoux and Schützenberger
[LS1, LS2]. Although the comparison is well-known, there does not appear
to be a truly satisfactory reference in the literature. We give a new proof in
the thematic spirit of this paper.

Theorem 4. The factorial Schur functions are equal to double Schubert poly-
nomials for Grassmannian permutations. More precisely,

Swλ(x, y) = sλ(x| − y)

Proof. The proof is a comparison of (17) with [La2, Theorem 1]. To translate
the left-hand side in (17) into the staircase language of Lascoux we use the
bijection in Proposition 2. In Theorem 1 of [La2] if Lascoux’ x is our z
and his y is our −α, then the left-hand side of his identity is exactly the
partition function on the left-hand side of our (17). The monomial xρry−〈ũ〉

on the right-hand side of his identity equals the monomial zρ(−α)−(λ+δ)′ on
the right-hand side of (17). Lascoux’ Xũ,uω is the double Schubert polynomial
Swλ . The statement follows.

To conclude this section, we shall use this description to give a proof
of the characteristic vanishing property of Schur functions. In lieu of (17)
above, the following result is clearly equivalent to Theorem 3.

Theorem 5. For two partitions λ and µ of at most n parts, we have

Z(SΓ′

λ,∞(−αµ|α)) = 0 unless λ ⊂ µ,

Z(SΓ′

λ,∞(−αλ|α)) =
∏

(i,j)∈λ

(
αn+1−i+λi
αn−λ′j+j

− 1

)
.

Proof. Fix a state, and assume that this state gives a non-zero contribution to
the partition function Z(SΓ′

λ,∞(−αµ|α)). Under the bijection between states

21



of square ice and strict Gelfand-Tsetlin patterns, let ki be the leftmost entry
in the i-th row of the corresponding Gelfand-Tsetlin pattern. We shall prove
by descending induction on i the inequality

n+ 1− i+ µi ≥ ki.

For any j such that ki+1 < j < ki, there is a factor (xi/αj − 1) in the
Boltzmann weight of this state. We have the inequality n+ 1− i+ µi > n+
1−(i+1)+µi+1 ≥ ki+1 by our inductive hypothesis. Since (αµ)i = αn+1−i+µi ,
in order for this state to give a non-zero contribution to Z(SΓ′

λ,∞(−αµ|α)),
we must have that n+ 1− i+ µi ≥ ki, as required.

Note that for all i, we have ki ≥ n + 1 − i + λi. Hence µi ≥ λi for all i,
showing that µ ⊃ λ as required, proving the first part of the theorem.

To compute Z(SΓ′

λ,∞(−αλ|α)), notice that the above argument shows that
there is only one state which gives a non-zero contribution to the sum. Under
the bijection with Gelfand-Tsetlin patterns, this is the state with pi,j = p1,j

for all i, j. The formula for Z(SΓ′

λ,∞(−αλ|α)) is now immediate.

7 Asymptotic Symmetry

Macdonald [Mcd1] shows that the factorial Schur functions are asymptotically
symmetric in the αi as the number of parameters zi increases. To formulate
this property, let σ be a permutation of the parameters α = (α1, α2, · · · ) such
that σ(αj) = αj for all but finitely many j. Then we will show that if the
number of parameters zi is sufficiently large, then sλ(z|σα) = sλ(z|α). How
large n must be depend on both λ and on the permutation σ.

We will give a proof of this symmetry property of factorial Schur functions
using the Yang-Baxter equation. In the following theorem we will use the
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following Boltzmann weights:

v
1 zi − tα t zi + α zi(t+ 1) 1

w
1 zi − tβ t zi + β zi(t+ 1) 1

u
1 1 α− β 0 1 1

Theorem 6. With the above Boltzmann weights, and with ε1, · · · , ε6 fixed
spins ±, the following two systems have the same partition function.

δ

ψφ

ε2ε1

ε3ε6

ε4ε5

w v

u

ε2ε1

νµ

ε3γε6

ε4ε5

u

v w

Proof. This may be deduced from Theorem 3 of [BBF] with a little work. By
rotating the diagram 90◦ and changing the signs of the horizontal edge spins,
this becomes a case of that result. The R-matrix is not the matrix for u
given above, but a constant multiple. We leave the details to the reader.

Let σi be the map on sequences α = (α1, α2, · · · ) that interchanges αi
and αi+1. Let λ be a partition. We will show that sometimes:

sλ(z|α) = sλ(z|σiα) (18)

and sometimes

sλ(z|α) = sλ(z|σiα) + sµ(z|σiα)(αi − αi+1), (19)
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where µ is another partition. The next Proposition gives a precise statement
distinguishing between the two cases (18) and (19).

Proposition 5. (i) Suppose that i + 1 ∈ λ + ρ but that i /∈ λ + ρ. Let µ be
the partition characterized by the condition that µ+ ρ is obtained from λ+ ρ
by replacing the unique entry equal to i + 1 by i. Then (19) holds with this
µ.

(ii) If either i+ 1 /∈ λ+ ρ or i ∈ λ+ ρ then (18) holds.

For example, suppose that λ = (3, 1) and n = 5. Then λ+ ρ = (8, 5, 3, 2, 1).
If i = 4, then i + 1 = 5 ∈ λ + ρ but i /∈ λ + ρ, so (19) holds with µ + ρ =
(8, 4, 3, 2, 1), and so µ = (3).

Proof. We will use Theorem 6 with α = αi and β = αi+1. The parameter t
may be arbitrary for the following argument. We first take i = n and attach
the vertex u below the i and i + 1 columns, arriving at a configuration like
this one in the case n = 3, λ = (4, 3, 1).

u

+

+

+

+ − + − + + − +

+ + +

+ +

+ + +

−

−

−

1112131415161718

2122232425262728

3132333435363738

There is only one legal configuration for the spins of the edges between u and
the two edges above it, which in the example connect with (3, 5) and (3, 4):
these must both be +. The Boltzmann weight at u in this configuration
is unchanged, and the partition function of this system equals that of SΓ

λ,t.
After applying the Yang-Baxter equation, we arrive at a configuration with
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the u vertex above the top row, as follows:

u

+

+

+

+ − +

− +

+ − +

+ + + + + + + +

−

−

−

1112131415161718

2122232425262728

3132333435363738

Now if we are in case (i), the spins of the two edges are −, + then there are
two legal configurations for the vertex, and separating the contribution these
we obtain

Z(Sλ,t) = (σiZ(Sλ,t)) + (α− β) (σiZ(Sµ,t)) .

If we are in case (ii), there is only one legal configuration, so Z(Sλ,t) =
(σiZ(Sλ,t)) .

Corollary 1. Let λ be a partition, and let l be the length of λ. If n > l + i
then sλ(z|a) = sλ(z|σia).

Proof. For if l is the length of the partition λ, then the top edge spin in
column j is − when j 6 n− l, and therefore we are in case (i).

This Corollary implies Macdonald’s observation that the factorial Schur
functions are asymptotically symmetric in the αi.

8 The Dual Cauchy Identity

Let m and n be positive integers. For a partition λ = (λ1, . . . , λn) with
λ1 ≤ m, we define a new partition λ̂ = (λ̂1, . . . , λ̂m) by

λ̂i = |{j | λj ≤ m− i}|.
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After a reflection, it is possible to fit the Young diagrams of λ and λ̂ into a
rectangle.

We shall prove the following identity, known as the dual Cauchy identity.
Another proof may be found in Macdonald [Mcd1] (6.17). In view of the
relationship between factorial Schur functions and Schubert polynomials, this
is equivalent to a statement on page 161 of Lascoux [La1]. See also Corollary
2.4.8 of Manivel [Ma] for another version of the Cauchy identity for Schubert
polynomials.

Theorem 7 (Dual Cauchy Identity). For two finite alphabets of variables
x = (x1, . . . , xn) and y = (y1, . . . , ym), we have

n∏
i=1

m∏
j=1

(xi + yj) =
∑
λ

sλ(x|α)sλ̂(y| − α).

The sum is over all partitions λ with at most n parts and with λ1 ≤ m.

Proof. The proof will consist of computing the partition function of a partic-
ular six-vertex model in two different ways. We will use the weights vΓ(i, j, t)
introduced in Section 4 with t = 1 and for our parameters (z1, . . . , zm+n), we
will take the sequence (ym, . . . , y1, x1, . . . , xn).

As for the size of the six-vertex model we shall use and the boundary
conditions, we take a (m+ n)× (m+ n) square array, with positive spins on
the left and lower edges, and negative spins on the upper and right edges.
By Theorem 1 (with λ = 0), the partition function of this array is∏

i<j

(yi + yj)
∏
i,j

(yi + xj)
∏
i<j

(xi + xj).

We shall partition the set of all states according to the set of spins that
occur between the rows with parameters y1 and x1. Such an arrangement of
spins corresponds to a partition λ in the usual way, i.e. the negative spins
are in the columns labeled λi + n − i + 1. In this manner we can write our
partition function as a sum ∑

λ

Ztop
λ Zbottom

λ .

Here Ztop
λ is the partition function of the system with m rows, m + n

columns, parameters ym, . . . , y1 and boundary conditions of positive spins on
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the left, negative spins on the top and right, and the λ boundary condition
spins on the bottom. And Zbottom

λ is the partition function of the system
with n rows, m + n columns, spectral parameters x1, . . . , xn and the usual
boundary conditions for the partition λ.

By Theorem 1, we have

Zbottom
λ =

∏
i<j

(xi + xj)sλ(x|α).

It remains to identify Ztop
λ . To do this, we perform the following operation

to the top part of our system. We flip all spins that lie on a vertical strand,
and then reflect the system about a horizontal axis. As a consequence, we
have changed the six-vertex system that produces the partition function Ztop

λ

into a system with more familiar boundary conditions, namely with positive
spins along the left and bottom, negative spins along the right hand side,
and along the top row we have negative spins in columns λ̂i +m− i+ 1. The
Boltzmann weights for this transformed system are (since t = 1)

Gamma
Ice

ij ij ij ij ij ij

Boltzmann
weight

1 yi + αj 1 yi − αj 2yi 1

Now again we use Theorem 1 to conclude that

Ztop
λ =

∏
i<j

(yi + yj)sλ̂(y| − α).

Comparing the two expressions for the partition function completes the proof.
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