GLOBAL SOLUTIONS OF QUASILINEAR SYSTEMS OF KLEIN-GORDON
EQUATIONS IN 3D

ALEXANDRU D. IONESCU AND BENOIT PAUSADER

ABSTRACT. We prove small data global existence and scattering for quasilinear systems of Klein-Gordon
equations with different speeds, in dimension three. As an application, we obtain a robust global stability
result for the Euler-Maxwell equations for electrons.
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1. INTRODUCTION

In this paper we consider systems of quasilinear Klein—Gordon equations with different speeds and
masses in dimension three. Our aim is to prove that small, smooth, and localized initial data lead to
global solutions, assuming only certain mild non-degeneracy conditions which are automatically satisfied
in our main applications. The method we develop appears to be robust enough to deal with many
situations that involve large space-time resonant sets, at least in dimension three.

We will focus on two examples which should be sufficient to illustrate the scope of our method. We
first consider quasilinear systems of Klein-Gordon type with pointwise quadratic nonlinearities
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2 ALEXANDRU D. IONESCU AND BENOIT PAUSADER

satisfying a hyperbolicity condition on the quasilinear term in the nonlinearity. Variations on such systems
have been proposed in [17] to model bilayer materials. This problem also appears in [7] as an important
toy model. More specifically, this problem when the speeds are the same has received a lot of attention
in low dimensions [4, 13, 22].

Our second model case is the Euler-Maxwell system for electrons. This is a simplification of the two
fluid Euler-Maxwell system, which is one of the main models in plasma physics. We refer to [1] for some
physical reference and to [8, 9] for previous mathematical study of the solutions. The system describes
the dynamical evolution of the functions n. : R®> = R, v., E', B’ : R3 — R3, i.e.

One + div(neve) = 0,

PP e
By + Vo - VU = ——Vn, — — [E’+ﬂ xB’},
m

e Me c (1.2)
0B +cV x E' =0,
O.F" — ¢V x B' = 4ren,v,,
together with the elliptic equations
div(B') =0, div(E') = —4me(n, —n°). (1.3)

Here e > 0 is the electron charge, P, is related to the effective electron temperature!, m, is the mass of an
electron and ¢ denotes the speed of light. The two equations (1.3) are propagated by the dynamic flow,
provided that they are satisfied at the initial time. In addition, we make the following irrotationality
assumption which removes a non decaying component,

V x v(0), (1.4)

mecC

/
B(0) ="
and which is also propagated by the flow and remains valid for all times.

In the case of the system (1.2)—(1.4) we want to explore the stability of the equilibrium solution
(n2,09, E° B%) = (n°,0,0,0), n® > 0. In the system above, we have chosen a quadratic pressure p(n.) =
P.n?/2. This is chosen only to minimize the number of terms in the nonlinearity but does not make the
system (1.2) symmetric and in particular, one needs to add a cubic correction to the energy estimates.

In both cases (1.1) and (1.2)-(1.4), we prove that small, localized, and smooth initial data lead to

global classical solutions that scatter. Below is a precise description of the main results.

1.1. Statement of the results. Given a real-valued vector u = (ug,...,uq) : R® x [0,7] — R¢, u €
c(o,7) : HN)n CY([0,T] : HN=1)? for some T > 0, d > 1, and N > 5, we consider quadratic
nonlinearities of the form

3 d
Fu= Y>> G000, + Qu, (1.5)
g k=1v=1
where, with Jy := 0,
d 3
R T o (z o5 Oy + hzz;aua) LM er (19
= =0

and Q, = Qu(u,Vy4u) is an arbitrary quadratic form (with real constant coefficients) in (uq, Opts),
oe{l,...,d}k €{0,1,2,3}. We assume that G{jf, are symmetric in both p,v and j, k (the latter not

More precisely, kpTe = n°P., where kp is the Boltzmann constant.
2In the paper we let HV = H(Jyn) denote standard L2-based Sobolev spaces of complex vector-valued functions f : R3 —

C™, m=1,2,.... Welet HY = H}«V(m) denote L2-based Sobolev spaces of real vector-valued functions f : R3 — R™,

m=1,2,....
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being a restriction in generality), i.e.

gkl _ gkl _ _kjl ik _ ik _ pkj
gy,uo - guua - g,u,z/o'? h#ua - hu;u'f - h‘p,l/a? (17>

for all choices of j,k,l and pu,v,o.
We consider general systems of Klein—Gordon equations of the form

(8f—ciA+bi)uH:Fw w=1,...,d,

where the coefficients by,...,b4,¢1,...,cq satisfy the non-degeneracy conditions (1.8) below and the
quadratic nonlinearities F), are as before. Our first main theorem concerns the global stability of the
equilibrium solution u = 0. More precisely:

Theorem 1.1. Assume A > 1, d > 1, and by,...,bg,c1,...,cqa € [1/A, A] satisfy the non-resonance
conditions

|bs, + boy — boy| > 1/A for any 01,092,053 € {1,...,d},
|Coy — Coyls |boy — boy| € {0} U[1/A, c0) for any 01,09 € {1,...,d}, (1.8)
(Coy — Coy) (€2 by — €2 bgy) =0 for any 01,02 € {1,...,d}.

We fiz quadratic nonlinearities (Fy),eq1,..ay as in (1.5)~(1.7), let Ng = 10*, and assume that vy, vy :
R3 — R? satisfy the smallness conditions

1/2

[voll grvorr + lloall o + 1(1 = A)Zwollz + [Jor]lz = €0 <&, (1.9)

where € = (d, A, F,,) > 0 is sufficiently small (depending only on d, A, and the constants in the definition
of the nonlinearities F),), and the Z norm is defined in Definition 2.3.
Then there exists a unique global solution u € C([0,00) : HNot1) N C([0,00) : HNO) of the system

(07 — A A+ 02wy = F, pw=1,....d, (1.10)
with initial data (u(0),%(0)) = (vo,v1). Moreover, with 8 = 1/100,

sup [[lu(t) o + @)l o]
te[0,00)

+ sup (1467 sup [[Dfu(t)]| L= + sup |D2a(t)] =] < co.
1€00,00) Ipl<a Ipl<3

(1.11)

Remark 1.2. (i) The non-degeneracy condition (1.8) is automatically satisfied if the masses are all
equal, by = ... = by, which is the case in our main application below to the Euler—Mazwell system.
(i) Qualitatively, our condition on the parameters is

bi,...,bg,c1,...,cq € (0,00),
|bo, + boy — boy| # 0 for any 01,092,053 € {1,...,d},
(Coy = Cou ) (€2 by — €2 boy) >0 for any 01,02 € {1,...,d}.

The point of the quantitative formulation in (1.8), in terms of the large parameter A, is to indicate the
exact dependence of the smallness parameter € in (1.9).

(#ii) The condition (1.8) can certainly be relaxed. We have chosen this condition mostly because it is
automatically satisfied in our application to the Fuler—Mazxwell system, can be explained conceptually in
terms of the non-degeneracy of the space-time resonant sets, see subsection 1.2, and reduces the amount of
technical work. Howewver, it seems natural to raise the question of whether this condition can be eliminated
completely.



4 ALEXANDRU D. IONESCU AND BENOIT PAUSADER

We turn now to the Euler-Maxwell system. Recalling the system (1.2), we make the changes of
variables

ne(z,t) = n°[1 4+ n(Az, \t)],
ve(x,t) = v(Ax, \t),
E'(z,t) = ZE(\z, \t),
B'(z,t) = cZB(\x, At),
where
2,0 0
N 47ren7 Z::)\me:47ren.
Me e A

The system (1.2) becomes

On + div((1 + n)v) =0,
Ow—+v-Vo+TVn+ E+vx B=0,

OB+V xE=0, (1.12)
OFE — 2V x B = (1+n)v,
where?
v Pl
Me
For any N > 4 we define the normed space
HY :={(n,v,E,B) :R> 5 R x R> x R® x R? : 113)
1(n, 0, B, B)| g = Inlluy + lollay + 1 Ellgy + 1Bllay < oo}
We can now state our second main theorem.
Theorem 1.3. Let Ny = 10* and assume that (ng,vo, Eo, Bo) € HNo+1 satisfies
(o, v0, Eo, Bo)ll g1 + (1 = A2 Eyllz + (1 = A)2ug 7 = £ <5, "

ng = —d’iU(Eo), BO =V x 0,

where € = (¢, T) > 0 is sufficiently small, and the Z norm is defined in Definition 2.3. Then there
ezists a unique global solution (n,v, E,B) € C([0,00) : HNo%1) of the system (1.12) with initial data
(n(0),v(0), E(0), B(0)) = (no, vo, Eo, Bo). Moreover,

n(t) = —div(E(t)), B(t) =V xv(t), for any t € [0, 00), (1.15)
and, with 8 =1/100,

sup ||(n(t), v(t), E(t), B(t))| gingr + sup sup (1 + )77 ([|[D2v(t)]| = + |IDLE(#)]| =) S €o- (1.16)
te(0,00) te(0,00) |p|<4

We remark that our restriction n = —div(FE), together with the assumptions on E, can only be satisfied
if ng n(t) de = 0, which means that we are only considering electrically neutral perturbations.

1.2. Comments and plan of the proof.

3) is often called the “electron plasma frequency”, Z2 is the density of mass, and V/T is then the thermal velocity.



KLEIN-GORDON SYSTEMS IN 3D 5

1.2.1. Previous results on systems of Klein-Gordon equations. Systems of wave and Klein-Gordon-type
equations have been studied by many authors, as they appear as natural models of physical evolutions.
We also refer the reader to the introduction of [7] for a review on previous works.

The scalar case (or the system when all the speeds are equal and all the masses are equal) has been
studied extensively. Some key developments include the work of John [15] showing that blow-up in finite
time can happen even for small smooth localized initial data of a semilinear wave equation, the introduc-
tion of the vector field method by Klainerman [18] and of the normal form transformation by Shatah [20],
and the understanding of the role of "null structures”, starting with the works of Klainerman [19] and
Christodoulou [2]. Recently, a convenient general framework, which explains all of these results in the
constant-coefficient case in terms of the concept of space-time resonances, was introduced independently
by Germain-Masmoudi-Shatah [5] and Gustasfon-Nakanishi-Tsai [11]. We will get back to this later in
this subsection.

The case of systems of wave equations with different speeds is well understood, both in the semilinear
and the quasilinear case (see [24] and [21]), provided that the nonlinearities satisfy appropriate null
conditions, similar to those in the scalar case.

The case of Klein—Gordon quasilinear systems with equal speeds, ¢; = ... = ¢4 = 1, and different
masses is also well understood both in dimensions two and three. For example, in [4], the authors show
that if by, +by, —bo, # 0 for any o1, 09, 03, then one has global existence and scattering in dimension two.
If this condition is violated, then the same conclusion holds if the nonlinearity satisfies an appropriate
null condition. We refer to [13, 22, 23] for related works.

As pointed out in [7] a key new difficulty (the presence of a large set of space-time resonances) arises
when the velocities are allowed to be different. In [7], the author studies semilinear systems of two
Klein-Gordon equations when the masses are equal, by = bs in dimension three. Under a less explicit
assumption on the velocities that covers most (but excludes some) parameters, he obtains global existence
and scattering with a weak decay like t~1/2 of the solution as t — oc.

In [8], the authors study the Euler-Maxwell system for the electron (1.2)-(1.4) in dimension three and
obtain global existence and scattering with weak decay by an elaborate iterated energy estimate. The
results are conditional on ¢ and T satisfying an implicit relation that holds for most (but not all) values
of T, c.

With respect to the previous works, we remark that our result in this paper is obtained by a robust
method, which yields time-integrability of the solution in L* and holds for all values of the velocities
when the masses are equal. In addition, our smallness assumption is expressed explicitly in terms of the
parameters, and the number of the derivatives Ny needed is quantified (although most likely not optimal).

1.2.2. General strategy. Systems (1.1) and (1.2) are hyperbolic systems of conservation laws and no
general theory exists yet for such systems, even for the scalar case. Indeed, systems which are remarkably
similar to (1.1) can be shown to have rather opposite behavior, even for small, smooth initial data, from
blow up in finite time for all positive solutions of the quadratic wave equation [15] to global existence
and scattering for the quadratic scalar Klein-Gordon equation [20]. The case for systems is even more
complicated and only few partial results are known [4, 7, 13].

We follow and extend the analysis started in our previous work [14]. We refer to [3, 5, 11, 18, 20] for
previous seminal work on dispersive quasilinear systems. The main two challenges we face are:

(i) overcoming the quasilinear nature of the nonlinearity to ensure global existence,

(ii) obtaining decay of the solution to control the asymptotic behavior.

Fortunately, these two difficulties are complementary provided one obtains sufficiently strong control.
Indeed:

(I) the loss of derivative coming from the nonlinearity is overcome by using energy estimates which
allow to control high-regularity norms provided a lower-order norm remains small,
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(IT) the decay estimate, if implying time-integrability precisely propagates the smallness of low reg-
ularity norms globally in time. This is obtained from a delicate semilinear analysis assuming that high
regularity norms remain bounded. Together, these two ingredients allow a bootstrap in time which yields
both global existence and scattering.

The energy estimates come from the conservative structure of the equation and depend on delicate
symmetry properties of the nonlinearity. In order to be extended globally, they demand a decay of some
norm of at least 1/t.

This decay is provided by the semilinear analysis of systems of dispersive equations. We use the
Fourier transform method. After suitable algebraic manipulations, this is reduced to the study of bilinear
operators of the form

T3 = [ [ e emmien s = nt)ato. odnit. (1.17)

As a first approximation, one may think of f, g being smooth bump functions and m being essentially a
smooth cut-off, and the main challenge is to estimate efficiently the infinite time integral. It then becomes
clear that a key role is played by the properties of the function ® and in particular by the points where
it is stationary,

V(t,n) [t@(f, 77)] =0.

This was already highlighted in [5] and forms the basis of the space-time resonance method. In some
situations, one has no or few fully stationary points and the task is mainly to propagate enough smoothness
of f, § to exploit (non)-stationary phase arguments.

However, this is not the case in the models in this paper and we have to face some unavoidable “space-
time resonances”. Under some conditions that enforce non-degeneracy of the phase at critical points, we
perform a robust stationary phase analysis of this case. We believe this forms the main contribution of
the present work and we present it below in more details.

1.2.3. Space-time resonant sets. The analysis of operators of the form (1.17) relies especially on the
properties of the phase ® which, in our case, is of the form

O =M (O EM(E =M A=), Ap(0) =05 + 1012, p € {o, p, v}
As in [5], one can define the space-resonant set

Re = {(5777) : an’(fan) = 0},
the time-resonant set
R: = {(Ean) : ‘I)(fvﬁ) = 0}7
and the set of space-time resonances
R =TR:NTR,:.

The absence of any stationary point corresponds to the condition R = (). This holds in a certain number
of cases and the semilinear analysis can be carried out using integration by parts arguments either in x
or in t. It is remarkable that the simple condition R = ) explains essentially many of the classical global
regularity results, see the longer discussion in [7]. For example the case of scalar Klein—-Gordon equations
corresponds to Ry = ), in which case one can perform an integration by parts in ¢ (the normal form
method [20]).

More generally, one can sometimes adapt the integration by parts semilinear arguments even if the set
R is nontrivial, provided that either the multiplier m in (1.17) or the £ gradient V¢® vanish suitably on
this set. In the case of wave equations, the vanishing of m corresponds precisely to Klainerman’s “null
condition” [19]. See also [5, 11, 6, 10, 14, 12] for recent results exploiting these ideas.

However, it was observed by Germain [7] that the case of Klein-Gordon systems with different speeds
is genuinely different, even in the case of a system of two equations with equal masses b; = by. In this



KLEIN-GORDON SYSTEMS IN 3D 7

case one cannot avoid the presence of large sets of space-time resonances and there are no natural “null
conditions”. In general, the sets of space-time resonances take the form

R ={(&n) = (re,7’e) : e € S?},
for certain values 7,7 € (0,00) which depend on the parameters. In other words, the set R is a 2-
dimensional manifold in R3 x R3, which should be thought of as the natural situation, in view of the fact
that it is defined by four identities ®(&,n) = V,®(£,n) = 0.

A partial result, which assumes certain separation conditions of the problematic frequencies, was
obtained in [7] in the semilinear case, and later extended to a quasilinear example in [8]. The results
in [7] and [8] appear to hold only for “generic” sets of parameters, and the required smallness of the
perturbation depends implicitly on these parameters.

Our analysis in this paper can be understood as a robust analysis of the case of non-degenerate
resonances R N'D = (), where D is the degenerate set

D={(&n): det[V},®(& n)] =0} (1.18)
The analysis seems to be limited to dimension three (and higher), and the method does not appear to
extend easily to the two-dimensional case. It is possible, however, that this analysis can be developed
further to allow for low-order degeneracy of the phase, thereby removing the condition on the parameters
by, ¢, in (1.8). We note however, that this would require nontrivial change of the norms as it becomes
likely that the gap in xL? integrability would increase between “weak” and “strong” norms. We note
also that our conditions are sufficient to cover our main physical application.

Regarding the precise relations on the parameters in (1.8), the first condition ensures that (0,0) is not
time-resonant and thus this point plays little role. Note that (0,0) is a specific point as all the gradients
vanish there. The second condition only reflects a lack of uniformity of the estimates in terms of the gap
between like parameters?. Finally, the third condition is equivalent to asking that there are no degenerate
space-time resonant points in R? x R3\ (0,0). We justify this at the end of this section.

The relevance of (1.18) can be illustrated by the fact that, after suitable manipulations and use of
Morse lemma, the study of operators like (1.17) is similar to the study of operators in standard form:

&= [ [ e rOFme e — n )it indr

for some smooth function p : R3 — R3, which allows for precise estimate on the phase.

1.2.4. Norms. The choice of the Z-norms we use in the semilinear analysis, see Definition 2.3, is very
important. These norms have to satisfy at least two essential requirements:

(a) they must yield a 1/t decay after we apply the linear flow,

(b) they must allow for boundedness of the basic interaction bilinear operator (1.17).

The simplest energy-type norm compatible with (a) corresponds to z~(1*¢) L2(dz). This is, essentially,
the “strong norm” Bj} 4 in (2.19) ® and we are able to control most of the interactions in this norm.
Unfortunately, certain interactions, corresponding to space-time resonances, are simply not bounded in

4As different velocities and masses approach each other, the corresponding spheres of “space-time resonances” go off to
infinity, see (1.20). However a slightly more careful analysis would yield the wanted uniformity, at the expense of some
clarity of the proof.

5We prefer, however, to first localize all our functions both in space and frequency. One should think of a function as
composed of atoms,

f= S fri= > P k+2]( ) Pef),
k,j€Z, k+35>0 k,j€Z, k+35>0

where the atoms fy ; are localized essentially at frequency =~ 2k and distance & 27 from the origin in the physical space.
Then we measure appropriately the size of each such atom, and use this to define the Z norm of f. This point of view,
which was used also in [14], is convenient to deal with the main difficulty of the paper, namely estimating efficiently bilinear
operators such as those in (1.17).
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this norm, even for inputs f, g which are small smooth bump functions of scale 1. This forces us to add
another component to our space, measured in the “weak-norm” which has insufficient xL? integrability.
This corresponds to B,%J in (2.19). Fortunately, these only happen on an exceptional set of frequencies
and the “weak norm” has an additional component that captures the essential two-dimensional nature
of the support of these solutions. This smallness on the support then more than compensates for the
weaker integrability and yields the all-important 1/t decay.

In addition, although fundamental, the gap in L?-integrability between weak and strong norms is
sufficiently small to allow us to treat the two norms similarly for most of the easier cases, thereby keeping
the computations manageable.

1.2.5. Condition on the parameters. We finish this section with simple computations showing that the
condition (1.8) implies the absence of degenerate space-time resonances, i.e. R ND = (. Let

Ao (§) = Vb2 +cZlE?, Aul(§) = /05 + RlEl?,  Au(§) = VbE + cfIE%
P& m) = Ao (§) — a1 Au(§ —n) — erehu(n), er,€ € {—1,1}.
Clearly, ®(0,0) = b, £ b, £ b, and therefore, the first equation in (1.8) forces (£,17) = (0,0) to not
be time-resonant. Moreover, clearly any point of the form (£,1) = (£,0), ¢ € R?\ {0}, cannot be
space-resonant.
We show now that (£,7n) cannot be a degenerate space-time resonant point, provided that (1.8) holds
and 1 # 0. We may assume, without loss of generality, that
cu>cy and b,,ci > bycz. (1.19)
The relation
(Vy®)(&,m) =0
is satisfied if and only if £ = ¢(n), where

b,.c?
qn) = |1+e€ s n. (1.20)
(b3ci + cheilnl* — cheqInl?)'/?
Clearly, r = |g(n)| depends only on s = |n| and

d b,c2bict

dl:l"_ebQAL rynyC 2)3/2° (1.21)
s (bZep + cpcls? — cpeis?)
We claim now that J

T >0 ifse(0,00) and (q(n).m) € Re. (1.22)
Indeed, this is clear from (1.21) if e = 1 or if e = —1 and either buci > b,c2 or ¢, > c,. In the remaining

case € = —1, ¢, = ¢,, b, = b, we have g(n) =0, so ®(q(n),n) = A;(0) # 0, therefore (¢(n),n) ¢ R;. The
conclusion (1.22) follows.
Finally, we show that

det[(V2,®)(q(n),m)] #0  ifneR>\ {0} and (q(n),n) € Ry (1.23)

Letting =(&,n) := (V,,®)(&,n), we start from the defining identity Z(¢(n),n) = 0 and differentiate with
respect to n. It follows that
= = dg
%(q(n),n) = —dfg(Q(n),n) : %(77)-
It follows from (1.20) and (1.22) that det(dq/0n) # 0. Moreover, using the definition, det(0Z/9¢) =
det(V? (@) # 0, and the conclusion (1.23) follows.

The rest of the paper is organized as follows: in Section 2.1, we prove Theorem 1.1 and Theorem 1.3
relying on a decay assumption. This is then proved in Section 3 and Section 4 where we prove respectively
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the continuity of the Z-norm that captures the decay and a bootstrap result that gives global control of
this norm assuming global bounds on high-order energy. Finally, in Section 5, we provide some needed
technical estimates and we study the relevant sets associated to our phases.

2. REDUCTIONS AND PROOFS OF THE MAIN THEOREMS

2.1. Local existence results. In this subsection we state and prove suitable local regularity results for
our equations.

We start with quasilinear systems of Klein—Gordon equations. For o € {1,...,d} assume that b,,c, €
[1/A, A] and F,, are nonlinearities as in (1.5)~(1.7). For N >4 and u € C([0,T] : H¥N)NnC([0,T] : HN 1)
we define the higher order energies

3
Z /RS Z 8tD”ug + b2 (DPu, )? Z c?,(anguU)Q} dx
j=1

lp|<N—1
/ Z Z G uV%tu)@jDiuﬂﬁkDﬁuydx}.

w,v=1j5k=1

The following proposition is our first local regularity result:

Proposition 2.1. (i) There is §o > 0 such that if

[vollgs + [lv1llzs < do (2.2)
then there is a unique solution u = (uy,...,uq) € C([0,1] : H}) N CY([0,1] : H?) of the system
(affciA+bi)u# =F, p=1,....d, (2.3)

with (u(0),4(0)) = (vo, v1). Moreover,

sup [u(®)llzs + sup (0l ool + oL
t€(0,1] t€[0,1]

(ii) If N > 4 and (vg,v1) € HN x HN=1 satisfies (2.2), then u € C([0,1] : HN) N C([0,1] : HN 1),
and

EKG (1) — €KG(p) / EKC (s Z | D2u(s)|| Lo + Z | DAu( |Lm] (2.4)

lp|<2 lpl<1
for any t <t €10,1].

We remark that the non-resonance condition (1.8) is not needed in this local regularity result. On
the other hand, the symmetry conditions (1.7) on the quasilinear components of the nonlinearities are
important.

Proof of Proposition 2.1. The local existence claim in part (i) and the propagation of regularity claim
in part (ii) are standard consequences of the general local existence theory of quasilinear symmetric
hyperbolic systems, see Theorem II and Theorem IIT in [16]. To prove the estimate (2.4), we use the
equations (2.3) and the definitions to estimate

‘dt AGIESY / Z (0:D%u,) - DLF, da:+/ Z Z 2G3Y, - 0,0; Duy - 04 Dlu,, da

\p\<N 1 o 1
CY LY S aek a0 )
[p|<N-1 wrv=1jk=1

(2.5)
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‘We will use the standard bound

1D2f - DE gllez SIVafllrellgllas + [ Vaglne | fll (2.6)

provided that [p| + |p'| < M 4+ 1, M > 1, and |p|,|p’| > 1. For any multi-index p with [p] < N — 1 we
estimate, as long as ||l ga + [J0]|gs <1,

[ 33 ik 0,0t -0uDtu ] S Wl [ 32 1Dl + 3 I0%il],
=1 k=1 lal<2 lal<1
and, using also (2.6),
/ 32 (0.D%us) - DEQo de| < [Julfpn + [iln ] - [ 30 IDSull o~ + 3 D] o],
|| <2 la|<1

Moreover, for any j,k € {1,2,3} and o,v € {1,...,d} we estimate, using (2.6),
‘ / 20, DPuy - [D2(GIF - 9,00u,) — GI% - DPO, O, ] dx’
R3

< [lullfe + llfn-] - [ D IDSullw + D 1Dg | ],

<2 | <1

and

‘ / 20, D"y - GIE . DPO, Oy, da + / QGg’;-atanguU-akDguydx]
R3 R3

< [lullfr + lallfn—] - [ D IDSull + D 1Dl ]

o] <2 laf<1
Therefore, using (2.5),
d [e3 (o3
ENC(t ‘ W@ + e Fx-] - [ D IDSuw)]z= + Y IDgat)l|z=],
o <2 laf<1

for any ¢ € [0,1]. We notice that [[u(t)||%~ + [[a(t)]|%~-1 = ENC(t), provided that |[ufl s + @] s < 1.
The desired estimate (2.4) follows. O

We consider now the Euler-Maxwell system. Recalling the definition (1.13), for any (n,v, E, B) € HY
we define

Z/ [T|DEn|? + (14 n)|D8v|* + |D2E|? + ¢*| DY B|?] da (2.7)
lp|<N
and

[(n, v, E, B)||z := |[VnllL= + [[v]lze + V][ + [VE|[ Lo + [ Bl + VB . (2.8)
The following proposition is our second local regularity result:
Proposition 2.2. (i) There is 69 > 0 such that if
[[(no, vo, Eo, Bo)ll g4 < do (2.9)
then there is a unique solution (n,v, E, B) € C([0,1] : ﬁ4) of the system
on + div((1 + n)v) =0,
ow+v-Vo+TVn+ E+vx B=0,
0:B+V xE=0,
OhE -V xB—(1+n)v=0,

(2.10)
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with (n(0),v(0), E(0), B(0)) = (ng, vo, o, Bo). Moreover,

sup [(n(2), v(t), E(t), B())l| gs < [1(120,v0, Eo, Bo)ll ga-
te|o,

(i) If N > 4 and (ng, vo, Eo, Bo) € HN satisfies (2.9), then (n,v, E, B) € C(0,1] : HY), and

En(t)—En(t) S /t En(s) - ||(n,v, E,B)(s)||z ds. (2.11)

for any t <t €10,1].
(iii) If (no,vo, Eo, Bo) € H* satisfies (2.9), and, in addition,
d’LU(Eo) + ng = O7 BO -V x Vo = 0,
then, for any t € [0,1],
div(E)(t) + n(t) =0, B(t) — (V xv)(t) =0. (2.12)

Proof of Proposition 2.2. We multiply each equation by a suitable factor and rewrite the system (2.10)
as a symmetric hyperbolic system,

3 3
Tomn+T Z vOkn + T(1+n) Z v = 0,

k=1 k=1

3 3
(14+n)ow; +T(1+n)ojn+ (1+n) kaakvj =—(14+n)E;,—(1+n) Z € imk VUm B,

k=1 k,m=1
3
CQGtBj + & Z €jimk OmEr =0,
k,m=1
3
atEj — 02 Z Cjimk Om B = (1 + n)vj.
k,m=1

Then we apply Theorem IT and Theorem IIT in [16] to prove the local existence claim in part (i) and the
propagation of regularity claim in part (ii).
To verify the energy inequality (2.11) we let, for P = D2, |p| < N,

£l / [T|Pnf? + (14 n)|Pof? + |PEJ? + &2|PBP] da,
]Rfi
Then we calculate
L]
dt
Ip = / 2T Pn - Poyn dx,
]R3

5;; =Ip+Ilp+I11lp+1Vp,

3

IIp ::Z o - Pvj - Pv; dz,

j=17%°

3
IIIP Z:Z/ 2(1+n)-ij-P6tvjdx,
Jj=1 R?

3 3
IVp = 2PE; - PO,E; d 2¢2PB; - PO;B; dx.
P ]z_:l/']R3 ’ ' ! x—’_,]z_:ls/R?’ ¢ ’ ‘ ’ ‘
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Then we estimate, using the equations and the general bound (2.6),

I +2TZ (1+n) - POy da| S (0,0, . B - |(n. 0, B, B) 2,
|2e| S 11,0, BB - (0,0, B, B2,

IIIP+2T P@n (14n)-Pv, dac+2 PE Pvj-(14n)dz| < |[(n,v, B B)H ~ (v, E,B)| 7,
i i

3
Ve =237 [ PE; - Pos- (L4 m)da| S (0,0, B, B) |G - 00,0, B, B) 2
i1 R3

Therefore

Ep| S

| Lep| < Im,v, BB - 0,0, 2. B)]12,

and the bound (2.11) follows since Ex = 3 p_pe <y Ep & H(n,v,E,B)HQﬁN
Finally, to verify that the identities (2.12) are propagated by the flow, we let

X :=n+div(E), Y:=B-Vxu.

Using the equations in (2.10) we calculate

3 3 3
8tX = (“)tn + Z 8]-8tEj = — Zaj[(l + n)vj] + Z@[(l + TL)’U]'] = 0,

Jj=1 =1 j=1

therefore X = 0. Moreover

3
3t(2 OxBy) =0,
k=1
therefore

3 3
Y 0kBr=0, Y YVi=0.
k=1 k=1

In addition, for any m,n € {1,2, 3},

3
OmVn = OnUm = Y Ejmn (Bj = Yj).
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Finally we calculate, for i € {1, 2, 3},

3
0Y; = OB — Z €ijk 00y

jk=1

3 3 3 3
=Y €k 0Bk + > €ijn 05[TOkn + Ex + Y 00wk + Y Exim v1Bm)
Gk=1 j k=1 =1 I,m=1
3 3
Z Ez]k 8 00U + Ula 6;1%) Z €ijkEkim aj(lem)
J,k,l=1 4,k 0,m=1
3
= > €ijr Oui(Owk — Opvr) + Z €ijk v010vk + Z 6i16jm — 6;10im)0j (V1 Bm)

=1 7.k, =1 . lym=1

S

J

3
[(Bz — Yi)ém — al’lji(Bl — Yl) + Ulal(Bi — Yz)] + Z [Bjajvi + ’Uiaij - Biaj’Uj - UjajBi}

1 j=1

[
NE

l

[
]

[ = Yi0u + Yi0v; — vdY].
[

1
Therefore, using energy estimates, Y = 0 as desired. O

2.2. Definitions, function spaces, and the main propositions. We fix ¢ : R — [0,1] an even
smooth function supported in [—8/5,8/5] and equal to 1 in [-5/4,5/4]. Let

or(@) = p(|z|/2%) — p(|z]| /251 for any k € Z, x € R, pr = Z ©m for any I C R.
melnz
Let
T ={(k,j) €ELX Ly : k+j >0}
For any (k,j) € J let

P(—o0o,—k] (x) ifk+j=0and k <0,

P (@) = (oo (@) if j=0and k>0,
w;(x) ifk+j>1andj>1.
and notice that, for any k € Z fixed,
> g
J
j>—min(k,0)

For any interval I C R let
~(k
@)= Y W),
JeI, (k,j)eT

Let Py, k € Z, denote the operator on R? defined by the Fourier multiplier £ — ¢ (€). Similarly, for
any I C R let P; denote the operator on R3 defined by the Fourier multiplier £ — ¢ (€). For any k € Z
let

Xkl { I{Zl,k‘g)GZXZ |max(k1,k:2) kl §8}7
AP = {(k1, ko) € Z x Z : max(k1, kz) — k > 8 and |ky — k| < 8}, (2.13)
Xy = XU XL
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For integers n > 1 let

S"i={q:R* = C:|glls» := sup sup [£[¥|DLg(¢)| < o0}, (2.14)
£€E3\ {0} |pl<n

denote classes of symbols satisfying differential inequalities of the Hormander—Michlin type. An operator
Q@ will be called a normalized Calderon—Zygmund operator if

-~

@f(f) =q(&) - f(&), for some ¢ € S'%, ||¢||s100 < 1. (2.15)
For any integer d’ > 1 let

Ma = {m:R*xR® = C: m(&,n) Zm (&) - a1(6) - a5(€ —m) - as(),

sup ||y, [ls10 < 1, m' € {(1+[¢] )1/2> (L4 )2, (141 =n*) /) for any 1 =1,...,d'}.

ne{l,2,3}
(2.16)
Definition 2.3. Let
6 :=1/100, a:= /2, v:=11/8. (2.17)
We define
Z:={feL*®R®: |flz:= sw [3\”(x) Puf(z)|p,, < oo}, (2.18)
(k,j)eT
where, with k := min(k,0) and k; := max(k,0),
lollse, = _inf [lgills, +llollz ] (2.19)
lhllg: = (2% 4 219%) 20493 ||| 2 4 20/2-DF [ o], (2.20)
and
IBllsz = (2°% + 2'%%) [272%K20 =) ||| 12 4+ 202D
(2.21)

4 2(=B=1/2)k92k; 97i sup
Re[277,2%], §o€R?

R2(|hll L1 (8o, ) -

In order to properly understand the Z norm, one should keep in mind that the B,i, ; is the easiest norm
that one would want to use and in particular its z-integrability of the L2-norm is sufficient to obtain the
needed 1/t decay after we apply the linear flow. However, the B? i.j is forced upon us by the presence of
space-time resonances. It has slightly too weak decay, but this is compensated for by the last term that
captures the two-dimensional property of the support.

The weak component B,%, ; is important only at middle frequencies |k| < 1, where one has the more
friendly expression

Ihllsy = 20599 ]| 2 + [[B] oe,
(1-8)j 7> i oy (2.22)
IRz  ~2 IAllzz + |P]lLe + 2 sup R 1 (B(go, R))-
7 Re[279,1], €9 €R3

One should think of j as very large; the Bi,j norm is relevant to measure functions that have thin,
essentially 2-dimensional Fourier support.

Finally, the weights in & in (2.20)-(2.21) are chosen so as to give (2.22) when k = 0 and so that, at the
uncertainty principle k£ + j = 0, all norms should be comparable for a bump function.

The definition above shows that if || f||z < 1 then, for any (k,j) € J one can decompose
B Pof = (25 +21%) 7 (g + ), (2:23)
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where®
— .5k _ (k)
g=g- @[j_27j+2]a h=h- @[j_27j+2]a (224)
and

2+ |g|| 2 + 20/2F |G o S 1,

2-20k9(1=0i || || 2 + 20/2OF| || ow 4 20~ 1/2)R 2k 5 sup R2|[hl| 12 B,y S 1-
RE[2-7,2], £)€R3
(2.25)
In some of the easier estimates we will often use the weaker bound, obtained by setting R = 2*,
20503 g 1 + 20/ PR g 1 S 1, 2.26)
27 20k9(=B)||p|| 2 + 20/2Bk ||| oo + 20r=F=5/2k ||| 12 < 1.
As before, assume A > 1 is a (large number), d > 1 is a fixed integer, and by, ..., b4, c1,...,cq € (0,00)
are positive real numbers with the properties
bi,...,ba,c1,...,cq € [1/A, A] (2.27)
and, see (1.8),
|bs, + by — boy| > 1/A for any 01,090,053 € {1,...,d},
lcoy — Couly 1oy — boy| € {0} U[1/A4, 00) for any 01,09 € {1,...,d}, (2.28)
(Coy = Cap) (€2 by — Coibey) >0 for any 01,02 € {1,...,d}.
Let A, : R3 —[0,00), 0 =1,...,d,
Ao (€) = (07 + e lef*)V2. (2.29)
Let
Zg:={(14),...,(d+),(1-),...,(d—)}. (2.30)

Assume D = D(d, A,d') is a sufficiently large fixed constant.
Given U = (Uy,...,Uy) € C([0,T] : HN), for some T' > 1 and N > 4, we are considering quadratic
nonlinearities of the form

Ay /Rgmwy(s,n)@(s—m)@(m)dm o=1,...d, (2.31)

V€L

for symbols m.,,., € Mg, where U,y := Uy, Uy :=U,, 0 € {1,...,d}.
We claim first that smooth solutions of suitable systems that start with data in the space Z remain
in the space Z, in a continuous way. More precisely:

Proposition 2.4. Assume No = 10, Ty > 1, and U = (Uy,...,Uq) € C([0,Tp] : HY°) is a solution of
the system of equations

O + MU, =Ny,  o=1,....d, (2.32)
where N, are defined as in (2.31). Assume that, for some ty € [0, Tp),
eohe 7 (1) € Z, o=1,...,d (2.33)

6The support condition (2.24) can easily be achieved by starting with a decomposition (ng) Py f = (20F 42108) =1 (g’ +-1/)
inimi . ; — g .5k . 5(R)
that minimizes the By ; norm up to a constant, and then redefining g := g Pli1,5+1] and h = h Pli1,j41) See the
proof of Lemma 5.1.
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Then there is
T= T(TO, sup et U, (to)lz, sup sup HUo—(t)HHNO) >0

oe{l,...,d} o€{l,...,d} t€[0,Tp)]
such that
sup sup He”A" Us()|lz <2 sup He’tOA" Us(to)l z, (2.34)
te[0,To]N[to,to+7] o=1,...,d oe{l,...,d}

and the mapping t — e U, (t) is continuous from [0,To] N [to,to + 7] to Z, for any o € {1,...,d}.
The key proposition is the following bootstrap estimate:

Proposition 2.5. Assume Ny = 10%, Ty > 0, and U = (Uy,...,Uy) € C([0,Tp] : HN°) is a solution of
the system of equations

O +iAg)Uy =Ny, o=1,....d, (2.35)
where N, are defined as in (2.31) and the coefficients by, c, verify (2.27)—(2.28). Assume that
sup  sup |[e U (8) | gpvony < 01 < 1. (2.36)

te[0,To] o=1,...,d
Then
sup  sup |[eU,(t) — Uy (0)] 2z < 02, (2.37)
te[0,T0] o=1,....d
where the implicit constant in (2.37) may depend only on the constants A, d, and d'.

‘We prove the easier Proposition 2.4 in section 3 and we prove the harder Proposition 2.5 in sections 4
and 5. In the rest of this section we show how to use these propositions and the local theory to complete
the proofs of Theorem 1.1 and Theorem 1.3.

2.3. Proof of Theorem 1.1. We prove now Theorem 1.1, as a consequence of Proposition 2.1, Propo-
sition 2.4, and Proposition 2.5. Indeed, assume that we start with data (vg,v1) as in (1.9), where Z is
taken sufficiently small. Using Proposition 2.1 there is 77 > 1 and a unique solution u € C([0,T}] :
HNo+1)y N CL([0,Ty] : HNo) of the system (2.3), with

sup [Ju(t) | s+ sup [li(t)] o < e’ (2.38)
te[0,14] ! te[0,Ty] "
For o € {1,...,d} let
Uy (t) = 1s(t) — iAote, (2.39)
where, as in (2.29), A, = (b2 — c2A)Y/2. Then U, € C([0,T;] : HN°) for any o € {1,...,d}, and
—AJISU,, 1, = RU,. (2.40)
Using these definitions we calculate
(8 +iMg)Uy = (92 + 02 — 2 Z ZG (ty V1) 0Oty + Qo (u, Vo pur),
7,k=1v=1

see (1.5). Using the formulas in (2.40), it is easy to see that this is a system of the form
(O + iMo) Uy = N, oef{l,...,d},

where the nonlinearities NV, can be expressed in terms of the functions U, as in (2.31). Therefore we can
apply the results in Proposition 2.4 and Proposition (2.5).
Using the definition (2.39) and Lemma 5.1, it follows that U € C([0,T1] : HY°) and

sup ([T v S 20" sup [|Us(0)]|z < €0 (2.41)
te[0,T1] oe{l,...,d}
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Let Ty denote the largest number in (0, 73] with the property that
sup sup  |le AU, (t)]|z < 53/4.
t€l0,T2) oe{1,...,d}
Such a Ty € (0,77] exists, in view of (2.41) and Proposition 2.4. We apply now Proposition 2.5 on the
intervals [0, T5(1 — 1/n)], n = 2,3, ..., with 6 ~ e/*. It follows that
sup sup e U, (t)||z < eo.
te[0,T2) oe{l,...,d}
Using again Proposition 2.4 it follows that T = T} and
sup sup |l U, ()| z < o (2.42)
te[0,T1] o€{1,....,d}
Using the formulas in (2.40), and the bounds (2.42) and (5.18) it follows that

sup [(1+ )" ( sup | Dhu(t)||Le + sup || Di(t)]|<)] < o (2.43)
t€[0,71] [p|<4 [p|<3

Therefore, using the energy estimate (2.4), it follows that

sup Enci () S eo-
t€[07T1]
As a consequence, if the solution u satisfies the bound (2.38) on some interval [0, T1], then it has to satisfy
the stronger bound

sup ||u(t)|| ymo+1 + sup la(t)| g S go-
te[0,T4] " te[0,Ty] "

Therefore the solution can be extended globally, and the desired bound (1.11) follows using also (2.43).
This completes the proof of Theorem 1.1.

2.4. Proof of Theorem 1.3. As before, Theorem 1.3 is a consequence of Proposition 2.2, Proposition
2.4, and Proposition 2.5. Indeed, assume that we start with data (ng,vo, Eo, Bo) as in (1.14), where
is taken sufficiently small. Using Proposition 2.2 there is 73 > 1 and a unique solution (n,v, E, B) €
C([0,T1] : HNoH1) of the system (2.10), with (n(0), v(0), E(0), B(0)) = (no, vo, Eo, Bo),

n(t) = —div(E)(t), B(t) = (V x v)(t), t €0,T1], (2.44)
and
Sup (n(t), v(t), E(E), B)|| gosr < €3 *. (2.45)

Given the restriction (2.44), the system (2.10) can be written in an equivalent way, in terms only of the
vectors v and F,

3 3
at’Uj = —Ej + ZT@jakEk — kaaj’uk,

k=1 k=1
3 3
OE; = v;— PAv; + Y Do — Y 00k By, (2.46)
k=1 k=1
3 3
n=— ZakEk, Bj = Z Skl 8k'Ul~
k=1 k=1

Let
Uy := M|V 7L div(E) + i V[t div(v),

v o (2.47)
Uy := A | V| eurl(E) + 4| V|~ curl(v),
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where
A1 =V 1-— TA, AQ =\ 1— C2A.
Then Uy, Us € C([0,T1] : HN°) and

div(E) = ATYVIRUL),  cwrl(E) = Ao|V|(RU2),  div(v) = [V|(SUY),  curl(v) = |V|(SU2),

3 3
v = _Rj(SUl) + Z Ejmn (Rm(c\\‘Uln))a Ej = _RjAl_l(%Ul) + Z Cjmn (A2Rm(§RU2,n))~
m,n=1 m,n=1

(2.48)
Using these definitions we calculate
(9 + A1) Uz = iA2IV| "L (div(E)) — As| V| (div(v))
3

+ M|V [div(e) = D 0500k Ex)] + VT [(-1+ TA)(div(E)) - %A(|v|2)]
jk=1
3 i 3
=— Z AR (v;div(E)) + 5 Z VI(v7),

and

(at+iA2)U2,j=z'|V|—1[ 23: Ejmn 6mEn] —Ag\vrl[ 23: € jmn amvn}

m,n=1 m,n=1

3 3
+A2‘1|V|*1[ Y €jomn am[(lfczA)vn—vndiv(E)” 4|V|fl[ S Cimn OmEn

m,n=1 m,n=1

3
== > €jmn Ay Ry [vndiv(E)].

m,n=1
Using the formulas in (2.48), it is easy to see that the functions Uy, Us ;, j € {1,2,3} satisfy the system
of equations

(at+iA1)U1 =M, (0t+z’A2)U2,j :NQJ‘, j € {1,2,3},
where the nonlinearities NV 1,]\/2, j can be expressed in terms of the functions Uy, Uy ; as in (2.31). Therefore
we can apply the results in Proposition 2.4 and Proposition (2.5).

We can now proceed as in the previous subsection. Using the definition (2.47) and Lemma 5.1, it
follows that Uy, Us € C([0, T3] : HY0) and

P (Tl + [1T2Ollvo) Seo/'s 101O)]]z2 + [U2(0)]]2 S o- (2.49)
te€|0,T1
Let Ty denote the largest number in (0, 73] with the property that
sup [ MU ()2 + [l Ve ()]l2] < 5.
te[0,T%)
Such a Ty € (0,T1] exists, in view of (2.49) and Proposition 2.4. We apply now Proposition 2.5 on the
intervals [0,75(1 — 1/n)], n = 2,3, ..., with §; ~ 53/4. It follows that

sup [l U (1)]z + [l Uz (1) 2] S <o
te[0,Ts)
Using again Proposition 2.4 it follows that T = T} and

sup [[le" Uy (1)) 2 + [l Uz ()] 2] < eo- (2.50)
T

tel0,Ty
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Using the formulas in the second line of (2.48), and the bounds (2.50) and (5.18) it follows that

sup sup [(1+ )" (|D?v(t)||L= + |IDPE®)| )] S co. (2.51)
te[0,T1] |p|<4

Recalling the definition (2.8) and the restriction (2.44), it follows that

sup [(1+1)"*7)|(n, v, B, B)(t)]| 2] < €o-
t€[0,T1]
Therefore, using the energy estimate (2.11), it follows that
sup  Eng+1(t) < €o-
t€[0,T1]

As a consequence, if the solution (n,v, E, B) satisfies the bound (2.45) on some interval [0,7}], then it
has to satisfy the stronger bound
sup [|(n(t), v(t), E(t), B(t))ll gvo+1 < €0-
te[0,T1]
Therefore the solution can be extended globally, and the desired bound (1.16) follows using also (2.51).
This completes the proof of Theorem 1.3.

3. PROOF OF PROPOSITION 2.4

In this section we prove Proposition 2.4. For simplicity of notation, in this section we let C denote
constants that may depend only on Ty, sup,c(1,... 4} l|ettode U, (to)]| z, SUP,¢q1,...,d} SUPte[0,Ty] U ()| 3o s
and the basic constant A,d,d’.

For any integer J > 0 and f € H° we define

,,,,,

.

min —25) 1 ~(k
1£llz, = sup 2mO27=20)g0 (@) - Pof(a)| s, (3.1)
(k,j)ed
compare with Definition 2.3, and notice that
1fllzy < W fllz,  Wfllzy So e
We will show that if ¢ < t' € [0, To] N [to, to + 1] and J € Z4 then
sup [N, (1) — U (1)l z, < O (14 sup  sup [0, ()2, (32)
oe{l,...,d} se(t,t’] oe{l,...,d}

Assuming (3.2), it follows easily that

sup sup [N U,(b)]|z, < C,
oe{l,...,d} t€[0,T]N[to,to+T7]
e XU, (') — ™™ Uy (t)]|z, < C|t' — ], for any t,t' € [0,T] N [to,to + 7], 0 € {1,...,d},

uniformly in J, provided that 7 < C1 s sufficiently small. The desired conclusions follow by letting
J — o0.
It remains to prove (3.2). The equations (2.32) and (2.31) give

(01 +ihg () Tpr () = Y / (&)U (€ = 1.)0, (0.) d, (3.3)

W,vELy
foroc=1,...,d. Letting
Vor(t) =™ U, (t), Vo (t):=e U, (t)=V,.(t), o=1,....d,

and

Asy = +A,, Ao = —A,, oc=1,...,d,
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the equations (3.3) are equivalent to

d
L€ 0) Z/ (A =RuEm Ry (6 )T (€ — 0, )T (1, ) diy.

dt
w,vEly
Therefore, for any t <t' € [0,Tp] and 0 =1,...,d,

et -Vnen= Y / /]R3 (Ao O =Ru(€m=Re Oy (& V(€ — m, 5)Vi (), 5) dipdls

w,vely

(3.4)
> / Q™ (Vi(s), V5))ds,
w, €Ly
where
FIQT* (f,9)I(§) = /RS et O A (Emm =Ml L (€,m) F(E = m)G(n) dn. (3.5)
The desired bound (3.2) is equivalent to proving that
sup |[Vor () = Vor (8)llz, < Clt' = #/(1 + sup Sup IIVa+(8)HzJ)2-
oe{l,...,d} seft,t’] oe{l,...,
Using the formulas (3.4)—(3.5) and Definition 2.3, it suffices to prove the unlform bound
min —25) 1 =(k oip,V ~
2min(027 =20 5. PQT (Vu(s), Vi) gz, < CU+  sup [Vor(s)]12,)%, (3.6)

oe{l,...,d}

for any fixed (k,j) € J, s €10,Tp), 0 € {1,...,d}, and p,v € I.
Using just the definition (3.5) we estimate easily the L part of the B1 - norm: if k£ < 0 then

IF[PLQI (Viu(5), Vi ()] || 1o S 1L+ 10D Vi) )22 11 + [0 Vi () () 2 < C.
Similarly, if £ > 0 then
28| F [P (Vi) Vi ()] | e

§215’“[||f[P§kV( S 22 1 F Pk—a o4 Vo ()| 22 + 1 F[Ph—a bty V()| 22 | FIP<i Vi (9] 22

+ S U+ 2P V() e - (14 22) | P Vi) 1
|k1—ko|<4, k1 >k—6

<C.
Therefore, letting B := 1+ sup,eqy,. a3 [Vo+(s)] z,, for (3.6) it remains to prove the uniform bound
uin(0:2721) (g 1. 9Ok (L0 G6) . P QT (1, (5), Vi (5)) 12 < OB, (37)

for any fixed (k,j) € J, s € [0,Tp], 0 € {1,...,d}, and pu,v € Z.
The desired L? bound (3.7) follows easily from the L> bounds proved earlier unless

j > C + max(20k, —5k/4). (3.8)
Decomposing
(5)= D Pu(Vu(s)),  Vils) = D Pr(Vi(s))
k1 E€Z ko €Z
for (3.7) it suffices to prove that
gnin(O2072) (0 49 0TS T B PQT (P, Viu(s), iy Va(9) 12 < OB, (3.9)
(k1,k2)EX)

for any fixed (k,j) € J satisfying (3.8), s € [0,Tp], 0 € {1,...,d}, and u,v € Z,.
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Using first the simple bound
IFIPQT™™ (P, Viu(s), PraVa(8)] | 2
< (14 200k ) min || P, Via(s) 22 | P Vo (9) 21, | Pes Vi ()l 22 P Vi (5) 2]
S (1 2k g mintn k) /2| B () |12 | P Vo (9) 2
we estimate
(2% + 210021405 3 | PeQSH (P, Vi(s), Py Vi)l 2 < C,
(k1,k2)EXk, min(kq,k2)<—45/5

and

(20% 4 9108)201+9)) 3 |PeQT (P, Vi(5), P Vi () 12 < €
(k1,k2)EX), max(k1,k2)>3/20

Therefore, for (3.9) it suffices to prove the uniform bound
2min(0,2J72j)(2o¢k + 210k)2(1+ﬁ)j Z
(k1 Je2) €&y, —47 /5< k1 <ha <j/20 (3.10)
157 PQg™ (P, Viu(s), Py Vo (8))l| 2 < OB,

for any fixed (k,7) € J satisfying (3.8), s € [0,Tp], o € {1,...,d}, and p,v € Z,.
To prove (3.10) we further decompose

~(k
PuVis)= Y Pucowsal@ PVl = Y. Prycoms2(9ki),
ji1>max(—kq,0) j1>max(—k1,0)
~(k
PuVi(s)= Y Praziral@n? P = Y Prazinsa (Gr)-
j2>max(—k2,0) j2>max(—k2,0)

Then we rewrite, using the definitions,
Png;MV(P[kl—?Jﬁ-FQ] (gkhjl)’ P[k2—2,k2+2] (ng,jQ))(l') = /\3 5 K(:L’, Y1, y2)gk1,j1 (yl)gk27j2 (yQ) dyldy2>
R3 xR
where
K(x,y1,12) :==C eil@=y1)-E+(y1—yz2) 1] is[Ae (€)= Au(E=m)—Au (0)]
R3 xR3
X mo;u,u(f,ﬁ)ﬁﬂ[kl—zkﬁz] (= 77)‘P[k272,k2+2] (n)wk(f) dgdn.
Recall that k, k1, ko € [—45/5,7/20] and j > C. Therefore we can integrate by parts in & or 1 to conclude
that
if |2 — y1| + |1 — 2| > 27710 then |K(z,y1,92)| < C(lz — y1] + |yr — v2])

Therefore, the contributions of the functions gy, ;, and gx, j, corresponding to |j1 — j| + |j2 — j| > 10 are
easily bounded,

(k1,k2)EXY, —45/5<k1,k2<7/20
~(k - HTR% ~
> 1B - PeQT# (P 2,1, 421 (Gt ) Prca—2.ka421 (koo 1 22 < C.

[71=31+]j2—3j|>10
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Finally, for (3.10) it remains to prove the uniform bound

2min(0,2J—2j)<2ak + 210k)2(1+5)j Z
(k1,k2)EXk, —4j/5<k1<ka<j/20

| PeQ7*Y (Piey —2, 1 +2) (91 1 )> Pika—2,k2+2) (Gka o)) | 22 < C B,

(3.11)

for any fixed (k, j) € J satisfying (3.8), j1,j2 € [j — 10,5 4+ 10], s € [0, To], 0 € {1,...,d}, and u,v € Z,.

Using the definition (3.1),

Hgkl,h ||Bk1 i1 + Hgkzdz ||Bk2 o~ S B2 min(0,27-27)

for any k1, ke € [—44/5,7/20] and ji1,j2 € [j — 10, j + 10]. Therefore, using (2.26),
IF (P 2y +2) (9112 ) | o S B2TRO2T720) . (90ks 4 910k =hgdha 2p= (140,

Since B
Gz 2 |2 < C(1 4 282) N0

we can estimate, for k1 < ko € [—45/5,7/20] and j1, jo € [j — 10,5 + 10],
[ Pe@S " (Pliey —2,k+2) (9k1,51) s Plia—2,k5+2] (Iha gz ) | 22
< (2% + DI F (P, —2,6042) (9050 20 I1F (Plig 2,k 121 (982 2) | L2
< 5«327min(0,2‘]72j) . (2ak1 4 210k1)*123k1/227(1+ﬁ)]‘ . (1 4 2k2)7(N071).
Therefore the left-hand side of (3.11) is dominated by
(2ak 4 210k) Z 5B(2akl 4 210]@1)7123]61/2(1 4 2]62)7(1\/'071) < 687
(k1,k2)EXy, k1 <k>

as desired. This completes the proof of the proposition.

4. PROOF OF PROPOSITION 2.5

In this section we prove Proposition 2.5, in several stages. We derive first several new formulas

describing the solutions U, .

4.1. Renormalizations. We will use the definition and the notation introduced in subsection 2.2. The

equations (2.35) and (2.31) give

[0 + iAo ()] Uss (E,1) = / Moy (&)U (€ = 0, )T, (0, 1) d,
w,vELy

for o =1,...,d. Letting
Vcr+ (t) = eitAU Ua+ (t), Vcrf (t) = eiitAa Uaf(t) = VJJr (t)v g = 1a ceey da

and N N
Aoy = +A,, Ao = —A,, oc=1,...,d,

the equations (4.1) are equivalent to
d i
ZVor (6] = / A O Rulemm=Re i (€ m)V(€ — 0, 8)Vy (0, 8) .
w,vELy

Therefore, for any t € [0,Tp] and 0 =1,...,d,

V) -0 = Y / /R ARl R (& )T (€~ )T, O, 5) dids.

w,vELy

(4.1)
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The desired bound (2.37) is equivalent to proving that
Vo (t) = Vour (0)]1 2 S 67, (4.4)

for any ¢t € [0,Tp] and any o € {1,...,d}. Given t € [0,Tp], we fix a suitable decomposition of the
function 1y 4, i.e. we fix functions qo,...,qr41 : R — [0,1], |L —log,(2 4 )| < 2, with the properties

L+1
> as) =1pg(s),  suppgo € [0,2],  suppqr1 C[t—2,,  suppgm C [27"7 12",
m=0 (45)

t
qm € C1(R) and / lg,(s)|ds <1 form=1,...,L.
0
Recall the assumption m,,,, € Mg and the definition (2.16). Using also Lemma 5.1 and the formula
(4.3), for (4.4) it suffices to prove the following proposition.

Proposition 4.1. Assume t € [0,To] is fized and define the functions g, as in (4.5). For any o €
{1,...,d}, p,v € Iy we define the bilinear operators TZH" by

FITe(£.0))(©) = [ [ @Ml =Bty (o). fle — . )50, ) duds. (46)
R3
Assume that
fu= (SleuVm for some normalized Calderon—Zygmund operator Q,, (4.7)
for any p € Iy, and decompose
Y Y P mg— X I 3
k'€Z j'>max(—k’,0) (k',3")eT
Then
k k (k) Ty v —B*m
Z (1+2 1+2 : H PT Y (fli}’1,j1’fk2,j2)”Bk,j§2 7 (49>
(k1,51),(k2,j2)€T

for any fixed
ce{l,....d}, pvely (kjeJ, me{0,...,L+1}, (4.10)

It follows from the definition that

ToHY (f,g) = / 4 ()T (f(5), g(s)) ds,
R
FITomw (1, )] (€) = /W ¢l O —Ru(Em=Ru ] . (¢ _ ) () .

For o € {1,...,d} and u,v € T4, we define the smooth functions ®7#¥ : R3 x R® — R and Z*" :
R3 x R3 — R3,
T (E,n) 1= A () — A€ —m) — Au(m),  EV(Em) = (V,@7H) (€, n). (4.12)

Many of the bounds needed in the proof of of Proposition 4.1 rely on having a good understanding of the
functions ®7#¥ and =Y. The relevant properties are proved in subsection 5.2.
In view of Lemma 5.1 and the main hypothesis (2.36), we have

sup || fu(®)llgronz S 1. (4.13)
te[0,To)

for functions f,, defined as in (4.6). Letting
Effy (s) = e "M fl 1 (s), (4.14)

(4.11)
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it follows from Lemma 5.2 that for any p € Z; and s € [0, Tp],

Yo B Sz + 15 (s)llz2) S min2m o7 DE, 20+870k),
j'>max(—k’,0)

Yo B ()]s S min(@7 2072707k (1 4 gy 71, (4.15)
j'>max(—k’,0)

cew | DLFE (& 9)] Sjop (2% 4210871 27 (/22O gleld”,
€

Sometimes, we will also need the more precise bound
NEF (e + 1L (s)llze S 20F +210)71220K9=0-)3"  for any (K, ') € J. (4.16)

In addition to the bounds (4.13)-(4.16), we will also need bounds on the derivatives (9sf1, ;/)(s), in
order to be able to integrate by parts in s. More precisely:

Lemma 4.2. (i) With f}, ;,(s) as in (4.7) and (4.8), for any s € [0, To], p € Zq, and (K',5') € T,
1@t 30} ()12 S min[(1+5)~17F, 27/2] - min[1, 27 (Mo =), (4.17)
(it) In addition, for any p € Iy, (K',j') € J with k' € [-D/2,3D/2], and s € [0,Ty),
1@ )= S (14 8)71 7010, (4.18)

Proof of Lemma 4.2. (i) We may assume that u = (o+) for some o € {1,...,d}, and use formula (4.2).
It follows that

[ (05 fk”+>)(s)||L2§5;1 > Hw(&) /R ) e~ Rl (€ V(€ — 1, $)Va(n, s

V€LY

oY e / e A (6 ) P Vi€ = 0. ) P Vi)
R

w,vEeLy (kl,k:Q)eXk/

(4.19)
The main assumption (2.36) shows that
V() zamro < 61,
for any s € [0,¢] and p € Zy4. Therefore, using (5.17)—(5.18),
||Pk” ( )HLz < (51 m1n(2(1+ﬁ_a)k” 2_N0k”),
(4.20)

||e*ZSAﬂPk~ w(8)||lLe S 01 mln(Q(l/2 p—a)k /,2*6’“”)(1—5-5)*176,

for any s € [0,Tp], 1 € Zy, and k" € Z.
Using (4.19), (4.20), and the definition of the space My in (2.16),

1D £ ) (5)]| 2

5 61 Z min(2(1+[3—a)k‘2,2—(N0—2)k‘2) . min(2(1/2—[3—0¢)k‘1,2—6k1)(1 + S)—l—ﬁ
(kl,k}Q)eXk/,klgk)Q

< (14 )" P min(1,2-No=5K),
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Moreover, if k' < 0, then we can estimate, using again (4.19), (4.20), and the definition (2.16),
1@ 1738 2
< 5— Z Z 23k /QH/]R3 *ZS[A (&— 7,)+A (W)]m ,ul/(gv )Pk1 (5 n,s )Pk2v n,8

V€L (k1,ka)EX,,

< 5123k /2 Z min(2(1+ﬂ—a)k1 , 2—(N0—2)k1) . min(2(1+ﬁ_a)k2,2_(N0_2)k2)
(k1,k2)€X),
< 23]6//2.

The desired bound (4.17) follows.
To prove (ii) it suffices to prove that
105 Per Vi) (8) | e S 81(1 + 5) 712710,
Using (4.2) it suffices to prove that

\m/(é) /R et ORI R i (€M) Via(€ = 1, )V (1, 8) di| S 011+ ) 71PN,

for any £ € R3, p,v € Ty, 0 € {1,...,d}, and s € [0,Tp]. Recall that ||V, (s)||znm~e S 01, see (2.36).

Using the definition of the space Mgy in (2.16) and Lemma 5.1, it suffices to prove that if
911l zarr~o + 192l zamrmo <1, (4.21)

and we decompose
. . ~(k; .
Z g}zc“]” ngC‘L7J7, = P[ki727ki+2] (80‘57 ) . Pk,,g’b)a 1= 17 2,
(ki,gi)ed
then

Z 2max(k1,k2)

(k1,J1),(k2,J2)€T

—

i (€) /RS e ©O-Rulem=Ael gl = (¢ —yg2 () d| < (14 5)1 0,

(4.22)

for any £ € R3, p,v € Iy, 0 € {1,...,d}, s€ R, and k¥’ € ZN[-D/2,3D/2].
We use first only the L? bounds

||9k1 J1||L2 mm(2—1\701~c172(2B—a)7€72—(1—6)j1)7 ||9k2 J2HL2 min(2°~ Nokz 2(2ﬁ a)kz2 (1— )Jz)7 (4.23)
see (4.21) and (5.13), and estimate easily

Z 2max(k1,k2)

((kl’j1)7(k2:j2))€Jl

where

J1 = {((ky, j1), (k2,52)) € T x T+ (k1 ko) € Xy, 2mxk2) > (1 4 5)2/No op gmax(id) > (1 4 5)1 40}
Also, the full bound (4.22) follows easily if s < 20°. We let

Jo = {((k1,71), (ka,72)) € T X T : (k1, ko) € Xy, 2m8x(kka) < (14 5)2/No gpd gmax(idz) < (14 5)1F45)
and notice that Jy has at most C'In(2 + s)* elements. Therefore, for (4.22) it suffices to prove that

—_—

1 (€) /Rg e @=huEmm=Relgl = (& —n)g?, 1, () dn| S (145717010,

‘(bk'(f)/ t5[8a (§)=Au(E=n)—Au (n)] 11,;1(5 n)gkz’”( )dn Sz—maX(kl,kg)S—l—ﬁ/fJ, (4.24)

forany £ € R3, p,v € Iy, 0 € {1,...,d}, s > 2D? k' e ZN[-D/2,3D/2], and any ((k1,j1), (k2,j2)) € Jo.
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Without loss of generality, in proving (4.24) we may assume that j; < jo. Assume first that
272 > 97D (1 4 5)1-0/6, (4.25)
Then, using (2.23), (2.26) and the assumption (4.21), we have

||9;32/\]-2||L1 < 27(1+B)j223k2/2(2ak2 4 210kz)—1,

Using (5.14), ||g,11/71 Lo < 2k1/2, Using also (4.23) we estimate the left-hand side of (4.24) by

Cmin(llgy, j, I=llg7, s, lle0, gk, g ez ll92, 5, llz2) S min(2~F/227 (D% gh(4izay=1=0i)

< 9= (+5/3)5z
The desired bound (4.24) follows if we assume (4.25).
Finally it remains to prove (4.24) assuming that
G < g, 202 < 27D (1 4 5)1 R/, (4.26)
In this case we would like to integrate by parts in 7 to estimate the integral in (4.24). Let
K=(1+s)" [2ﬂ‘2 +(1+ sﬂ L 0=K(1+s)!, e=min(27%, (1+s)"1/2).
Recalling the definition (4.12), using the bounds (5.27) and (5.14),

‘ /R3[1 — p<o(671ER (&, m)) e e Q= AulEmm=Aumlgh (¢ —pyg2 . (n) dn’ S+ (427)

Moreover, using (5.58) (since ¥’ > —D/2, the last formula in (5.30) shows that the integral below is
nontrivial only if min(ky, k2) > —D)

‘d)k’ Q) /3 (pSO(CSflEH,V(g, n))eis[l\a(5)*/\#(5*77)7A,/(77)]gé1’jl (€ — n)giQJé (n) dn’
R (4.28)

S [ Yocommstnmrgn = 7 (©)lak,, € = w16, , ()] dn.
Using (2.23), (2.25), and (4.21), and recalling that we may assume that min(k;, k2) > —D, we have

||1[0,CQ4 max(kl,kz)é] (77 - pu’u(f)) ' g]%%]é (/'/])HL}7
< (2ak2 + 2101@)4 min [27(1%)]‘2 . §3/290 max(kikz) 53912 max(k k)

10kq

Using (5.14) , we have ||g; ; 1= S 27 Therefore, we may estimate the right-hand side of (4.28) by

Cmin(Z_(Hﬁ)h/@?’/Q, 22 max(kl’kZ)(Sg) < (14s5)717,
The desired bound (4.24) follows, using also (4.27) and the definition of the set J. O

4.2. Proof of Proposition 4.1. We will prove the key bound (4.9) in several steps. The main ingredients
in the proof are the estimates (4.13)—(4.17) above.

This proof constitutes the heart of the analysis. We proceed in three different times. Decomposing the
solutions into atoms decomposes each interaction into a myriad of different “elementary interactions”.
The purpose of the first simplification is to get rid of most of the easier cases so as to only focus on the
fewer that really affect the outcome. This reduces matters to proving Proposition 4.5 below, after which
it suffices to bound each iteration independently in a uniform way, see (4.39). In a second time, we reduce
matters further to the core of the difficulty in Proposition 4.11. This is done in Lemma 4.6, Lemma 4.7
and Lemma 4.8 by using in various ways the finite speed of propagation which morally forces the time to
be the largest parameter in all the relevant interactions, and in Lemma 4.9 and Lemma 4.10 which use
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the absence of (time) resonances at (0,0) or at infinity provided by the first condition in (1.8). The proof
of Proposition 4.11 is harder and we postpone an explanation of its ingredients to after its statement.

In this subsection we start by considering some of the easier cases, and reduce matters to proving
Proposition 4.5 below. In all the cases analyzed in this subsection we can in fact control the stronger
norm B,i’j, see Definition 2.3, instead of the required B ; norm.

Lemma 4.3. With D = D(d, A,d’) sufficiently large as in subsection 2.2, the estimate

Do Q2 E BT o ) gy, 277 (4.20)
(k1,51),(k2,52)€T 7

holds if
j < Bm/2+ Njky + D?, where N := 2N,y /3 — 10. (4.30)

Proof of Lemma 4.3. We observe that, in view of Definition 2.3,
18 Pihlls,,, S (2% +20%) - 24/220/20K) 500 . pn| . (431)
Therefore, it suffices to prove that

S (28 ok (20k 4 200N 290 2R prer (gt gy |, S 27 (4.32)
(k1,91),(k2,j2)€T

Recalling the definition (4.14), it is easy to see that

FIRTZ (1l 50 S ) O = [ [ on(@ ™ O (BT, (€ = .5) BT, . 5) dnds.
Therefore, using (5.24),
| PeTit " (ff 51 Finga) || 12
Smin ([ an(ELE 5 No| EF 59l a5, [ g IS, (i IBFE, 1, (5) 2 )
Therefore, using (4.15) and recalling the properties of the functions g, (see (4.5)),

> (1428 4 2) || BT (fL o f )|l e S 27 (Nom ke =0m, (4.34)
(klka)EXk) (khjl)»(kZ;jZ)eJ
It follows that the left-hand side of (4.32) is dominated by
2—ﬁm2(1/2—ﬁ+(x)k23j/2

(4.33)

when k£ < 0, and by
9—(No—15)kg—Bmo3; /2

when k > 0. The bound (4.32) follows if j < fm/2 + (2No/3 — 10)k; + D?, as desired. O

Lemma 4.4. Assume that
j > Bm/2+ Njky + D?. (4.35)
Then, with the same notation as before,

~(k o,V v - 4m
> (U254 2| B0 - BT (ff, 5 S gy <277 (436)
(k1,J1),(k2,J2) €T, max(ki,k2)>5/N} 7

1 k) TR —p*
> (28 2 [ BTG S gy, S27 (480
(kl,jl),(kg,jg)ej,min(kl,k2)§710g
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and
~(k oLV L v —B*m
Z (1+ M + 2k2)||<‘0; ) BT (fllﬂlyjl’fk%jz)HB,i_j 52 s (4.38)
(k1,41),(k2,j2) €T, max(j1,j2) =105 '
Proof of Lemma 4.4. Notice that if (ki, ks) € Xk, max(ky,k2) > j/N§, and j > Nk + D? (see (4.35))
then |k — k2| < 4. Therefore, using (4.31), (4.15), and (4.33), left-hand side of (4.36) is dominated by
max(ki,k2, k k j -3k T,V L v
Z gmax( 0)(2a + 210 )231/22(1/2 B) HPkTm“ ( llcl,jpsz,jz)HLz
(k1,91),(k2,52) €T, max(k1,k2)>3/Ng
< 9=Pmg—Noj/(2No/3-10) _ (gak | 210k)23j/22(1/2—5)%’

which clearly suffices, in view of (4.35). Similarly, the left-hand side of (4.37) is dominated by
> (1+ 28 25220k 4 210%) . g0/ 290 200K || ppiew (gl L fe )]

(k1,41),(k2,j2) €T, min(ky,k2) <—10j
< 9—Bmg=3j . (Qak + 210k)23j/22(1/27ﬁ)7€7
which clearly suffices. Finally, using the more precise bound (4.16), the left-hand side of (4.38) is domi-
nated by

Z (1 + 2k1 + 2k2)(2ak + 210k) . 23j/22(1/2_5)k||PkTri;M7V(f£17jlakaQ’j2)HL2
(k1,51),(k2,j2) €T, max(j1,j2)>10;
< 9—Bmg-3j . (2ak + 210k)23j/22(1/27,8)‘15’
which clearly suffices. O

We examine the conclusions of Lemma 4.3 and Lemma 4.4, and notice that Proposition 4.1 follows
from Proposition 4.5 below.

Proposition 4.5. With the same notation as in Proposition 4.1, we have

~ TR v —B*(m+j
(142 4+ 2) |35 - Pz (£l fl )|, S 27709, (4.39)
for any fived p,v € Zg, (k,j), (k1,41), (k2,J2) € T, and m € [0, L + 1] N Z, satisfying
j > Bm/2+ N}k, + D?, —105 < ki, ko < j/N§, max(j1,j2) < 107. (4.40)

4.3. Proof of Proposition 4.5. In this subsection we will show that proving Proposition 4.5 can be
further reduced to proving Proposition 4.11 below. The arguments are more complicated than before,
and we need to examine our bilinear operators more carefully; however, in all cases discussed in this
subsection we can still control the stronger B,a ; norms.

We notice that we are looking to prove the bound (4.39) for fized k, j, k1, j1, k2, j2, m. We will consider
several cases, depending on the relative sizes of these parameters.

Lemma 4.6. The bound (4.39) holds provided that (4.40) holds and, in addition,
§ > max(m + max(ky, k2) + D, —k(1 + %) + D). (4.41)
Proof of Lemma 4.6. Using definition (2.20), it suffices to prove that
(L 20  28) (2% 4 210%) oD G0 perzien (7 50 s
F(1+ ok1 4 2k2)(2ak n 210k) ) 2(1/27,6’)'15H]_—[6§k) ‘PkTﬁ{’”’V(f;iﬁ ’jl,f£27j2)]HLm < 9—B*(m+j)
Assume first that

(4.42)

min(j1, j2) < (1 - 6%);. (4.43)
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By symmetry, we may assume that j; < (1 — 32)j and write
! k (o4 1% 1%
B (@) - PI (S 500 I i) (@)
~(k s o
=5 @ / / /R (e SN O ulem R g (5) - FL (€~ ms) Y, 3, (n. ) dydsde.

We examine the integral in £ in the formula above. We recall the assumptions (4.40), (4.41), and (4.43),
and the last bound in (4.15). Notice that, using only the assumption (4.41) and the definition (2.29),

[Velo- €+ slAa(©) = Rul€ = m) = o] | = lal = 5| Vel (€) = Rul¢ = m)][ 2 271,
as long as |£] + & — | < 2max(kuk2)+10 We apply Lemma 5.4 (with K ~ 27, € ~ 2771) to conclude that

k o "’k
50 (@) - PTG (fE e ) (@)] S 2719150 (),

and the desired bounds (4.42) follow easily.
Assume now that

min(jq,j2) > (1 — 62) (4.44)

By symmetry, we may assume that ky < ko. We prove first the bound on the second term in the left-hand
side of (4.42): using (4.16) we estimate

(125 + 20)(20% 4 210%) 92O (G0 pereme gy e

5 (2k2 + 1)(2ak + 210k)2(1/2*ﬁ)k .om o Sulp2 . Hf/l:17j1 (S)HLz ||f,?27j2 (5)||L2
Se m— s m

< (2k2 4 1)(20F + 210k)2(1/2—5)%2j—5 (2% 4 2101@1)—12257672—(1—@3'1 (292 4 2101@2)—122@7@‘;2—(1—5)]'2
< (2k2 4 1)2j2*(1/2+6)@§ -9k in (AR 9= (1=B-5%)7)  9=(1—-6-5")j

This suffices to prove the desired bound in (4.42), as it can be easily seen by considering the cases k; < —j
and k?1 > —j.

Some more care is needed to prove the bound on the first term in the left-hand side of (4.42). We
recall that

v ~(k
fk1 NI kl 2 k1+2](90§1 Pklflt) and sz,j2 = P[k2—2,k2+2]((p§'22) ! Pkgflf)'
Since ||<,0]1 Py fu(3)| By, 5, + ||g5§§2 Py fu(3)| By, ;, S 1, see (4.13), we use (2.23)—(2.26) to decompose
B - Pafuls) = (2 4+ 219 g () + B, (5],

_ ~(k1) _ ~(k1)
gklyjl(s) _gkl,jl( ) (p[hl 2,51+2]° hgl»jl( ) hgl Jl( ) (‘0[47‘11—27.7’1-&-2]’

_ — (4.45)
2+ ght ()] 2 + 2072 Pks gl (5)[| e S 1,
920K 9( =it |[Bfe  (s)|| 2 + 202 OR R ()| e + 2075750 B ()| S 1,
and
PN Pry fo(s) = (20%2 4 21%2) "V [gr () + hY, 5, (s)],
Ohoia(®) = 005 (8) B ey Mhaa(9) = M (9) - B (4.46)

24032 g (512 + 2072 PR gE > ()| S 1,

22RO g, (e + 2072 B (5) e + 20707 (s) 1 S 1
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Using these decompositions and recalling the definition (4.11), to prove the desired bound on the first
term in the left-hand side of (4.42), it suffices to prove that for any s € [2m~1, 2m+1]

(1 + 2k1 4 2k2)(2ak + 210k)2(1+ﬁ)j . (2ak1 + 210]@1)71(204162 4 210]62)712777,

~—

~(k g
[ng ). P (P, —2,k,+2) gk1 g1\ Py -2,k 121 gkzdz(s) HL2

|\ - BT (4.47)

Py —2,k,+2) gk1 gi\S Pliy—2,k542) hkzuz (s HL2

I,
I,2] S 278,

N — —

( (s),

( (5), )
+| ~§'k) - Pkff;#’y(P[klfz,kﬁz ks (85 Plka—2,ka+21915,52 ()

( (s),

(k)

|25 - BT (P, —2,ky 21, i, (8), Plig—2, k02107 4, (5)

Recall that we assumed k; < ks; therefore we may also assume that k < ko + 4. Using (4.45)—(4.46)
and recalling (4.44), we estimate

| PeTy# (P, —2,00 42195, 5, (8)s Plka—2.k0+21985 s (D) 12 S IF(Piky —2.60 42195, 5 ()21 197, 52 (9] 22
< 93k1/29—(148)j19—(1+5)j2

< 93k1/29=(24+28)1-5%)3

||PkTg PV (Priy =2,k +21 P 51 (8)s Pikg—2,k0 421785 55 ()] 12 S ||hk1 g Geallhg, 5, (922
< 9= 2(5/2—5-[3—'7)?{2—(1—5)&2%5

< 9(3/2-20)k1928k2 9= (2420) (1-6%);

|{PkTsUW’V(P[k1—2,k1+2]hzl,j1 (8)s Pliy—2,k+2)9hy 55 (8 HLz S ||h;.31,]1 sz llgy, 4, ()l L2
< 9=7319(5/24+B—7)k19—(14+8)jz2

< 93k1/29-(2+28)(1-5%)j
and
HPkTg;“’y(P[kl—z,k1+2]9fj1,j1 (s), Py, o, k2+2]hzz,j2(s))HL2

< min (25172 gl (s )|\L2||hk2,j2( ez, gk, 5, (s )||L2Hhk2,32( s)llzt)
< 9= (14871 min (2—(1— )J2223’€223kl/27 2—’Yj22(5/2+[3—’7)k2)

< 2 (R 9= (148)5298k2/2 iy (9282 tk2) 93(k1 —k2) /2 9(146-7) (2 th2))
< 9~ (2+26)(1-0%)j93k1/493k2 /4

Therefore, since 2™ < 29*2 and (20% 4210%)(2ak2 4-910k2)=1 < 1 the left-hand side of (4.47) is dominated
by

1+ ok1 | 2k2)2(1+ﬂ)j . (2ak1 + 210k1) lgj— ko .9~ (2+2p8)(1— B2)j (23k1/2 23k1/423'1$;/4)
S 27239k 1),
which suffices since 2F2 < 29/ No. This completes the proof of the lemma. O
Lemma 4.7. The bound (4.39) holds provided that (4.40) holds and, in addition,
m + max(ky, k2) + D < j < —k(1+ %) + D. (4.48)
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Proof of Lemma 4.7. In view of the restrictions (4.48) and (4.40), we may assume that k < —D?/2.
Using the definition, it is easy to see that

||<Z§k)  Pyhls,, S (2°% + 210%)20405 9352 B .
Therefore, it suffices to prove that

(1428 4 ghe)goko(tMigah/2| Fppowy(frt o fr ||, S 270 0m ), (4.49)

[0 ~

Recall the definition
FRTG (ffy o F )€ = 00l©) [ [ e €0 () (€ =) L () s, (450)

where B B
7€) = A (§) = Au(€ —n) — Au(n). (4.51)
Using (4.16) and recalling that o < 23, it follows that

| FPTy " (ff oo frwi) || e 5/Rqm(S)llf;i‘l,jl(8)||L2||f;’§2,j2($)\|L2 ds

< ”quLl(R)(2ak1 T 210k1)7122ﬁﬁ27(17ﬂ)j1 ) (2ak2 + 2101@)7122@227(175)]@
< Nl @m || 1 ) min(1, 275%1)27 (A=A  pin (1, 275k2 )2~ (1=A)2,
Recalling the definitions (2.17) and the assumptions, the desired bound (4.49) follows if
m=L+1 or m<(1-p)(1+j2)— (1/2 - Pk
It remains to prove the bound (4.49) in the case
me[l,L]NZ and m > —(1/2 - Bk + (1 — B)(j1 + j2). (4.52)

Since j1 +k1 > 0, jo+ko > 0, and k < —D?/2, the conditions (4.48) and (4.52) show that ki, ko > k+10.
In particular, we may assume that |k; — ka| < 10. Using also (4.48), for (4.49) it suffices to prove that,
assuming (4.52),

(1+282)|| FRTZ (fL o SE i) e S 2700 2007267, (4.53)

LOO ~
To prove (4.53) we would like to integrate by parts in 1 and s in the formula (4.50). Recall the
definitions (4.50) and (4.51), and decompose

FPTT (1 gy Jha32) (§) = G(€) + H(E),

G(&) = pr(€) /R /RS VT EM G2 (€, 1)) g () I (€ — ) FE, . (m, s) dids,

()= oue) [ [ 8 0 PO ) (L, (€ = 190 Ty, ) s

The function H can be estimated using integration by parts in s, Lemma 4.2, the assumptions (4.5), and
the bounds (4.16). Indeed,

HOIS s (IO ©l,

se[2m—1,2m+1]
+ 27 @ ) o 1Ty o+ 27 N s O, )9 12]
< min (1,27 (No=9k2),
Therefore, for (4.53) it suffices to prove that
(1+22)||G| . S 27 k/2a6-26%), (4.54)
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Recalling the definitions (2.29) and (4.12),

2 (n—¢§) c,n
V(€ n) = (V@7 (E,n) = —u oL — 1 72 , (4.55)
! (02, +c2In =&)Y T (b2, + 2, |nl*)/?
where
/L:(Jlbl), N:(ngg), g1,02 E{L...,d}, L1,L2€{+7—}.
In view of the first assumption in (2.27), we may assume that
ky, ks > —D/10, (4.56)
since otherwise G = 0. For [ € Z let
By
(4.57)

PP BT (€, 1)) (), . (€ — 0.9) FF,  (1,) dds.

Let G :== G<; — G<;—1. In proving (4.54) we may assume that j; < jo. If [ > max(ja, m/2) — (1 — 3*)m
then we integrate by parts in n, using Lemma 5.4 with K ~ 2™%! and ¢ ~ 2772. Using also the last
bound in (4.15) and recalling that k1, ke > —D/10, it follows that

> G|~ S 277, where ly = |max(j, m/2) — m + Zm]. (4.58)

1>lg+1
It remains to estimate ||G<y,||ro. It follows from Lemma 5.5 that G<;, = 0, provided that
2lg+k2 < 2—D/10.

This last inequality is an easy algebraic consequence of the assumptions (4.40), (4.48), and (4.52), which

completes the proof of the lemma. O
Lemma 4.8. The bound (4.39) holds provided that (4.40) holds and, in addition,
j<m+max(ky, ko) +D and max(ji,j2) > (1 — 5/10)(m + max(ky, kz)). (4.59)

Proof of Lemma 4.8. Using definition (2.20), it suffices to prove that

(142 4 28)(27% 4 210%) . 20315 PT“*"”(fza,ﬁ,fz? il

(4.60)
4 ( + 2k1 + 2k2)(20&k + 210k) 2(1/2 ﬂ)k”]: P Ta' HTA V(fkl ]17f]g27]2 HLOO 5 2= 64 (m+])
By symmetry, we may assume k1 < ko.
We prove first the bounds (4.60) in the case
k1 < —5m/6. (4.61)
Using (4.15), for any s € [0, 1],
L G e S 2R L, ()]l S 207270
Therefore, using (4.15) again, it follows that
[FIT7 (i P i)l 2 £ 27 sup I (Sl lFE, 5, () e
56[27n—172m+1]
< 2mo(5/2=atf)ks iy (2~ (No=Dkz o(1+f-a)kz)
and
[FIT7 (fy oo Fs i)l e £ 27 sup R ()l 7, 5, (8) e
s€[2m—1,2m+1] (4.62)

< gmo(5/2—a+B)k1 | <2ak2 + 210162)—12—(1/2—3)@



KLEIN-GORDON SYSTEMS IN 3D 33

Therefore, recalling (4.61), if k& < 0 then the left-hand side of (4.60) is dominated by
22 +B8)mo(5/2—a+B)k < o(=1/12+5a/6+8/6)m

which suffices. Similarly, if & > 0 then the left-hand side of (4.60) is dominated by
02(2+B)m2(5/27(x+ﬂ)k1 27(N0715)k 4 C22k22m2(5/27a+,3)k1 < 2710k2(71/12+5a/6+ﬁ/6)m

3

which also suffices.
To prove the bound (4.60) when —5m/6 < ky < ko we decompose, as in (4.45)—(4.46), for any
s € [am=1 2m ],

B Py fu(s) = (27 4210k Mg () R (s)],

Thr, 2 (8) = Gk, 3, () - ¢Eﬁ112,j1+2]7 M 2 (8) = i, 5, (5) - foflz,jlw]’ 463
2(1+B)j1||g;:hj1(s)||L2 _5_2(1/2*%3)5;”9;:1/71( e <1, )
2721 ple  (5)]| g2 + 202 PR RE ()| o 4 207878/ DRiVI R () 10 S 1,
and

B Py fu(s) = (270 4 21%) Mgk (s) + BE, J, (9)],
G a(8) = 00 iy (8) B0y o B (8) = B () BT, s
2040z gh . (5)]| 2 + 207208 g7 () S 1, |
920k |t (s)| 2 + 28/2 Ok ()| oo + 2003/ Dhagndz | ()| S 1.
We will prove now the L? bound

(14 2k2)(20F 4 210%) . oG +Omaka || p Touww (£t (s), f7 . (5))]] . S 272 (4.65)

for any s € [2m71,2mF1] see (4.11) for the definition of the bilinear operators TVS‘T;“’”. In view of the
assumption (4.59)) this would clearly imply the desired L? bound in (4.60).
Assume first that min(ji,j2) < m(1 —95), i.e

min(ji, j2) < m(1—985), max(j1, j2) > (1 — B/10)(m + ks), ko > k1 > —5m/6. (4.66)
Using (5.15) and (5.16), and recalling that a € [0, ], we notice that
1B, ;. (8)llze S min(21, 2700 )g=8m/290/2+ 00,
1Ef, 2 (8)ll S min(2%h2, 270k2)2=3m 2901/ 240052,
for any s € [2m~1, 2+ Therefore, using also (4.16),

1T (ff 5y (95 fiy o () o S min(IESE ()2 I £, g, ()l NEFE, j, () L2l BF, 5, (8)]l2)
< min(2°%1, 2_6k1) mln(25k2,2—6k2) . 9—3m/29(1/2+) min(j1,j2) 9— (1—B) max(j1,j2)

S (1 + 2k2)—62—i€;2—(2+25)m7

which suffices to prove (4.65).
Assume now that min(j1,j2) > m(1 —94), i.e

min(j1,72) > m(1 —908), max(ji, j2) > (1 — 8/10)(m + k2), ko > k1 > —5m/6. (4.67)
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We recall that
i - p ~(k1)~P — (991 4 910ki\~11p " P B
fkl,jl - [k1—2,k1+2](90j1 ko f1u) = ( + )l k1 =2,k +2)9k gy T Hlkr—2,k14+2] kl,j1]7
v ~(k o _ v v
Fogs = Plta—2kas2] (B2« Py fir) = (272 4 215 [Py, o byt i, + Pika—2ikor2) Pl 53],
and use the decompositions (4.63)—(4.64). Then we estimate, using also (4.67),
HPkTSJW’V(P[klfz’kleQ] th 2J1 (8) P[kZ 2 k2+2]hzz j2 HL2

< min(|[hy, ; (s e By, 2 (8)llL2s ||hk1,ﬂ( W5y, 52 (8)lL2)
< 9—ymax(ji,42)9—(1-F) mln(hm)QQﬁkl2(5/2+ﬁ*7) 2

(4.68)

< 9=m(rH1-118)o(5/2+5~27)kz 926k1

||PkT;;“’V(P[k1_2’kl+2] hgl,jl (s)’P[k2_27k2+2]gzzyjz ”L2 ~ ”hkl;h( )HLl ”g;;zy]é (S)HL2
< 9=7i19—(148)j292B8k1 9(5/2+8—)kz

< 9=m+H1-118)9(5/2+5-27)k2926k1

1PLTT " (P, 2 k10, (5 P2 ko Py () | 12 S N0k ()12 I1BE,  (5) e
< 9—(148)j19—7j2928k1 9(5/2+5—7)k2
< 9-m(y+1-118)9(5/2+6-27)k2926k1
and, using also (5.20) and (5.22),

| BT (P, —2,00 42190, 5, (8)s Plka—2,k24219%55 (5)]| 12

—isA

. —isA v
S min ([le™" % Py —2 0420 (9%, , ()= 198, 50 ()22 g, s, ()| z2lle™ ™ Py —2,k0121 (9K, 5, ()l )

< 9—(1+B) max(j1,52) , 9—=3m/29(1/2-P) min(j1,j2)(1 + 23k2)
< 27m(2+19ﬁ/10)27352//4(1 + 2%k2),
Therefore, using also a € [0,3/2] and k1 > —5m/6, the left-hand side of (4.65) is dominated by
C(l + 24]{:2)2—0{]{:12—951’)1/10 < (1 + 24k2)2—29mﬁ/60.

This completes the proof of (4.65).
To complete the proof of (4.60) it remains to prove the L* bound

(1 +2%2)(20F 4 210K) . 20/2-K| | Fp T (f1 | fr g~26"m (4.69)

If ko < —D/10 then max(k, k1) < —D/10+10 and 1 < |®7#¥ (£, n)| whenever |£] = 2F,|¢ —n| ~ 281 || ~
22 Therefore, we integrate by parts in s and use (4.16) and (4.17) to estimate

s e P PR O L RO AR Ol

SE[Qm_1,2m+

2J2 ”L‘X’ ~

+ 2705 £, ) ()22l iy o () L2 + 27 (£, 5, ()22 11(Os £y ) () 2
< 9=hAm,

The desired estimate (4.69) follows easily in this case.
Assume now that k2 > —D/10. For (4.69) it suffices to prove that

< 972h'm (4.70)

2k2(2ak + 210k) . 2(1/2_5)k2mH‘}-Pkfg;u7u(f£1,jl’f/?z,jz)HLoo <
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for any s € [2m~1, 2™+ If, in addition, k; < —2m/5 then, as in (4.62),

[FRTZ# (5 5y Tl e ST 5 a1, 5 ()l S 200727 Phag 10k,

and the desired bound (4.70) follows since a € [0, 3/2].
It remains to prove the bound (4.70) in the case

ky>—D/10, ki > —2m/5. (4.71)
We decompose f' . f¥, ;, asin (4.63), (4.64), (4.68). If ji < j» we estimate
| F PRI (P, 250421 (91, 5, (8) + 1, (8))s Py —2,ka 219k (5) HLoo

< (g, 5, ()l + ||hkm1( M zz)llgt, 5, ()]l 22
< 2—(1+5)J2)

and
| F PRI (P, —2 k0421 (Ghey 5, (8) 4 ey (5))5 Py —2 k021 iy (9))]| e
< (ks ()l + I1BE, 5 )l ) IR, ()12
5 2—(1/2—5)k1 2—’YJ2.
Since —k; < 2m/5 and 272 > 2m(1=6/10) it follows that
if g1 <jo then |[FRITHY(fL i)l o S 27 CFAGZBA0M  (goks y 9l0k1) =910k (4 79)
Similarly, if j; > jo we estimate
H]:PkTSUW’V(P[’fl—Q»kl'f‘?]ggl J1 (S)’P[k2—27k2+2] (gzzyh (s) + hzmjz § ||L°°

S llgf s ez (lg, o (e + [ H8)2)
< 2*(1+ﬁ)j1,

and
| FPTTH (P, —2 k1219 1 (5)Plks 2,821 (98,52 (8) + Ay sy (9] oo

S llgw, 5 e (197, 5, ()L + IR, s ()lr=)
< 2—’Y.7'17

Since 271 > 2m(1=6/10) it follows that
if g1 >jo then |[|[FPTTMY(fL s f i)l o S 27 OFAO=B0M  (gaks  9l0k1)=19=10k: (4 73)

Using (4.72) and (4.73), the left-hand side of (4.70) is dominated by
022]622—(1]61 2—4[3m/5

which suffices. This completes the proof of the lemma. O
Lemma 4.9. The bound (4.39) holds provided that (4.40) holds and, in addition,

j < m—l—max(k?l,l;g)—i—D, max(j,j2) < (1— ﬁ/lO)(m—l—maX(kl,krg)) min(k, k1, ko) < —D/10. (4.74)
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Proof of Lemma 4.9. Using definition (2.20), it suffices to prove that

a i ~(k LRI v
(1428 o 28 (2% o 2100 2 G0 Pz (785, ) e

_ (4.75)
@ - ~(k o,V v —28*m
+ (1428 2k (20 4 910%) 920k F(G W) prgir(pr || e S 272

By symmetry, we may assume k1 < ko.
As in the proof of Lemma 4.7 we decompose

FPIT(f gy Tho o) (6) = G(€) + H(),

Ge) = pul®) [ [ e (2P @7 6 ) )a(5) (€ = )T (1) s,

O = pn(©) [ [ e 1 = oD g ()T, (€ = 1.5)F,, (. 5) dnds.
We show first that
(1 + 2k2)(20% 4 210k) . QU+B) k)| FT|| o 4 (1 + 272) (20 + 210k) . 2(1/2=00F || || o < 2726"™  (4.76)
For this we integrate by parts in s and use the bound (5.26). It follows that

1H 2 S (1+2%) (1 +2%)  sup [lelEflﬁ‘l,jl(S)HLooH(asf;é,jz)(S)lle

sg[2m—1,2m+1]
+ 270 £, 5 ) ()2 I EFE, 5, (8) Il (4.77)
+min ([1f, 5, ()2 | ESE, 5, ()L, B, 5, (5L lF, j, () Hm)}
and

[Hl|r= < sup [2m||f;§§,j1(S)HL2||(5sf1?2,j2)(8)||L2
Se[Qm—1727n+1] (4.78)

+27(0s fiy 5, ) () L2 1K, 5 ()2 + HH1(8)||L<>°},

where

BT _ Dgpoiu,v ,
H, (6,5) = pi(€) /R L soéiw(é ngg n)

Using (4.15) and Lemma 4.2, for any s € [27 71, 2m+1]
2MESL, 5, (L 107, 5,) (92 + 2710 £ 5 ) ()2 1 EFE, 5, (8) [ £
5 (1 + 2k1)—6(1 + 2k2)—62—(1+2,3)m.
Moreover, using again (4.15) and (4.16), if s € [2™~1, 2 *1] and max(ji, j2) > 48m then
min (|| £, j, ()22 | B o )z 1B FE, () lnee 15y g (9)l22) S (14 28)70(1 4 2h)~02= (200,
On the other hand, using also (5.15)—(5.16), if s € [2~1, 2™ +1] and max(j1, j2) < 48m then
min (| £, ()12 | B gy )z IEFE, 5 (9)lnee [y g () 122) S (14 251)70(1 4 22) =02 = (+20m,
Therefore, using also (4.77) and (4.80) it follows that
(L4 28)(2F 4 210%) - 20O | ) 0 < 27200, (4.81)

T E=n.5) 5, (n,5) di. (4.79)

(4.80)

as desired.
To prove the L> bound in (4.76) we use (4.15) and Lemma 4.2 to estimate

27N f8 g (el O, 5 (e + 27 10s i, ;) Sz 7, 5, (e S (L+24)7%270m (4.82)
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Then we estimate, using (4.16),
IHL () o S 158 5, ()27, 4o (8) 22 S 27 U1 H92)2(1 4 2k2) =10
The desired L™ estimate in (4.76),
(1 4 2k2)(20k 4 910k) . 9(1/2=B)k| ||, < 9-26'm (4.83)

follows from (4.78) unless
max(j1, j2, —k, —k1, —k2) < 28m. (4.84)
On the other hand, assuming (4.84), we need to improve slightly on the L* bound on H;(s). We
decompose Hi(&,s) = Ho(€, s) + H3(€, s) where

HQ(fas) = @k(f) ‘/R:3 @(_m,_(1/2_52)m](E“’V(£7n))eisq)gwyy(g:n)

[1— 022 @77 (€, n))]
dirr(€,m)

fh (€=, )sz o (m,8)dn,

and

Hs(,s) = w«(i)/ [1 = (oo, (12— 52)m) (E* (&, m))]e*®7" " (Em)

R3

1— (2P0 (€, ))] = —
e e o) ) dn

Using Lemma 5.4 (with K ~ om(1/246%) ¢ 27™/2) the restriction (4.84), and the bound (4.15), it
follows that |H3(&, s)| < 27™. At the same time, using the explicit formula (4.55), and the simple equality
| A= B* = [|A] = BI|* + |4] - | B|(1 - cos), 6= Z(A,B)

it is casy to see that if |¢] ~ 25, € — g & 25, || & 2%, where max([kl,[kil,Jkal) < 26m, and if
[=-v(&,m)| S 2=m/3 then

min (| — elal/[€l]. [n + €lnl/1€]]) < 27

Therefore, using the last bound in (4.15), |Ha(&,s)| < 27™/5. As a result, assuming (4.84), it follows
that |H (&, s)] < 27™/°. The desired bound (4.83) follows using also (4.78) and (4.82). This completes
the proof of the main estimate (4.76).

We show now that

(1 4 2k2)(20F 4 210k) L QA (mtka) G|l o 4 (1 4 282)(20F 4 210k) . 9(1/2Pk || G| oo < 2720"m (4.85)
Notice that G = 0 unless

ke > —D/20. (4.86)

As in the proof of Lemma 4.7, for any | € Z we define

(€) / / (€, m)) - P

2D<I)U7H7 (& m)am (s )fl?l,jl (€ -, S)f}?%h (1, s) dnds.
Let G; :== G<; — G<j—1. Recalling the assumption max(ji,72) < (1 — 3/10)m, we notice that if | >
—Bm/11 then we may apply Lemma 5.4 (with K ~ 200=8/10m o ~ 9=(1=6/10m) and use the bounds
(4.15) to conclude that
|G|l < 274m if 1>1y:=|[—pm/11].
On the other hand, recalling that min(k, k1, k2) < —D/10 and the inequality (4.86), we notice that

G§l0 =0 if k1 < —D/10.
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Finally, if ¥ < —D/10 and ke < j/N{ and using Lemma 5.5 (i), G<j, = 0. The desired estimate (4.85)
follows easily. O

Lemma 4.10. The bound (4.39) holds provided that (4.40) holds and, in addition,
j <m+max(ki, k2) + D, max(ji,j2) < (1 — B/10)(m + max(ky, k2)), max(k, ki, ks) > D. (4.87)

Proof of Lemma 4.10. This is similar to the proof of Lemma 4.9, using Lemma 5.5 (ii) instead of Lemma
5 (i). Using definition (2.20), it suffices to prove that

max(kq, a ~(k) oV v
gmax(ka k) (g | 910k) | 2(1+/3)]H k). p, 1o (F oo T || (4.88)

max « — ~ k {02 v v 4
492 (kl,kz)(g F oy 910k o(1/2 B)’“HF[@E ) P T (flgl,jwszm HLOO < 9=28'm

The inequalities in (4.87) show that
max(k1,k2) > D —10, j<m+ D, max(ji,j2) < (1—5/10)m

By symmetry we may assume that k; < k.
As in the proof of Lemma 4.9 we decompose

FRI5H ”(fkl i Thon)(6) = G(&) + H(E),

GO) = u(e) [ [ e (a2 e e 1)) ()T (€~ ) 0 5) s,

&= ule) [ [ eI (e 6 g (), (€= 09, (08 s

As in the proof of Lemma 4.9 we integrate by parts in s to estimate the contributions of the function
H, and integrate by parts in 7 to estimate the contributions of the function G. More precisely, we argue
as in the proof of Lemma 4.9, using Lemma 5.5 (ii) instead of Lemma 5.5 (i), to conclude that

oka (Qak + 210k) . 2(1+,6)mHH||L2 + 2k2 (2ak + 2101<:) . 2(1/27B)E”I{HLOQ + 22m||G||Loo ,S 2,254777,'
Clearly, this suffices to prove the desired estimate (4.88). O

We examine now the conclusions of Lemma 4.6, Lemma 4.7, Lemma 4.8, Lemma 4.9, and Lemma 4.10,
and notice that to complete the proof of Proposition 4.5, it suffices to prove Proposition 4.11 below.

Proposition 4.11. With the same notation as in Proposition 4.1, we have
(1425 28|58 Perg (o S )l S 2770 (4.89)
for any fized p,v € Iy, (k,7), (k1,751), (k2,j42) € T, and m € [0, L + 1] N Z, satisfying
fm/24+D?* < j<m+D, max(j1,j2) < (1 — 3/10)m ~D/10 < k,ky, ko < D. (4.90)

The most delicate part of the analysis is done to prove Proposition 4.11 and corresponds to the resonant
interaction at time T and at location X ~ T of inputs located at position Y < T. This forms the bulk
of the nonlinear stationary phase argument. We separate two cases.

(i) when the inputs are located close to the origin 1 <Y < Tz. In this case, essentially no parameter
in the norm can give additional control and we must understand the result of the interaction. This is
what sets the “weak norm”. On the positive side, in this case, the inputs have essentially smooth Fourier
transforms and allow for efficient stationary phase analysis, which gives a good description of the output.

(ii) when at least one input is located further away from the origin T2 <Y < T. In this case, the
stationary phase analysis gets less and less efficient as Y increases and we have access to less information
on the output. However, this is compensated for by the fact that the parameters in the norm (and in
particular the appropriate choice of ) start to give stronger control as Y increases. In our situation, this
is enough and we can always control the outcome of this interaction in the strong norm.
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4.4. Proof of Proposition 4.11. In this subsection we prove Proposition 4.11. The arguments are
more complicated than before; to control some of the more difficult spacetime resonances we need to use
the more refined By, ; norms. We also need additional L? orthogonality arguments.

Lemma 4.12. The bound (4.89) holds provided that (4.90) holds and, in addition,
max (i, j2) < m(1/2 - (). (4.91)
Proof of Lemma 4.12. Let
Ky 1= 27 m/298%m (4.92)
and decompose first

FRIGH (S (€)= G(E) + H(E),
GO = on(e) [ [ e oo (5 ) ) (), (€~ 1.5) 1) s,

H(E) = u©) [ [ e L peo(@ €m0l (), (€~ 1090, 0,) dnds.

Using Lemma 5.4 (with K ~ 2™k; and € = k1) and the last bound in (4.15) it is easy to see that
|H|| L < 2710™ Therefore it remains to prove that

12 F @ p,, S 272 (4.93)

~

Using the L* bounds in (4.15) and Lemma 5.6, we see easily that
1G]l < i3 2m S 2mm/29300m, (4.94)

This suffices to prove the desired bound (4.93) if, for example, j < m(1/2 — 43). To cover the entire
range j < m+ D we need more refined bounds on |G(£)|, which we prove using integration by parts in s.

In the argument below we may assume that G # 0; in particular this guarantees that the main
assumptions (5.51) and (5.59) are satisfied. With 77 (|¢]) = &THY (€, p*? (€)), defined as in (5.60),
assume that

2m W (|¢])] € [24, 2], 1 € [Bm, 00) N Z. (4.95)
Then, using Lemma 5.6, we see that
[ @7HY(E,m) = WTHH(EN] < [n =P (E)] - sup =7 (6,01 S 2°PRaln — p7 (€))

[C—pHv (€)]<210P Ky
since EWY (&, p*¥ (£)) = 0. Therefore
2Mm| DoV (¢, )| € [2173, 21 if  =ZY(E,m) < 100k,

After integration by parts in s it follows that

—

G <2 (@) | [ loso@ (€ m)l a1, (6 = 191 1T, (009)

+ lp<oE (&) /5] am ()0s £, j)(E =y )L, 5, (0, 5)]
+le<oE (& m) /w0 am () |5, 5, (€ =, )| [(0s £, ;,) (1, 5)] dnds.
We use now (4.5), the last bound in (4.15), (4.18), and Lemma 5.6. It follows that
GO S 2" on(©)] - K1 S low(€)] - 27127223 (4.96)
provided that (4.95) holds.
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We can now prove the desired bound (4.93). To apply (4.95)—(4.96) we need a good description of the
level sets of the functions W7:#¥. Let

lo:=[Bm+2],  Di:={EeR®: 27w ([¢))| < 27},

Dy = {€ € R : 2™V (|¢])] € (271, 21}, lello+1,m+ D]NZ,
m~+D

G=3 G G)=G(©) 1n,(©).

l=lo

For (4.93) it remains to prove that for any [ € [lop,m + D] N Z
~(k _ —38%m
155" - F 1 GDls,, 275 (4.97)

Using Lemma 5.8, it follows that there is r7i#V = 7Y (u v o, k, ki, ko,1) € [27P 00) with the
property that

Dy C{EeR?: ||| —roimv| S 287 (4.98)
Therefore, using also (4.96),

~(k _ ;
1857 - FHG) sy, S 2V Gille + Gl e
< 2—l2—m/223ﬁ2m . (2(1+ﬁ)j2(l—m)/2 + 1)
< 2j7m27l/22ﬁm+3ﬁ2m + 27[27771/2236271’1,.
This clearly suffices to prove (4.97) if [ > 68m or j < m — 38m.
It remains to prove (4.97) in the remaining case

l€[Bm,68m|NZ and j€[m—38m,m+ D|NZ. (4.99)

For this we need to use the norms B,%ﬁj defined in (2.21). Assume first that [ > [y + 1. As before we
estimate easily

2003 |G | 12 + |G| poe S 27127 /22367m L (201=B)ma=m)/2 | 1)
< 9—1/29—pFm+36%m + 9—lg—m/2938°m_
Therefore, for (4.97) it suffices to prove that

< 9=8A'm, (4.100)

277 sup R72HJ¢[§5§1€) .f*l(Gl)} ||L1(B(50,Po)) ~

Re([279,2F], £0€R3

Since ‘F(&;k))(f)‘ < 2% (1 +271¢])7°, it follows from (4.96) that
I 7 @) £ [ 16e -l 27+ 2l dn
< 2—l2—m/223,82m/

R
Therefore, using now (4.98), for any R € [277,2F] and & € R?,

1p,(€—n) - 2% (1 +27|n])~° dny.

< 27l27m/223,82m . 2l7m 5 273m/223,82m.

RizH}n[%‘k) '}-fl(Gl)] HLl(B(Eo,R)) ~

Similarly, using (4.94) and (4.98),
(1-p)j o < 9(1=B)(i—m)g—Bm+lo/2+35°m | 9—m/4 < 9=36"m
2 1Gio |2 + |Gy [l < 2 2 +27MRS2
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and
(k) ‘ .
FIY -7 G]©) S [ 16l =l 20+ 2 )
—m/263p% 3j 3 1) —6
S [ 1, (€= 291+ 2 ) dy
from where we conclude that, for any R € [277,2%] and &, € R?,

R2(|F[E" - 77 (G
The desired bound (4.100) follows, which completes the proof of the lemma. O

m/2636%m  olg—m —3m/2 QBm
HL13<gOR))~2 2 Qlo=m <9 2

Lemma 4.13. The bound (4.89) holds provided that (4.90) holds and, in addition,
max(ji, jo) > m(1/2 — 3%). (4.101)
Proof of Lemma 4.13. Using definition (2.20), it suffices to prove that
~(k oV ~(k oL,V v
2(1+B)]H ( ) - By T e (fkhﬁ’ fk2 ,J2 HL2 + Hf ( ) PkTmu (fll:ujl’fkmh)}
Let

[, S2720 (4.102)

/.

§ = max(j1, j2) + [36°m) € [m(1/2 + 5%), m(1 — 3/20)], (4.103)
and decompose

FPT (g, Jhagn) (§) = G(E) + Hi(§) + Ha (),

where
2 /IR /Rg e EM L — (23D BT (€, 1)) g (8) FE 1 (€ — 1, 5)FE, . (1, ) dnds,
Gle) = pul®) [ [ 8 o2 P e (g oo 2 2 (€ )
X G () JE (€ = m.9) T, . (n,5) dnds,
and

Hi(€) = ¢x(6) /R /R T EMG@OP T (€ )1 - peo(27 T EY (€, )

X Qm(s)f]?hjl (5 =1 S)f]i;/27j2 (773 5) dTldS

Using Lemma 5.4 (with K ~ 27" and e ~ 27 max(7142)) and the last bound in (4.15) it is easy to see
that ||Hy||p~ < 2710, Moreover, the same argument as in the first part of the proof of Lemma 4.9
(which does not use the assumption min(k, k1, k2) < —D/10) shows that

2™ Hy |l 2 + | Hollpe S 2727,
Therefore it remains to prove that
2050 ||G| L, + Gl S 2720 (4.104)

In proving (4.104) we may assume that G # 0; in particular this guarantees that the main assumption
(5.51) is satisfied. We prove first the L*° bound in (4.104). Assume that j; < jo (the case j; > jo is
similar). Then, see (4.15) and (2.23)—(2.25),

1 (Ol S 1,

5s,up Hf,w O (Bey.ry S 27U RY2, for any R < 1.
o€R
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Using Lemma 5.6 and (4.103) it follows that
|Gl < 2m - 27 (AFB2(03"=m)3/2 < 9=m/29437mo(1/2-)i" < 9=28"m.

as desired.
To prove the L? bound in (4.104) it suffices to show that

2(2+20)m || )2, < 248", (4.105)

To prove this we need first an orthogonality argument. Let x : R — [0,1] denote a smooth function
supported in the interval [—2, 2] with the property that

Zx(x—n)zl for any = € R.
nez

We define the smooth function y’ : R® — [0,1], X'(z,y, 2) := x(2)x(y)x(2). Recall the functions W7¥
defined in (5.60). We define, for any v € Z3 and n € Z,

Gon(€) = X' (2™ —v) - 1(€) /R /Rse"'sq’““"'@v”)ap(23°D<1>”%“v”(§,n))¢§0(2m—j”aﬂv”(g, )

(4.106)
x X277 s = n)am(s)f7, 5, (§ =, 8)fK, 5, (1, 5) dnds.
and notice that G =3 3> .z Gon-
We show now that
G172 < > D IGumlfe +2710m (4.107)
VEZ3 nEL
Indeed, we clearly have
2
1613 S 32 [ 2o Gom , S 30 D HGumssGuma)l.
vEZ3 nEL VEZS n1,n2€EL
Therefore, for (4.107) it suffices to prove that
UGy s Gomy)| S 2720m if v € Z* and |ng — ng| > 2190, (4.108)

To prove this, we notice that, since |V, ®7#"| < 21"=m and |9P®7#v| < 1 for |p| = 2, after repeated
integration by parts in &, for any n € 7Z,

FHGon) @) S ot wa| 20 it [ 4wy | 2 2707277,

wy, =027 (WY (27 o)) v /o).
Moreover, G, is nontrivial only if [T (27" ~™|y[)| < 27252, We can therefore apply Lemma 5.8 to
conclude that |(®o#:)/ (25" =m|p|)| > 2720D Therefore if |ny — ny| > 21997 then |wy,, — wy, | > 270P27"

and the desired bound (4.108) follows. This completes the proof of (4.107).
In view of (4.107), for (4.105) it remains to prove that

2(2+28)m 3 |Gynl3s S 2745 m, (4.109)

2—k|y|, ng[2m—3" —4 gm—j" +4]

Assuming v, n fixed, the variables in the definition of the function G, ,, are naturally restricted as follows:

. 2]‘”77”1) < 2j//7m, . p/”'al’ 2j”7mv < 2j//77n7 5 — 2j”n < 2]»//’
~ 77 ~ ~
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where p/" is defined as in Lemma 5.6. More precisely, we define the functions f;"" and fy"" by the
formulas

"

V70, 8) = Ljn_amra) (277 8)p<ol2750P 2" (0 — 20"y 4 pir (27 )] fE (6, 5),

oo .11 .11 211 — (4110)
27(0,5) = 1 _amya) (277 8)p<o270P27 770 — pV (27 )] - f, S, (6, 5).
Since [p¥ (27"~ Muy) — phv (207" Muy)| > 2800277 =M and |[2j”7m111 — phr (207 Tmy)] — (27 My —

p“’”(QjN*mvz)H > 280D95"~m whenever |v; — vy| > 1 (these inequalities are consequences of the lower
bounds in the first line of (5.53)), it follows by orthogonality that, for any s € R,

> 1A (72 S L, (97 S 27204200,
2k|v|e[zm—d"~¢,2m=i"+4] (4.111)
2 155" ()IEe S 11, g ()72 < 27202202,
Q—k|,U‘G[an—j”—4’2nl—j”+4]
Using the definition (4.106) and Lemma 5.6 we notice that, for any (v,n) € Z* x Z,
Gun(§) = X’(Qm—j £ —v)- @k(ﬁ)/ / eis@“‘"”(ﬁm)(p(230Dq>U;u7v(5’n))@go(gm—j ZhV(€,m))
R JR3 (4.112)

X X275 = 1) () [ (€ = m.9) [5 7 (0, 8) dids.
Letting, as in (4.14), (Ef;"")(s) := e~ishu (f1""(s)) and (Efy")(s) == e~ish (f3"(s)), it follows that
1GonllLz S /RX(Tj”é’ = 1) (5)|| Ao (E ;™" (5), Efy " (5)) |2 ds,
where, by definition,

Aulg1,92)(€) =X "€ —v)n(€) / P2 RTI (€ m))p<o(27 T EN (6,m)

(4.113)
X F(Piry—a,k+4191)(§ — ) F (Plry—a,ky+4192) (1) dn.
Therefore
1Gonlz> $27 /qu(S)HAv(Eff’"(s)vEfﬁ)’"(s))lliz ds,

and for (4.109) it suffices to prove that

g2m-+28mo” / A (ESI(5), Ef2 (5)) 22 ds < 2748 m, (4.114)
2=k|yl, ne[zm 3" =4 gm—j" +4]
We notice now that if p,q € [2,00], 1/p+ 1/q = 1/2, then

14v(g1,92)I2 S llgallze llg2llLa- (4.115)

Indeed, as in the proof of Lemma 5.3, we write
Fuong)@) = [ o)oK (i) dydz,
R3 xR3
where
Kv(x;y, Z) — / ei(z—y)'Sei(y—z)~nxl(2m_j//£ _ U)(P<0(2m_j//5“’y(£7n))
R3 xR3 B

X o1 (€)p(23P BT (€ 1)) Py —a k141 (€ = NPl —a, ko -+4) (1) dEd.
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We recall that k, k1, ke € [—D/10, D] and integrate by parts in £ and 7. Using also Lemma 5.6, it follows
that
[Ko(@sy,2)] S 22077 (142" e =y )7t 220 (1 2y — 27
and the desired estimate (4.115) follows.
We can now prove the main estimate (4.114). Assume first that

max(j1, j2) — min(ji, j2) > 105m. (4.116)
By symmetry, we may assume that j; < jo and estimate, using (5.15)—(5.16),
sup B ()1« S 2772200/
s€

Therefore, using (4.115) and (4.111), the left-hand side of (4.114) is dominated by

Cytmaimal” > i [ o) ds
sz‘vl’n€[27n7j”74’27n7j”+4] R
< 092m+28moi” | 9=3mo(1+2B)j1 , 9=2j2+2B52 , gm
< 9J1=J29208m926j1 9202 2]”*]‘2,
and the desired bound (4.114) follows provided that (4.116) holds.
Assume now that

max(j1, j2) < (3/5 —28)m. (4.117)
By symmetry, we may assume again that j; < jo and estimate

SUp [ Bf " (5) [ S sup 1717 (9)]les S 29770,

sE

Therefore, using (4.115) and (4.111), the left- hand side of (4.114) is dominated by
C22m+20moi” > 9~ 6m 65" / |Ef2™(s)]|22 ds

2k o], ne[2m—i"'—4,2m—3"+4]
< (92m+28mej” 9—6mob;" o9=2j2+28j2  gm
< 2—377125j227(j/,—j2)225m225j27
and the desired bound (4.114) follows provided that (4.117) holds.
Finally, assume that
max(j1,J2) — min(jq, jo) < 108m and max(j1, j2) > (3/5 — 208)m. (4.118)

In this case we need the more refined decomposition in (2.23)—(2.25). More precisely, using the definitions
we decompose

flljlyjl () = P, —2,6,+2)(91(5) + ha(s)), Tra i (8) = Piky—2,k,+2)(92(8) + ha(s)),

where” i i
91(s) = g1(5) - B, s 02(5) = ga(s) - G0y Lo (4.119)
and
205031 |l g ()] 2 + 207D [ (s) | 2 + 207 sup R (s)lln soe,m) S 1,
Re[Q—jl,le],GoER3
. . , - (4.120)
20032 gy () 2 + 2017772 g (s) | 2 + 207 sup R7([ha(s)l| L (Bo0.ry) S 1-

Re[2772,2F2],0p€R3

"The decomposition in (2.23)—(2.25) provides some more information about the functions g1, h1, g2, ha, but only (4.119)
and (4.120) are being used in the proof.
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n n

Then, we define the functions ¢7"", hy"", g5, hy'" by the formulas (compare with (4.110)),

g1117"(97 S) = 1 [n—4 n+4](2 7 S)‘)O 0[2_50D2m 7 (9 - 2j”—mv +pu,u(2j”—mv))] : ]:(P[k?1*2,k1+2]gl)(07 8)7
By (6,8) = Lnansa) (277 8)po[27 0P 27 (O = 2770 4 p (207 T0))] - F (P2 n) (6, ),
957 (0,8) =1 n_anpa) (277 8)p<02720P27 (0 — p (27 T0))] - F (P2, 42)92) (6, 9),
hy™ (0, 5) = Ljpoanpa) (277 8)p<o[2720P 270" (9 — p¥ (27" =™0))] - F(Piyy 2,52 12) (6, 5).
(4.121)
As in (4.111), using L? orthogonality and (4.120), for any s € R we have
> lgy ™ (s)II72 < 27277200, > 1R (5)[|32 S 27204200
2-Fk[p|e[2m—i"—4,am—""+4] 2 Kol [2m a4 gme i)
> lgs™ (s)|[72 < 27272072, > [h5" (s)[|72 < 27224200,
2—k|y|g[2m—i"" —4 2m—j"'+4] 2—k|y|e[2m—i"' —4,2m—j" +4]
(4.122)
Using (5.12) and (4.119)—(4.120), we derive the L> bounds
1Egy™ ()| S 2752l ga(s)|| g2 S 27322072700,
IR ™ (5)lla S AT (s) 1 S 229722700,
, (4.123)
1Egs™ (s)| 1o S 27272 ga(s)l|r S 27m/220/270)72,
|ERS™ (5)lls S A5 (s) 1 S 229227002,
for any v,n,s. Using (4.115) and (4.122)—(4.123), we estimate, assuming j; < ja,
grrsemy 2 / 1AL (BF" (5), Bgs™ ()2 ds
2— k‘ |7ne[2m G —a 2m— 7”+4 R
< 22mahmai /llg $)Z:(1Eg)" ()| 7 + | BRY™ () |[7) ds

2- k|v\,ne[2m 3" =4 gm—j''+4]

< 22m+2ﬁm2] . 2’”’7,272‘]2725.]2 . [273777,2(172,6)]1 + 24] 74m272'\/j1]

< 92Bmoj"” o—(1+45)j2 4 936m92j29—27j1
Similarly, we estimate

P—— 1A E " 6) By )

2-*lv |,ne[2m 1=t gt ]

S 22mHimyd Z /(Ilg?"(S)H%z + BT () 22| Ehy ™ (5)[I7 - ds
2=k|y|, ne[2m—3" —4 2m—i"" +4]

< 22m+2ﬁm2a . 9mo—2j1+20j1 24J —4mg—27j2

< 95B8m9—2j19(4—27)j2

The desired estimate (4.114) follows from the last two bounds and the restriction (4.118). This completes
the proof of the lemma. a
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5. TECHNICAL ESTIMATES
In this section we collect several technical estimates that are used at various stages of the argument.
5.1. Linear and bilinear estimates. We prove now some important linear and bilinear estimates,

which are used repeatedly in the paper. We show first that our main spaces constructed in Definition 2.3
are compatible with normalized Calderon—Zygmund operators.

Lemma 5.1. If Q is a normalized Calderon—Zygmund operator (see (2.14)—(2.15)) then

1Qflz S I flz, for any f € Z. (5.1)
Proof of Lemma 5.1. We may assume that || f]|z < 1 and it suffices to prove that
12 PhQ 5, S1, (5-2)
for any (k,j) € J fixed.
We have
@) PQf@) = 70w [ Pa) Kile =9, (53)
where
Ky(z) = C/RS (&)1 1411 (£) dE.
Clearly,

[Ku(2)] S 2% (1 +2]2) " (5.4)

As before, let k = min(k,0), ky = max(k,0). Since ||§5§I,€) “Pyflb,, <1forany j" > —k, we can
decompose, as in (2.23)—(2.26),

(k) _ _ (k) _ (k)

Gy Pof =915+ 925 9Ly T 9Pl ooy 9250 T 9250 Pliig ey

2040 Iy ol 2 + 202K gl S (2°% 4 210%) 7, (5.5)
2—25%2(175)j/“92’j,”p + 2(1/275)'15”9/2\7]_/”L00 + 2("%575)/2)'1527]"||g/2;_,HL1 g (2ak + 210k)71’

and, moreover,

2("/—5—1/2)k22k+2’vj/ sup R_2||g/2\,j’HL1(B(§0,R)) S (2ak + 2101@)—1. (56)
Re[2-3' 2], o ER3

Then we decompose, using the formulas (5.3) and (5.5),

V(@) - PuQf (@) = C1 + G,
Gi(z):= Y. @) gy« K@+ Y (@) (gag * Ki)(@),

i>—F iR, 1|24 (5.7)

Ga(z):= Y FW(@) (g * Ki)(2).

§'>—k, | —j|<3
In view of the definitions, for (5.2) it suffices to prove that

Gy, +11Gallpz , S 1. (5.8)
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To prove the bound [|G1[[p1 < 1 we notice first that
©5J

~(k _ _ -
S8 g Kol S Y] g llze S (0% 4 210712 (140,
3>k, |5’ —5|<3 §'>—k, |5’ —4|<3
~(k — 1A —3\k
S FEY (g Kolle Y. gigllee S (208 4 210%) 7120220k,
37>k, |5 —5|<3 31>k, |5 —4|<3

Therefore it remains to prove that

~(k ~(k o —1o— ]
S (18 (g s Kl + 180 - (g2 # K llz2] S (2% 4 210%) 12 (06,
i'>—k, |5’ —j|>4

S [P (g1 Kl + 1FIEY - (g0 % Kl | S (20% + 210%) 712-(/2-0%,
==k, —jl>4

(5.9)
Since
I1FEY - e SUBS - hllzs < 2597213 - b g2,
for (5.9) it suffices to prove that
S (18 g Killae + 18 - (g 5 K l22] S (20 +210%)712739/22- 01200k, (5.10)
3’ >—k, i’ —j]>4

Notice that if |j — j/| > 4 and p € {1,2} then
~(k ~(k
(@) (g * Ki) (@) = 88 (@) - (gugr * Kijj) (@) where K jjr(2) = Kr(2)  Clmax(jj)—10,00) (2)-
Therefore, using (5.4),
~(k ~(k
S 18 (g s Kl + 180 - (92,50 + K 2]

32—k, i —jl>4
S22 S [lgng e + gz ) 1Kl
§'2 =k, |j'=j|>4
< 93§/2 Z 23j//2(2ak + 210k>—1 . 2—(1—5)j’22/3E . 23k(1 + 2k2max(j,j/))—6
i'>—k
< (2ak + 2101@)71273,;‘/227(1/27,3)% . 2—\k+j\7

which suffices to prove the desired bound (5.10).
To prove the bound ||G2[[zz = <1 in (5.8) we notice first the

||G2||L2 /S Z ‘|92,j’||L2 S (Qak + 2101@)712*(175”22@@’
51>k, 5’ —j|<3
[GallL~ < > g2l Lo S (27 4 210F)"12=(/2=A)k,

2=k, |j'=j1<3
using the assumptions on g ;7 in (5.5). Therefore it remains to prove that
—B—1/2)% i e ~(k o -
20 AU /DRg2he 7 R FIEO - (g5 Kl men, iy S (2°% +210%) 7 (5.11)
for any R € [277,2%], &g € R®, and j' € [j — 3,5 + 3| N Z.
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To prove (5.11) we notice that, for any £ € B(&g, R),

FIZY - (ar < KN 5 [ 17 (€=l lFE @l dn S [ 1€~ miZ 0+ 2 )

Therefore
k —
1B - (g2, % Kl o2 (B(go, ) Sgsugg_ 192,57 |2 (B (&1, R))
1€

and the desired bound (5.11) follows from (5.6). O
We prove now several dispersive estimates.
Lemma 5.2. (i) Forany k€ Z,t €R, o € {1,...,d}, and g € L*(R®) we have
1P oo ige™™ e gllze S (14 1) 72225 |lg]l 1. (5.12)
(i) Assume ||f|lz <1,t€R, (k,j) € T, and let k= min(k,0) and

Jrj = Pr—2k42) [(ﬁgk) - Pyf].

Then _
i sllze S (2% 4 210F) 71 . 920k =(1=0)] (5.13)
and _
sup |D fkj 5)‘ Siol (Qak 4 Qlok)—l .9—(1/2=B)kglplj (5.14)
EERS
Moreover, for o € {1,...,d}, if k <0 then
HeitAUf j||Loc N2—ozk mln(2 (1+5)]23k/2 (1+ |t‘) 3/22 1/2—0)j ) X
+ 9 ak mln(2(77+ﬁ+5/2)k277]’( 1+ |t|)73/22(1/2+ﬁ)j22[3k). (5 5)
If £ >0 then
€72 froll oo S 27 % min(27 0T (14[¢])~3/2200/2707) 4276k min(2779 (14 [¢])~3/220/2+8)7) (5.16)

(iii) As a consequence

S Iegllze S min@OHo-ek 9-10k) (5.17)
j>max(—k,0)
and®
> e figl| oo S min(20/2707 0k 976k) (4 p )10, (5.18)
j>max(—k,0)

Proof of Lemma 5.2. The dispersive bound (5.12) is well-known. To prove the bounds in (ii), we start
by decomposing, as in (2.23)—(2.26),
k ~(k ~(k
( ' Pof = 915+ 925 915 = 915" @Ej127j+2]’ 92,5 = 92,5 QOEjEQ,j-&-Z]’
204 gy 2+ 202 PF gl e S 2°F 4207

2720620 gy |2 + 2027 g e + 20707 g S (207 4 2108)

The bound (5.13) follows easily. To prove (5.14) we use the formulas in the first line of (5.19) to write,
for u=1,2,

(5.19)

3

7€) = | GriF )€ =) d

8In many places we will be able to use the simpler bound (5.18), instead of the more precise bounds (5.15) and (5.16).
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Therefore
— — ~(k)
DLGO) = [ G EL )€~ mdn

The desired bounds (5.14) follow using the bounds g, |~ < (2°% + 210’“)’12*(1/2*5%, see (5.19).

We prove now the bounds (5.15). Assuming k < 0 we estimate

€8 P g k2191 || o S 22210 5ll2 S 23972 - 27 k2 (40,
and, using (5.12),
e o o9l e S (L4 1) 72915 1

S
< L+ [t 72222 g1 5l 12
<(1+ |t|)*3/223j/2 .9—akg—(1+8)j

Therefore
[l Pl o191 || oo S 27 %% min(27HAI288/2 (1 4 |¢])=3/220/270)7) (5.20)
Similarly,
€A Pl o ro 9,5 || o S 1825 ]10r S 27207 H0H5/2kg 700,

and, using (5.12),

S @+ 1)l g2l

S (L4 [t) 72272l go 5| 2

< (14 |t])~3/22%9/2 . g-akg2Bkg-(1=p)j

Heitl\a P[k72’k+2]927j HL°°

Therefore
168 Papeympga. | e S 27 min(2(1HAT/Dhg 0 (1 4 |o)) 3290/ 2+9)i920%) (5.21)
Similarly, if £ > 0 then we estimate
H ztAgP[k ) k+2]g17]“[,oo < 2316/2”917],”L2 < 93k/2 | 2710k27(1+ﬁ)j,

and, using (5.12),

S (L4 [t)722%% g1 g s

S (L [e]) 72224252 gy | 2

<1+ |t|)73/223k23j/2 . 9—10kg—(1+8)j

||6itA" P2 k421915 ||Loo

Therefore,
€2 Py_a o 91| oo S 27%F min(27 ORI (1 4 |¢])3/22(1/2=8)7), (5.22)
Similarly,
€2 Pl—a er2192, || oo S 1251100 S 2710%2779

and, using (5.12),

[eith S L+ 18)7322% | go sl 1
< (L [t) /22529972 gy |
<

1+ ‘t|)—3/223k23j/2 . 9—10kg—(1-B)j_

P2 k42)92,; HLoo

Therefore _ ) )
€% P s gyo192,]| e S 27F min(279, (1 + [¢])73/220/2+8)3), (5.23)

The last bound in (5.15) follows from (5.22) and (5.23).
(iii) The desired bounds follow directly from (5.13), (5.15), and (5.16), by summation over j. O
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Lemma 5.3. Assume that k,ki,ko € Z, and p,q € [2,00] satisfy 1/p+1/q=1/2. Then

H /Rg ek(©)en, (€ = mpr, (1) - F(€ = () dn) S I lzellgllze- (5.24)

More generally, if k1 < ko and Ap.py 1, : R xR — C satisfies
sup sup Af‘p‘)\l_‘al\DgDZAk;kth (z,y)| <1, (5.25)

lz|e[2k =1 2R 1], [y|e[2P1—1,2k1 1] |p|,|o]€[0,4]

for some A, \1 € (0,00), then
| [ A€, = n(©p (€~ nhona () - Fie = mam |,
R3 € (526)

S @+ 20+ 225 )| fll o gl o
Proof of Lemma 5.3. The bound (5.24) follows from Plancherel theorem. To prove (5.26), letting

2
Lg

~

F(§) = /W Apiter k2 (6,6 = M r(E)or, (€ = Mo, (0) - F(E—=m)g(n) dn

we calculate
FE@ =c [ 9 Kk aa i) dydz,
R3 xR3
where
Kk iy (039, 2) 1= /RS - @AM A(E ) or (€)pr, (0) Pk, (€ — 1) dEdn.
X
By integration by parts, using (5.25),

_ —4 — —4
A< o3k Iwzw o JijL)
|Kk;k1,k2(xay7z>| N2 (1+ 2=k 1 )\ 271+ 92—k + A ’

and the desired bound (5.26) follows. O

The following general oscillatory integral estimate is used repeatedly in the proofs.

Lemma 5.4. Assume that 0 < e < 1/e < K, N > 1 is an integer, and f,g € CN(R™). Then

| [ elgda] Sy NS M IDzgl ], (5.27)
" lp|<N
provided that f is real-valued,
Vafl =2 Lsuppg,  and  [|DEf - Leuppgllre Sn el 2 < lp| < N. (5.28)

Proof of Lemma 5.4. We localize first to balls of size ~ e. Using the assumptions in (5.28) we may assume
that inside each small ball, one of the directional derivatives of f is bounded away from 0, say |01 f| Zn 1.
Then we integrate by parts N times in z1, and the desired bound (5.27) follows. O

5.2. Analysis of the functions ®7** and Z*". For o € {1,...,d} and pu,v € Iy,

n= (O’lbl), v = (0’21,2), 01,09 € {1, ce. ,d}, L1,l2 € {+, —}, (529)

recall the definitions of the smooth functions A, : R — (0,00), ®7*¥ : R? x R® — R and Z¥V :
R3 x R? — R3,

Ao (§) = (07 + c2IE1)2,
B (€,0) = Aa(§) = Aul€ —m) — Ao (), (5:30)

2, (n—¢€) 2,1
Ep,,l/ — v q)o;u,l/ I g1 _ g2 .
(&m =( n )& m) L1 (b?n n C§1|77 — §|2)1/2 L2 (ng i 632|n‘2)1/2
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In this subsection we prove several lemmas describing the structure of almost resonant sets, which are
the sets where both |®7#¥ (£, n)| and |2 (£, n)| are small. These lemmas are used at several key places
in the proof of Proposition 4.1. Recall the sets

‘CZ 517192,51,52 {(5777) S Rg X Rg : |§| € [2k_472k+4]7 |§ - 77| € [2k1_452k1+4]7 |n| € [2k2_4’2k2+4}7

. (5.31)
[E7(Em)] < 61, [RTH(E,m)| < b2}
defined for o € {1,...,d}, pu,v € Iy, k, k1,ke € Z, 01,062 € (0,00).
Lemma 5.5. (i) Assume that
k < —D/100, 5,2k < 9= DP/100, 5y < 27 D/100, (5.32)
Then
Ly le,jkg 51,80 =0. (5.33)
(i) Alternatively, assume that
max(ky, ko) > D/2, §; < 2~ Po—dmax(kika) 8§y < 2 Do max(kik2) (5.34)
Then
L sy, = 0 (5.35)

Proof of Lemma 5.5. (i) Assume that there is a point (¢,1) € Ly}"" 5 5. Since k < —D/100 and
| B (¢,n)| < 27P/100 using the assumption |b, =& by, £ by,| > 1/A (see (2.28)) it follows that
ki,ka > —Ca, (5.36)
where, in this proof, we let C4 denote constants in [1,00) that may depend only on A. Moreover,
03+ IEP? — (8, + Bl — PV — a8, + B, )72 < 27D,

Since
|02 + RIEP)Y2 = by | + |07, + 2 In — €)'/ = (2, + &, 1nf) /2] < Ca2 P/,
it follows that

| = bo + 01 (b2, + 2, In|? )24 (b2, + 2 |nl*) 1/2’ < (427 P/100, (5.37)
Using the definitions (5.29)—(5.31), we see that
e (n—2¢) 2,0
ot Coa C4d
[ e e e | <O
Since ) )
‘ Coy (nig) _ Coy T ‘ CAQk kz
(02, +cZ In—&H)Y2 (02, +c2, )21~
it follows that ¢1 - t9 = —1 and
2.1 o ’
7L - 92 < Ca(dy + 2F7F2),
’ (02, +c2 [n[»)V2 (02, +cZ,In[*)'/?
Therefore

(5,5, = oy )l + (b7, ¢y — b, ¢5,)| < Ca(8:2%"2 + 28452),

02701 g1 02

In view of the assumption in the second line of (2.28), this implies that

|CoyCl, = oyl [N < Ca(6:12%52 4 284H2),
|b01 Cop — bz272 01| < CA( 22k2 + 2k+k2)'

Therefore
Coy — Con| < Ca(61 +287F2) and  |by, — by, | < Ca(6,2%F2 + 2FFk2),
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which shows that
|03, + 3, Inl*)2 = (8, + 2, In[*) /2] < Ca(6:2" +2°).
This is in contradiction with (5.37), since ¢1 - 15 = —1 and 2% 4 §;2%2 < C 42~ D/100,
(ii) As before, assume that there is a point (§,1) € L7175 5, Assume that n = re, £ = se + v,
r € [2ke=4 2kt e € §2 s € R, v-e = 0. The condition |Z(£,7)| < §; gives

" o, (7 = 5) + i o ‘ + Co, v < Cady.
(03, + 2, ((r=s)2+ )2 " 707, +c2,r)/21 (03, + 2, ((r—s)2 + [v])1/2
Therefore
gmin(kik2) > cil ol < C 45, 2max (k1 kz) 5%
re 25270, 2] | € [2870, 2K 0] jr — | € 2K 70, 2M ], '
and 2 (r—s) 2 r
R AN o R R e e R o
Assume first that
min(ky, k2) > max(kq, k2) — D/10. (5.40)

Using (5.38)—(5.39) and the assumption (5.34), and recalling that |¢,, — ¢y, | € {0} U[1/A, 00), see (2.28),
it follows that

Coy = Coy, tita(r —s) <0, |bo, |7 — 8| = bg, 7| < O 6, 23 max(kika), (5.41)
As a consequence of the last inequality and the assumption |b,, — by,| € {0} U [1/A, c0),
cither |s| > gmax(kik2)=D/10 or by, = by, and |s| < Cyd,23 max(kkz) (5.42)

To use the condition |®73#¥ (£, n)| < b2, we estimate first, using (5.38) and (5.40),
2

b .
= g —3min(k1,k
b?.l+C§1\77—§|2_callr—s\+m+oA(2 (k1 k2)).

b2 -
/b(272 + 0(272‘77 2= cpr+ QCazr + OA(273mln(k31,k?2))'

o2
Therefore, using again (5.38) and (5.41),
@74 (€ )| = | Vb2 + c2IE]* — 1y Jb2, + 2 In — &J2 — 124 /02, + 2, In]?|
b2
= ‘LQ\/b?T + 252 — 1119 (cgl\r — s+ %) — (cgzr +

2¢5,|r — s
= ‘Lm/bg + 282 —co S+ 5

b2

2
2¢y,T

)‘ + OA(2_3 min(kl,kQ))

b2 b2 3 min(kr k2)
o1 _ g2 O 2— min 1,Kk2 .
Coy (1 —5) 20017"‘ +0al )

(5.43)

We examine now the alternatives in (5.42). Clearly, if [s| < C46;23™8x(F1.h2) then |®7i¥ (€, n)| > C*,
in contradictions with the assumption |[®7#¥ (¢, n)| < d,. On the other hand, if |s| > 2max(ki.k2)=D/10,
the using (5.43) and the assumption |®7#¥ (£, n)| < dg, it follows that

b2 b2 b2
D el I C 42~ Do~ max(hika) (5.44)

Co = Coy, Los| = s,

We compare now with the last inequality in (5.41), written in the form
bos _ _bo

r |r — s

‘ < CA2—D2— max(kl,kg)'



KLEIN-GORDON SYSTEMS IN 3D 53
Letting \ := by, /r € [C;'27F2,C 4272, it follows that |b,, —A|r—s|| < C42~P. Using the last inequality
in (5.44) it follows that |b2 — A\2s2| < C42~P. Therefore

by — Ar| 4 |bey, — Alr = s|| + |be — Als|| < Ca277,

which is in contradiction with the assumption in the first line of (2.27).
Assume now that

min(ky, ko) < max(ki, ko) — D/10 and ki < ks. (5.45)
Using (5.38)—(5.39) and the assumption (5.34) it follows that
2 |r—s|

< O, 2 2max(kyk2) 5.46
| R <O (5.46)

tite(r —s) <0,

— Co,

Since |r —s| < 2k+6 < €27 P/10gmax(kik2) it follows from the inequality above that c,, > ¢q,, therefore
Co, > Cop + 1/A. Using again the last inequality in (5.41), it follows that |r — s| < Ca and s > 2k2710,
Therefore we can write

D7 (€, m)| = |V/BE + ZIER — 11\ 02, + 2, | — €2 — 127 /02, + 2, [nf?|

- ‘cgs — 11 /02, 42 |r—s]? — LQCUZT‘ + OA(Q_’”).

Using the assumption |®73#¥ (&, 7)| < d2 and the inequalities |r—s| < C4 and s, > 252710 proved earlier,
it follows that ¢, = ¢4y, t2 =1, and

|conlr — 8| — /b2, + 2 Ir —s|?| < Ca27 %2,

It is easy to see that this is in contradiction with the last inequality in (5.46) and the inequality c¢,, >
Co, + 1/A proved earlier.
The proof in the remaining case

min(kl, k2) S max(kl, kg) - D/].O and kl Z kg

(5.47)

is similar. This completes the proof of the lemma. O

To deal with the spacetime resonant region we need a more precise description of the sub-level sets of
the functions ®7# and |2#¥|. The estimates in Lemma 5.6 and Lemma 5.8 below are used only in the
proof of Proposition 4.11.

We define the functions r#* : (0,00) — R, u = (01t1), ¥ = (02t2), in the following way:

(a) if ¢1 - 19 = 1 then r#¥(s) is defined, for any s > 0, as the unique solution r € [0, s] of the equation

cil (s —7)2 C§27"2 B
2 2 2 B2 52 =0 (5.48)
b2 +c2 (s—) b, +c2r

(b) if {t1 - 12 = =1, coy > Cop} OT if {11 - 12 = —=1,¢5, = Cpyy oy > by, } then 7 (s) is defined, for any
s > 0, as the unique solution r € [s, 00) of the equation

4 2 4 2 2., 432 2 42
(€5, Coy = CoyCo ) (1 —8)" 45 b5, (1 = 5/7)% — 5, b5, = 0. (5.49)
(¢)if {t1-ta=—1, ¢, < Cop} orif {1112 =—1, o, = Cpy, boy, > by, } then r#¥(s) is defined, for any
s > 0, as the unique solution r € (—o0, 0] of the equation
(k2 —cr 2 r*+ci b2 r?/(r—s)?—ch b2 =0. (5.50)
The function r*¥ is not defined (nor needed) when {i1 - to = —1, ¢y, = Co,, by, = by, }. Notice that

riv is well-defined since the functions in (5.48)—(5.50) are strictly monotonic (as functions in r) and
change sign in the respective ranges.
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Lemma 5.6. Assume that o € {1,...,d}, p = (o1t1),v = (02t2) € T4, k,k1,ke € [-D,2D] N Z,
§ €10,271°P) and assume that there is a point (£,1) € R? x R? satisfying

€ € [2%74, 28, gl e [2Rmt 2R, el e 2Rt 2R IERT(g )] < 6. (5.51)
Then, with r*" defined as above and letting p*" (§) := r*¥(|€])&/1€],
[n—p""(€)] <2°P6  and  EMV(E,pMU(E)) = 0. (5.52)

Moreover, for any s € [2k=6 2k+6],

min (|4 )(s)], [1 — (@) (s)]) > 2747

5.53
(D2rv)(s)| < 2297, p=0,1,...4 (5.53)

Proof of Lemma 5.6. We remark first that the existence of a point (£,n) satisfying (5.51) implies non-
trivial assumptions on k, k1, k2 and the coefficients ¢1, t2, ¢sy , Coy,y boy , bo,- The conclusions of the lemma
depend, of course, on the existence of a point (£,7n) satisfying (5.51).

We examine the formula (5.30) and assume that £ = |¢|e for some unit vector e € S2. If n = pe + v
with p € R, v € R?, and v - e = 0, then the condition |[=#¥ (&, n)| < § shows that

L102 v L262 v
‘ ‘ <3,
VT ) | VI, ¥ %, (T ) 5
‘ ucs, (p = [€]) L2C5, P ‘<5
Vb2, + 2 (02 + (p — [€)?) \/b + ez, ([v]* + p?)
In particular, using the second equation in (5.54),
2 2
L1164, t2Cs, “ —lok—k
‘ P‘ Z CA 2 17
VR TP+ o) | VE, + (Pt )

where, in this proof, the constants C'4 € [1,00) may depend only on the parameter A. Since |p| < C42F2
it follows that

1 c? Loc?
’ g1 g2 ‘ > 0212k7k17k2-
Vbz, e, (WP + (p = g)? \/b + 5, ([v[* +p?)
Using now the inequality in the first line of (5.54) it follows that
lv| < C 2k tha=kg |p| € [2k276, 2k2F6] |p = [€]| € [2F178, 251 46], (5.55)

We analyze now more carefully the inequality in the second line of (5.54). Using (5.55) we see that

‘ 2 (p—1€]) 2 (p—1€) ’ ‘ 2.0 ) ‘<
V2, +031 WP+ (p— €)% 2, +C§1p—\§| V02, + (P +p%) B2, + 2 p?

Therefore

< 46. (5.56)

Llc ) L2C§2P
‘ Vo5, + c?n —[€N? Vb3, + 2,00 ’
We consider two cases: if ¢1 - 1o = 1 then p € [0,|£]|] and the equation (5.56) shows that
AEl—p?
5t (6l —p)? 0, + 3,07
In this case we let s := |£| and use the definition (5.48). Using also (5.55) it follows that |p — ¥ (s)| <
Ca25P6, and the desired conclusion (5.52) follows in this case.

‘ < Cuf.




KLEIN-GORDON SYSTEMS IN 3D 55

Assume now ¢; - 19 = —1 and either ¢;, > ¢,, or {¢s;, = Co,, by, > by, }. Using (5.55), (5.56), and the
assumption (2.28), it follows that ¢} b2, > i b2 , p € [[€], 00), k1 < ko + 10, and

ct (p—1€])? Canp?

ey
Therefore
64,2, — b o~ 6 + 2,00 €1/ — cb 8, < Cal1 + 2%,
Recall that either (¢Z —¢2)) > Oyt or et b2 —ct b2 > C;'. Then we let, as before, s := |¢| and use
the definition (5.49). The conclusion (5.52) follows, using also (5.55).
The argument is similar if ¢1 - 1o = —1 and either ¢, < ¢4y O {Co; = Coyy boy < by, }. Using (5.55),
(5.56), and the assumption (2.28), it follows that ¢ b2 > ¢ b2, p € (—00,0], ko < k1 + 10, and
A (o — €2 A 2
T e e L
o1 o1 o2 o2
Therefore

(64,62, = b, 2P + 02, I = b 12, | < Cabl1 42,

Then we let s := |£| and use the definition (5.50). The conclusion (5.52) follows, using also (5.55) and
the fact that either (c2, —c2 ) > C;' or ¢k b2 —ct b2 > O "

g1 02
To prove (5.53) we let, for simplicity of notation, r(s) = r#*¥(s). We differentiate (5.48), so
cilbgl(s—r) cﬁzbizr ] (s) = cﬁlbil(s—r)
2 2 = 2°
(B, + 2o i, c2r] 0, + b, s 1))

Using again the equation (5.48) it follows that

2 4.3
r'(s) = by o, .
b2 ct r3 +02 ck (s—1)3

The desired bounds in (5.53) follow easily in this case since r(s) ~ 2¥2, s — r(s) ~ 2.
Similarly, we differentiate (5.49) to get
2,2, — ey ) b 2 s)r] 1(9) = [rP(eh, 2, — b, e2) + e 2.
which gives
A v (r—s
T/(S):1+ o1 0'2( )

4 -2 -4 2 3 4 p2 o
(601002 002001)r +CU1b025

The desired bounds in (5.53) follow easily in this case as well.
Finally, we differentiate (5.50) to get

[(c5,c5, — co,c0,)(s = 1)° + cg,by 5] - 17(s) = co, b7,

which gives

T/(S) = 0321)317" s
(€5,¢5, = 5,65, (s —1)% + 5, b2 s
and the desired bounds in (5.53) follow easily. O

Remark 5.7. The conclusions of Lemma 5.6 hold, in a suitable sense, without making the assump-
tion k,ki,ky < 2D. More precisely, to prove the bound (4.28), we need the following slightly stronger
version: assume that o € {1,...,d}, p = (o111),v = (02t2) € Iy, k,k1,ke € [-D,00)NZ, 6§ €
[0,2-8P2—4max(kik2)] - and assume that there is a point (€,1) € R® x R? satisfying

€] € [2F74, 2R ), |y € (2R 2kt (g — g e 2 2 ER ()| < 6. (5.57)
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Then, with r*" defined as in (5.48)—(5.50), and letting p*¥(§) = r# (|§|)£/\§|
=@ S 2 ERIGand - B (g P (€)= 0. (5.58)
The proof of (5.58) is similar to the proof of (5.52) given above.

Lemma 5.8. As in Lemma 5.6, assume that o € {1,...,d}, p = (o111),v = (02t2) € Ly, k,k1,ka €
[~D,2D] N Z, and assume that there is a point (£,m) € R® x R? satisfying
€] € 28428, e 2Rt 2R ] el e 2R 2R E(g ) <2710 (5.59)
We define the function W7V : [2F=4 2k+4] R
YTk (g) := PTHY (se, r ¥ (s)e)
2 2 2\1/2 2 2 271/2 2 2 211/2 (5.60)
= (b2 + o) 2 = [b2, 4 2 (1Y (s) — )] T — o [b2, 4 2V ()],

for some e € S? (the definition, of course, does not depend on the choice of e). Then there is some
constant ¢ = ¢(t1, L2, Co, bo, Cop s boy s Cogs by ) € {—1,1} with the property that

if s €284 2] and |07 (s)] < 2720P then (0,0 (s) > 2720P, (5.61)

Proof of Lemma 5.8. For simplicity of notation, let ¥(s) := U7#¥(s) and r(s) := r*¥(s) in the rest of
the proof. Recalling that =" (&, r*¥(|€])&/|€]) = 0, it follows that

2 2 _
V() = ——o 1% (T(S) s) . (5.62)
V02 +c2s? b2 42 (r(s) — s)?
Recall the identity, see (5.56),
ORI 563
Vb2 2 (r Vb2, 42
Recalling (5.48)—(5.50), in proving (5.61) we need to consider ﬁve cases,
(t1,02) = (1,1)  and  r(s) € [0,s], (5.64)
or
(t1,02) = (=1,1), c¢p, > oy, and  7(s) € [s,00), (5.65)
or
(t1,02) = (1,-1), ¢o, > Cop, and 7(s) € [s,00), (5.66)
or
(t1,02) = (1,-1), ¢o, <Co,, and 7(s) € (—00,0], (5.67)
or
(t1,02) = (=1,1), ¢y <Coyy, and 7(s) € (—00,0]. (5.68)

The desired lower bound in (5.61) follows easily from the identities (5.62) and (5.63), with ¢ := 1, in the
cases (5.66) and (5.68).
We consider now the case described in (5.64) and rewite, using (5.62) and (5.63),

s c2 (s —1(s)) _ s c? ,7(s)

Vb2 + 252 \/b +c2 ( s—r(s))2 B /b2 + 252 \/b +c2r(s)? (5.69)
U(s) = /b2 + 2% — \/b2 +c2 (s —r( \/b +cZ,r(s
If ¢y > ¢5y then ¢2by, > 2 b, (see (2.28)) and the inequality W'(s) > 27197 follows easily from (5.69),

since |s| A4 2%, |r(s)| ma 2%2, |s — r(s)| & 2% Similarly, if ¢, > ¢,, then c2by, > c2 b, (see (2.28)) and
the inequality ¥'(s) > 27100 follows easily from (5.69).

T'(s) =
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On the other hand, if ¢, < min(¢,,, ¢, ), We consider two cases: assume first that
max(Cy,,Coy) > Co + 1/A, min(cy, , Cyy) > Co-

In this case we estimate, using (5.69) and the assumption |¥(s)| < 27200

e (s o)+ 2,1 s
V2 + 2 (s—7r(s)2+ /02, +2,r(s)2 /b2 +c2s?
LAl () s o
B /b2 + c2s?
> 27100,

The desired bound (5.61) follows.

In the remaining case
Co = Coy = Coy,

we show that |¥(s)| > 27107 which would suffice to prove (5.61) (since the hypothesis in (5.61) does not
hold). Indeed, the identity (5.63) shows that

b?,lr(s)2 — b§2(s —r(s))?=0.

Letting & := by, /by, = (s —7(5))/r(s) € [1/A2%, A%] and using also the assumption |b, — by, — by,| > 1/A4
(see (2.28)), we estimate

|—‘ b2 + 252 — \/K2b2 + c2K2r( \/b2 +c2r( ‘
> 279\ (82 + 25%) — (ks + 102, + car<s>2>
> 27300 by — (K + 1)by, |

> 273DCZI,
as desired.
We consider now the case described in (5.65) and rewite, using (5.62) and (5.63),
¥(s) = s ez (r(s) —s) _ cts 2 r(s)
NI +c?,1 )—5)2 VB2 B2+ r(s)? (5.70)
W(s) = VB2 + 5+ \ 12, + 2, ( 2\ 12, + 2, (r(5)2).

If ¢y, > o then 2 by > c2b,, (see (2.28)) and the inequality —¥'(s) > 271°P follows easily from (5.70),
since |s| a4 28, |r(s)| ma 272, |s — r(s)| =4 2¥'. On the other hand, if c,, < min(c,, c,,) then, as before,
we consider two cases. If

max(¢y, Coy ) > Cop + 1/A, min(¢y, Co, ) > Co,

then, using (5.70) and the assumption |¥(s)| < 27297 we estimate

1oy c2s 3 2 7‘(5) — ¢, (r(s) — 5)
U'(s) = VI + 22 B+ r(s)? — /B2, + 2, (r(s) —5)°

>C2S—C r(s )+co'1( (s )_3)_2710D

> 2—10D7

as desired.
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On the other hand, if

Coy = Co = Coy

we show that |¥(s)| > 27100 which would suffice to prove (5.61) (since the hypothesis in (5.61) does not
hold). Indeed, arguing as before, the identity (5.63) shows that

b?,lr(s)2 — b?,2 (r(s) — 3)2 =0.

Letting x := by, /by, = (r(s) — s)/r(s) € [1/A%,1] and using the assumption |b, + by, — by,| > 1/A (see
(2.28)), we estimate

W(s)| = | VBB + B2\ W02, + rr(s)? = \J02, + c2r(s)?)

> 279P| (2 + 25%) — (1= 0 (2, + 2r(5)°)

> 273PC by — (1 — K)by,|
2 273DCA21’

as desired.
The analysis in the case described in (5.67) is similar. This completes the proof of the lemma. O
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