BEYOND MEAN FIELD: ON THE ROLE OF PAIR
EXCITATIONS IN THE EVOLUTION OF
CONDENSATES.
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This paper is dedicated to Professor Choquet-Bruhat, whose work on nonlinear
wave equations was an inspiration to us earlier in our careers

1. INTRODUCTION

ABSTRACT. This paper is in part a summary of our earlier work
[17, 18, 19], and in part an announcement introducing a refinement
of the equations for the pair excitation function used in our previ-
ous work with D. Margetis. The new equations are Euler-Lagrange
equations, and the solutions conserve energy and the number of
particles.

2. INTRODUCTION

The problem, which has received a lot of attention in recent years, is
concerned with the evolution of the N-body linear Schrédinger equation

%%%v(t; -) = Hyvyn(t, ) with

Un (0,21, -+ 2n) = do(x1)do(2) - - - Po(TN)
||¢N(t7 ')HLZ(RSN) =1

The Hamiltonian is an operator of the form

1

N
HN:ZAIJ.—N UN(._’ITZ‘—ZEJ')
j=1

i<j

where vy (z) := N3%u(NPz) with 0 < 8 < 1 models the strength of two
body interactions. Notice that if § > 0 then vy (z) — d(x) as N — oo.
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tations. The authors would like to thank the Department of Applied Mathematics
at the University of Crete and ACMAC for their hospitality during the preparation
of the present work.
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For simplicity we assume that v € Cy and v > 0. The goal is to show,
in a sense to be made precise,

77Z)N(ta L1, ,Z'N) = eiNX(t)qb(t? $1)¢(t’ 1'2) U ¢(t7 mN) (1)

where ¢ satisfies a suitable non-linear Schrodinger equation. In partic-
ular, this approximation is not true in L*(R3V).

The motivation for this problem is that in the presence of a trap the
ground state of Hy looks like

Uy (21,2, ,2n) 2 ¢o(x1)do(T2) - - do(zN)

This is suggested by the result of Lieb and Seiringer who showed in
[26] that

" (2, 2") = go(z)do(2”)
where

AN (z,2) :/\IIN(:E,:CQ,--- LaN)YN(2 2, ay)dey - day

Here ||¢o||z2 = 1 and ¢y minimizes the Gross-Pitaevskii functional. See
[25] for extensive background.

The reason for the recent attention to this problem is two-fold. On
the one hand experimental advances during the last twenty years made
the creation and manipulation of condensates in the laboratory possi-
ble, on the other hand recent mathematical developments made possi-
ble the rigorous treatment of the equations when the number of parti-
cles, namely N, is large.

While this is a ”classical PDE problem” (as opposed to a Fock space
problem), the PDE approach to this problem has only been studied
systematically during the last 10-15 years, in the series of papers of
Erdés and Yau [8], and Erdds, Schlein and Yau [9] to [11]. See also [7].
These papers prove

0 (t oz, a) = ot x)o(t, ') (2)

in trace norm as N — oo, and similarly for the higher order marginal
density matrices i, where k is fixed. The problem becomes more
difficult and interesting as the parameter [ in the definition of vy
approaches 1. The strategy of these papers is based on the older work
of Spohn [30]. Recent simplifications and generalizations, based on
harmonic analysis techniques and a ”"boardgame argument” inspired
by the Feynman diagram approach of Erdos, Schlein and Yau, were
given in [21], [22], [6], [3], [4], [5]. See also [14], [27] for a different
approach.
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The symmetric Fock space approach to the problem is much older.
It originated in physics, with the papers by Lee, Huang and Yang [23]
in the static case, and Wu [31] in the time-dependent case. See also
[2]. It continued with the mathematically rigorous work of Hepp [20],
and Ginibre and Velo [15].

Motivated by the goal of obtaining a convergence rate to solutions of
NLS in (2), Rodnianski and Schlein resumed the rigorous Fock space
approach in [28]. This paper, as well as the older work of Wu, served
as an inspiration for our work. Our goal is to obtain a refinement to
(1) which provides an L?(R3") and Fock space estimate. This leads to
the introduction of the pair excitation function k.

We also mention the recent preprint [1] where a similar approach
(but with an explicit choice of pair excitation function k) is used to
prove convergence of the density matrices in the critical case f = 1.

3. FOCK SPACE

In this section we briefly review symmetric Fock space, following the
notation of [19]. See [28], for more details. The elements of F are
vectors of the form

W) = (o , vi(z1) , alar,22) , ... )

where 1y € C and 1y, are symmetric L? functions. The norm of such a
vector is,

)% = () = ol + 3 [[ohall e -
n=1

The creation and anihilation distribution valued operators denoted by
a’ and a, respectively which act on vectors of the form (0, - -+, ¢,-1,0, - -
and (07 71/}n+1707"') by

1 n
a;(@bn_l) = % Z (5(1’ — xj)'(/)n—l(xly e ,l’j_l,l'j_H, e ,l’n>
@x(wnﬂ) =vVn+ 1¢n+1([£]>$1; e 7-Tn)

with [z] indicating that the variable x is frozen. The vacuum state is
defined as follows:

0) :=(1,0,0...)

and a,|0) = 0. One can easily check that [a,, a;j = §(z — y) and since
the creation and anihilation operators are distribution valued we can
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form operators that act on F by introducing a field, say ¢(x), and form

a(o) :—/da: {é(x)aw} and a* (o) :—/daz {6(x)a}

where by convention we associate a with ¢ and a* with ¢. These
operators are well defined, unbounded, on F provided that ¢ is square
integrable. The creation and anihilation operators provide a way to
introduce coherent states in I in the following manner, first define the
skew-Hermitian operator

@)1= [ de {éa)a, - d(a)az) 3)
and then introduce N-particle coherent states as

[(¢)) := e VNAD]0) . (4)

This is the Weyl operator used by Rodnianski and Schlein in [28]. It
is easy to check that

VR g) ( Lot ) with ¢, = (e VN7 /nl)'"?.
j=1

In particular, by Stirling’s formula, the main term that we are inter-
ested in has the coefficient

ey~ (2rN) V4 (5)

Thus a coherent state introduces a tensor product in each sector of IF.
For the construction analogous to (3) involving quadratics, start with
the Lie algebra of real or complex symplectic "matrices” of the form

v () i)

where d, k and [ are kernels in L?, and k and [ are symmetric in (z,y).
We denote this Lie algebra sp(C) or sp(R) depending on whether the
kernels d, k and [ are complex or real. The natural setting for us (which
will insure that the Fock space operator eZ(%) defined below, is unitary,
see also the appendix of [18]) is the subalgebra sp.(R) = Wsp(R)W~!

where
1 /1 4
w=s (i)

The elements of sp.(R) look like

_ (id(z,y)  k(z,y)
L"(ku,y) —z’dT(x,w) (6)
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with L? kernels d complex and self-adjoint, k& complex and symmetric.

Remark 3.1. The corresponding group elements E € Sp.(R) (in par-
ticular £ = el L € sp.(R)) satisfy the following three properties:

o E_ commutes with the real structure o defined by o(¢, ) =
(1, @), in other words F is of the form

2= (Gay) G

e F belongs to the infinite dimensional analogue of U(n,n) , in
other words

=0 )= )

e F is in the symplectic group, meaning

=G o)e- (5 0)

In fact, any two of the above imply the third. The conceptual rea-
son for this is that the symplectic inner product ((¢1, 1), (o2, wg)) =

[ ¢12— [ 12 and the "U(n,n)” inner product <(qz$1, 1), (¢, 1/)2)> =
[ ¢162— [ 11 are related by <(¢1,¢1), (¢2,@/}2)> = <(¢1,¢‘1),U(¢2,¢2)>-

See Folland’s book [13] for more along these lines in the finite dimen-
sional case.These matrices are called Bogoliubov rotations in [1].

Our approach is based on the map from L € sp(C) to quadratic
polynomials in (a,a*) in the following manner,

w0 =3 [ (3 SG) ()} 0
_ —% / drdy {d(z, y)aza;, + d(y, )a%ay + k(x, y)aia’ — Iz, y)asay}

This is the infinite dimensional Segal-Shale-Weil infinitesimal repre-
sentation. The group representation was studied in [29]. The crucial
property of this map is the Lie algebra isomorphism

[Z(L1). Z(Ls)] = Z([L1, Lo]) (8)

Notice that if L € sp.(R), then L has the form (6) and Z(L) is skew-
Hermitian, thus eZ) is a unitary operator on Fock space. For the
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applications that follow we will only use the self-adjoint elements of
spe(R)

= (o 5") .

and the corresponding

B(k) = I(K) = % / dady {F(t, 2. y)azay — k(t,z.y)atal} . (10)

= (i ") -

We easily compute

where
1
sh(k)::k+§kokok+..., (12a)
1—
ch(k) :== 5(3:—3/)—1—5]{0/{—1—... , (12b)

This particular construction and the corresponding unitary operator

e® were introduced in [17].

The Fock Hamiltonian is

H=H, - NV where, (13a)

Hy = /da:dy {A0(x —y)asa,} and (13b)
1 k%

V= 3 / dedy {vy(z —y)aiasaza,} . (13c)

It is a diagonal operator on Fock space, and it acts as a regular PDE
Hamiltonian in n variable

n 1
Hm PDE = ZAxy — W NSBU(NB(ZE]' — Jfk))

J=1 TiFTy

on the nth component of F.



4. OUTLINE OF OLDER RESULTS

Our goal is to study the evolution of coherent initial conditions of
the form

|Yewact) = eV NAD) |0) (14)
The papers [17, 18, 19] propose an approximation of the form
Wappr> — G—WA(¢(t))€—B(k(t))‘0>’ (15)

and derive Schrodinger type equations for ¢(t,z), k(t,z,y) so that
|¢emct(t)> ~ eV X(t)‘wappr(t», with x(¢) a real phase factor, and find
precise estimates in Fock space, see Theorem (4.1) below. Our strategy
is to consider

‘ wmd> — B VNA®) jitH ,—VNA(0) |0>

and then find a "reduced Hamiltonian” H,.; so that

1
2at‘w7’ed> = Hred|wred> . (16)
The reduced Hamiltonian is

1
Hreq = A (3teB) e B
1
+ b (f (8te‘/ﬁ“4) e_\/NA -+ e\mAfHe_ﬁA) e B
1

It can be written abstractly as a composition (in space only) of opera-
tors

_15 B_VNA 10 \/ﬁAfB
Hred—ga—i‘e e 18t+H e

Explicitly it is
Hyea = NPy + NI/QGB'PleiB
+Hg+I(R) — N V2eBPse ™ - N 1eBpye? (17)

where the various terms are defined below. P, indicate polynomials of
degree n in a,a* to be given explicitly:

Poim [ o] 0di—d0) ~ vof

1/da:dy{wv<x—> DPIsw)PY . (18)

2
Py = /da; {h(t,z)a} + h(t,z)a, } (19)
=a*(h(t,) + a(h(t,-))
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where h := —(1/i)0,¢ + Ad — (v * |¢]?) .

1 * *
He = i/dxdy {—gN(t, z,y)a,a, — gn(t,y, fﬁ)%ay} (20a)

where (20b)
gN(tv iL’,y) = —Ax(S(ZL‘ - y) + (UN * |¢|2)(t7 x)d(a: - y)
+ UN(x - y)a(ta $)¢(t, y) (QOC)
and
R:%(g _K—i-[G eK]e + el Me K =

_( W (ch(h) —S(sh(k))>o<Ch(/f) —sh(k>> 1)
S(sh(k)) ~ Wi(ch(k))

+ B Me K

where S describes a Schrodinger type evolution, while W is a Wigner
type operator by

1 1
S(s) := 75t +glos+sog and W(p):= b + (g7, p]

while M = ( 0 m) where

-m 0

m(z,y) = —vn(r = y)d(x)d(y), vn(z) = N*Pv(N )

— (9 0
and G := (O —gT)'

Finally,

Py = [AV] = / dady {vn(z — y) (d(y)dsaa, + d(y)asazay) }
(22a)

Py=V =(1/2) /dxdy {on(z —y)aaazay} . (22b)

The main result of [19], building on the previous papers of the authors
and D. Margetis [17, 18], can be summarized as follows.



Theorem 4.1. Let ¢ and k satisfy

1
00— Ao+ (ux +[0)¢ = 0 (23
and either one of the following equivalent equations: (23b)
1)@@m@y—m@ymgom@y:Ov@mm)+m@pngomm)
(23¢)
or else the equivalent non-liner equation (23d)
2)S(th(k)) = m + th(k) o m o th(k) (23e)
where th(k) == ch(k)i1 o sh(k) (23f)
or else the equivalent system of liner equations (23g)
3a) S (sh(2k)) = my o ch(2k) + ch(2k) o my (23h)
30) W (ch(2k‘)> — muy o sh(2k) — sh(2k) oy . (231)

with prescribed initial conditions ¢(0,-) = ¢o, k(0,-,-) = 0. If ¢, k
satisfy the above equations, then there exists a real phase function x
such that

iNx(t C(1+ ) log*(1 +¢
eac(0) = VO )] < CLEDIEALD (o

provided 0 < B < %

The purpose of the present paper is to introduce and study a coupled
refinement of the system (23a), (23h), (23i) which, we believe, is the
correct system describing the case § = 1. These equations occur as
Euler-Lagrange equations, and are written down explicitly in Theorem
(8.1).

5. MAIN NEW RESULTS

Since H,.q is a fourth order polynomial in ¢ and a*,
HT‘ed’O> - <X07X1aX27X37X47O7”')' (25)
Definition 5.1. Define the Lagrangian

E——/%@ﬁ (26)

The new, coupled equations for ¢ and k£ that we introduce in this
paper arc X; = 0 and X5 = 0.
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We first prove that £ is indeed the Lagrangian for these equations.
We start by showing ”abstractly” that

(Z—)%O = \/N/ (X1 (t, z)ch(k)(t, z,-) — X1(t, z)sh(k)(t, z,y)) dz (27)
5X0 1 ——

5 = ﬁch(k:) o Xy o ch(k) (28)

where ( = th(k) = Ch(kj)_1 o sh(k). We then compute explicitly the
zeroth order term Xy(t) in Hred’0> (which provides the Lagrangian
density for our coupled equations):

~ Xo(t) = N/da:l {—% (610:¢1) + \V¢1|2}
+ %/dwld@v{\[ﬂqﬁl(bg + %(sho ch); »|?

1
+ 5 / dl’ld$2dl'3vi\i2‘¢18h273 + ¢28h173’2

1 _
+§ </dx1dx2 {—% (Sh1,23t8h1,2) + ‘V1,2Sh1,2|2}

1 — —
+W dtdl’ldl’gvi\LQ{KSh o} Sh)1’2|2 + (Sh e} Sh)l,l (Sh ©) Sh)ga}) .

where sh; » is an abbreviation for sh(k)(t, z1,z2), v), = vy (21 — 22),
etc, and the products are pointwise products, while compositions are
denoted by o. Then we proceed to compute explicitly the coupled equa-
tions X; = 0 and Xy = 0, derive conserved quantities, and formulate
a conjecture. The resulting equations are similar to those of Theorem
(4.1), except that m = —uy (21 — 22)P(t, 21)P(t, x2) is replaced by

O = —un(x; — 29) (qﬁ(t,xﬁqﬁ(t, To) + %sh(?k:)(t,xl, :L’Q)) ,

and similar O(%) coupling corrections apply to the Hartree operator
as well as S and W.

Remark 5.2. The static terms of Xy(¢) (not involving time derivatives)
also appear in the recent preprint [1], but do not serve as a Lagrangian
there.
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6. THE LAGRANGIAN AND THE EQUATIONS, ABSTRACT
FORMULATION

Proposition 6.1. Let k and ¢ be fixed.

d

de
= 2\/N§R/X1 (t,x) (Ch(k)(t, z,y)h(t,y) — sh(k)(t, z,y)h(t, y)) dxdy

Xo(¢+ eh, k) (29)

e=0

In particular, if this vanishes for all h, then X;(t,z) = 0.

Proof. H,.q can be written as

10 s naf 10 _VNA B
Hred*iﬁt‘i‘ee _Zat+H oce e

in the sense of compositions (in space only) of operators. During this
proof, denote H; = —%% + H.

Let h be an L? function and let
A.=+VN(a (¢ + ¢h) — a*(¢ + €h)). Thus we have

Xo(¢p+€h, k) = <eBeA6HteAEeB’O>, |O>>

We compute
A, Ao i 1 .
€ e —A0+—[A0,A0]
e=0 2
N

d
(i
(a(h) = a*(h)) + = [a(9)

~ VN —a 5 —a*(¢),a(h) — a*(h)]
= VN (a(h) — a*(h)) + z‘Ns/qu

and

d
Ao [ &
‘ ( de

d
“A) _ _ [ &
e:O6 > (dG

eAe | A0
e=0
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thus
d

Te) o <eBeA5Hte_A€e_B ‘ O>, ‘O>>

_ <68 [VNa(R) = VNa' (k), e Hye™ | e o), |0>>

_ <[e'3 (VNa(R) = VNa' (h)) 5, B3t e75] o), |0>>
_ < [a(Z) —a* (1), eBeAOHte*AOe*B] 10), }0>>
_ 23%<Hmd\0>,a*(l){0>> =1

where we denoted

b (Wa(ﬁ) . \/Na*(h)) e B = (1) — a*(1)

Explicitly,
e? (a(h) — a*(h)) e ®
= a(ch(k) o h) + a*(sh(k) o h)
— a(sh(k) o h) —a*(ch(k) o h)
[ = \/N(moh_sh(k) oﬁ)
Thus,

[ =2V NR / X\ (t, ) (ch(k:)(t, ,y)(y) — sh(k)(t, z, y)h(y)) dzdy

2R [ (00 X1 sh(k) o 1) ()
O

In order to state the corresponding result for X5, we have to intro-
duce a new set of coordinates for our basic matrices

(4 56)

where
_( 0 k(tay)
K= (e 0 30
The most obvious coordinate system is, of course, provided by k. We
recall the following proposition, proved in [18].
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Proposition 6.2. The exponential map is one-to-one and onto from
matrices of the form (30) (k € L%, symmetric) to positive definite
matrices E satisfying the three properties of Remark (3.1) for which
|l — E||L2 is finite.

For our purposes, a better coordinate system is provided by ( =
B
th(k) = ch(k) osh(k).

Proposition 6.3. There is a bijection between k € L?, symmetric, and
¢ € L?, symmetric, ||C|lop < 1 (op stands for the operator norm) such
that

(3

= B = (é §> ((I—ZOOC)”Q - (3

_( U=CoQ)™* (o(I

o —_
a (CO(I—ZOC)_W (L —-¢
where the square root is taken in the operator sense.

Proof. Given k, define ¢ = ch(lff1 osh(k). The decomposition (31)
is an algebraic identity, and it is clear that ¢ is symmetric and L2
Since I — ch(k)™2 = ( o ¢, we see that |||, < 1. In fact, ||Cv|?, =
lv]|2,—[|ch(k)~tv]|3,. Conversely, given ¢ a symmetric Hilbert-Schmidt
kernel with ||¢|lo, < 1 define E; by (31). It is easy to check that
E¢ is positive definite, satisfies the symmetries of remark (3.1) and
|l — E¢|lus < oo. (HS stands for the Hilbert-Schmidt norm), thus we
can apply Proposition (6.2) and find the corresponding K. O

We also record the following consequence:

Proposition 6.4. Let {, = ( + ¢h (h € L*, symmetric, ||(|lop < 1),
and K. corresponding to (. according to the previous proposition. Then

d Ke —K __ a l_)
%ezoe c = (b —iaT>

with

b = ch(k) o hoch(k)
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Proof. We compute
d
de
B (ch(k)’och(k:) —sh(k) osh(k) —ch(k)’ osh(k) + sh(k) och(k))

e=0

An easy calculation shows that b = —Ch(k)l o sh(k) + sh(k)" o ch(k) =
ch(k) o ¢’ o ch(k). O

We are ready to prove

0X 1 ——
=% — —_¢h(k) o X5 0 ch(k)
& V2
Proposition 6.5. Let k. correspond to ( +€h as in the previous propo-
sition. Then

% e:oXO(d)’ ko) = \/§§R/Ch(k;) o Xy o ch(k)(t, z, w)h(t, z, w)dzdw

In particular, if the above vanishes for all h, then X5 = 0.

0>>

Proof. Let B, = B(k,).

X0(¢, ke) _ <6856\/NAHt€—\/NA6—Be

0),

and
d
- EZOXO(QS, ko) = —2§R<Hmd|0>,¢]0>> (32)
where
_ d B. —-B _ d Ke —K
¢ - dE 5:06 € _I (de 6:06 ©

Using the isomorphism (7) and proposition (6.4) we see that

1 1 ~) o ocC €T1.0
[0) = (10,0, ~ (k) o h o ch(k) (1, 21,22),0, )

where 6 is a real number coming from the trace of the self-adjoint
a. Since Xy is real, i# does not contribute to (32), and the result
follows. OJ
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7. EXPLICIT FORM OF THE LAGRANGIAN

The goal of this section is the following proposition.

Proposition 7.1. The zeroth order term in Hmd}0> (which provides
the Lagrangian density for our coupled equations) is Xo(t) where

— Xo(t) N/dxl ¢13t¢1) + ‘V¢1| }
+ 5 /dxldxgvl_2|¢1¢2 + N(sho Ch)1,2|2

1
+ 5 /dIldSIIle’gvi\f_ﬂ(f)lShQﬁ + ¢28h1)3|2

+% (/d.%’ld.TQ {—C\\S (Shl’gatShl,Q) + |V1’28h172’2}

1 — S
+W /dtdﬂflde‘QUf[_Q{KSh ¢} Sh)172|2 + (Sh e} Sh)l’l(Sh ©) Sh)gg}) .

where shy o is an abbreviation for sh(k)(t, z1, x2), etc, and the products
are pointunse products, while compositions are denoted by o.

The proof follows from several lemmas, which can be proved by ex-
plicit calculations. We proceed to compute X in (25). The only terms
in (17) which contribute to X, are NPy which is already explicit, the
zeroth order terms in Z(R)|0), as well as the zeroth order terms in

N~1eBPie5|0).

Lemma 7.2. The term NPy is given by

NPy = N/dx{ (66 — dor) — \V¢|2}
— ?/dmd@ {U{\f_zwl‘é?ﬁ} :

We used abbreviations v, = vy(z1 — x9), 1 = ¢(x1), etc., and
for the following two lemmas we will denote u; 5 = sh(k)(t, z1,22) and
c12 = ch(k)(t, 1, xa).
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Lemma 7.3. The zeroth order term in Z(R)|0) is

1

1, _ 2
- § (/diﬁdxz {2_Z (Ul,Qatul,z - 8tu1,2U1,2) + |V1,2u1,2| }

+ /dxld@dl‘:a {of,lpruns|? + [pour 3)* }

+ 2§R/dx1d$2d1?3 {U{\Q2¢2U1,3¢1U2,3}

+ 2%/dx1dx2 {U{V_Q(U 9 C)Lgélég} )
Lemma 7.4. The zeroth order term in —]lVeBVe_B‘O> 18

1 -
~ 3 /da:ldxgva_g{(u oc)i2(uoc) s

+|(wom)iaf® + (wou)i(uo “)272} :

8. EXPLICIT FORM OF THE EQUATIONS

In this section we derive the following theorem, thus introducing our
new equations. First, some notation. Consider the kernels

w(:<t7 x, y) = QS(t, I)Qb(t, y)
wy(t, x,y) = sh(k) osh(k)(t, z,y)
and their trace densities
Pec = ‘¢‘2<tvx)
pp(tv ZE) = bh(k) © bh(k)(tv T, ZE)

Here ¢ stands for condensate, and p for pair. In this notation, the old
operator kernel gy defined in (20c) is

gn(t,x,y) = —A0(x —y) + (v * pe)(t, )0 (2 — y)
+on(r = y)we(t, 2,y)
Define the new operator kernel
gn(t,z,y) == =Agd(x —y)
+ (UN * pc)(tv QU)(S({L' - y) + UN(x - y)wc(ta T, y) (33)

+ % ((on * pp) (¢, 2)0(z — y) +on(z = y)wp(t, 2,y))  (34)
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Also denote a.. = (33), v a, = (34) and o = a, + ~a,. Define

1 . _ 5 1 .
S(s) i= =5+ Ghos+sogy and W(p) = —pi+[3h.p

Finally, define O(¢, 1, 22) = —un(t, 21, x2) (¢(t, 21)d(t, 72) + 558h(2k)(E, 1, 22)).

Theorem 8.1. The equation X, = 0 is equivalent to

%@@(tvfﬂl) —Ap— /@(t7 1, 29)G(t, T9)dy + / %Qg(t, 1, T2) (L, z9)drs = 0

The equation Xo = 0 is equivalent to either of :
1) the equation
S(th(k)) = © + th(k) 0 © o th(k)
2) the pair of equations (in fact, 2a) implies 2b))
2a) S (sh(2k)) = © o ch(2k) + ch(2k) 0 © (35)

2b) W (ch(2k)) — ©osh(2k) —sh(2k) 0 O

Remark 8.2. One can go back and fourth between ¢ and ch(2k), sh(2k)
using

) o sh(k) = (1-Co¢)™ 1= (ch(2k) ~ 1)
¢ = sh(2k)(1 4 ch(2k))™*

Proof. A direct calculation for X, shows that
X, = VN (ch—(k)o Hary(¢) + sh(k) om)

where

Hary(9)(t, z1)

- %875(25 —A¢p — /@(t, 21, 2)p(t, 22)d,

v / on (1 — 22)(sh 0 h) (21, 22)(22)ds

+ %(ﬁ(&:l) /’UN(I’l — x9)(sh o sh) (22, z)dxy
In conjunction with Proposition (6.1) this shows that

55 NHary()

which can also be easily verified directly from Proposition (7.1).
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A direct calculation also shows that, if X5 denotes the second com-
ponent of Hred|0>, then

—V2Xo(t,y1,10) = (36)

( (S(sh(k)) — (k) o m) o ch(k) — (W(T(k)) +sh(k) o m) o sh(k:))
+(1/N) / dridry |

(B rshien o) (G sh) o, (s = a2+

ch(yy, z2)sh(zy, ys (bh o bh) x1, o)y (T — x9)+

S 5

(yl, 1'1 LL'Q, Y2 (Sh o Sh) Zy, ZL’Q)UN(Ll'l - $2)+

ch(yy, z1)sh(zy, y2) (sh o sh) (29, 2)un (21 — xg)) +

symm

wn

Y2 (
h(yy, x1)sh(za, yo (sh o ch) (1, mo)on (27 — T2)+
ch(yy, 21) ch(wy, yo) (ch o bh) (1, z2)on (21 — Ig)} .

where symm stands for ”symmetrized”. The time dependance in the
—_—1
last six lines has been omitted. Recalling ( = ch(k) osh(k) =sh(k)o

ch(k)_l, compose on the left with ch(k;)_1 and on the right with ch(k)™*
to get

ch(k) o Xso0ch(k)™' = S(¢) —@—Co@oCJr%N (37)

where N is given by

N(t,y1,v2) ZC(t,yl,yz)(/dx<(s_hosh+shos_h)(t,x,:c)uN(;c—y1)> +

symm

</da:§(t,m,y2)(s_hosh—l-shos_h)(tw,?/l)vzv(ﬂ?—Z/l))

symm

where symm stands for symmetrizing in vy, y». In other words,
N=(Coap,+a,0(
Thus, in ¢ coordinates, the equation X, = 0 becomes

S(C)—@—Co@o(zo (38)
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Now we can get an equation for W (ch(2k)) and S(sh(2k)). We will use
the general formulas

W(f™)=—fT1oW(f)of

W(fog)=S(f)og— foS(g)
S(fog)=S(f)og— foW(9)

Thus

W((l—fof)*l) = (1—@“06)710 (S(OOC—COS(C)) o(l—CoZ)fl

=(1-¢oQ) "o ((@+CO®OC)Z+CO(@+C050C)>(1—COZ)1

Similarly we get a formula for S(sh(2k)), using

S(Co(1=Cog)™)
= (1=¢o0) ™o (8(0) = ¢oS(Q)o¢) o (1~

S(Co(l=Co)™!) =

(1—=CoQ) o <@+C<>@OC+CO(@+C060<)OC> o(l=¢o)™

= ((1-@“02)—1_%)09+@o((1—zog)—1_%)
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9. CONSERVED QUANTITIES

We start by motivating the introduction of some conserved quanti-
ties. Recall the Lagrangian

L(¢,sh(k)) =N / dtdzx, {—% (¢10:01) + |v¢1}2}
+ g / didaydayvl 5|16y + %(Sh o ch)of?

1 ‘
+ 5 / dtdl’ldl’gdl‘gvi\iﬂ@lshlg + ¢28h1,3|2

+% (/dtdﬂfldl’g {—% (ShligﬁtShl’g) + ‘vl,gb‘hl,gf}

1 — S —
+W /dtdl’ldl’ﬂ}{vQ{Kbh e} Sh)172|2 + (bh e} Sh)l’l (bh o) Sh)gg}) .

where sh; » is an abbreviation for sh(k)(t, z1, z2), etc, and the products
are pointwise products, while compositions are denoted by o. Introduce
the energy £

E(¢,sh(k))(t) = N/da;1 {ywllQ}
+ g /dmldxgva_2|¢1¢2 + %(sho ch)q o

1 ,
+ 5 /dl‘ldl’gdﬂfgvi\fﬂ(plshg,g + ¢28h173‘2

1
+§ (/dl’ldlﬂg {}V1728h172|2}

1 — —
+W dxleEQU{V_Q{KSh e} Sh)172|2 + (Sh ¢} Sh)l)l(Sh @) Sh)gg}) .

Our equations for ¢ and sh(k) are equivalent to

106 8

Noor = 5 (39)
1osh(k) o€ .
i ot dsh(k) (40)
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The relation

d i i
0 :@b:og(e b9, e*sh(k))

0, — o0& 7
=2 (/@(—Zﬁf))dﬂfl +/6M(—zsh(k))dx1dm2>

together with (39), (40), leads to the conservation

d |
a4 < / 6(t,22) P + / ]sh(k)(t,xl,xg)Ideldxg) 0
thus we define the density
1
pltsar) = [6(t, 20 + 3 [ Ishlk)(t a1, ) P
1
= pe(t, x1) + Nﬂp(tv 1)

Similarly, let ¢.(t,x) = ¢(t,z + ee;), sh(k)(t,z,y) = sh(k)(t,z +
ee;,y + €e;) (e; = unit vector, 1 < j < 3). The relation

d
0=-r| _ &(0sh(k))
o€ . — o0& —

together with (39), (40) leads to the conservation

% (N / S (¢0;0) da + / 3 (sh(k)2ssh(k)) dxlda:2> —0

thus we define the momentum density
(AT A 1 x|« a3 h( )
pito) =3 (63:6) + 1 [ 9 (sh(k)ﬁjsh(k)) dzs

1
=pe.;(t,21) + Npm(t, 1)

Finally, using (39), (40) we see that

0



22

M. GRILLAKIS AND M. MACHEDON

so we define the energy density

e(t,r) = N‘V(bl

N 1
+ 5/d$2U{V2|¢1¢2 + N(Sh o ch)ypf®

| 2

1
+ 5 / dxgdx30ﬁ2|¢15h2,3 + €Z52Shl,3|2

" /d:@ {IV1zshia]"}

1 — _ _
+W d.rQ/U{V_2{|(Sh o Sh)172|2 + (bh o Sh)lyl(Sh @) Sh)zg}

10. A CONJECTURE

We conjecture that, if ¢, k satisfy the equations of Theorem (8.1)

and ’wexact> )

Vappr ), are defined by (14), (15), then, in the critical case

Y

||‘¢e:vact> - ‘wappr>||]: — 0

as N — oo, at an explicit rate.
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