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1 Introduction

Designed experiments are used in many fields of enquiry. Government scien-
tists may wish to compare the effects of different insecticides (including no
insecticide) on colonies of bumble bees close to the fields where the insecticides
are sprayed. Pharmaceutical companies experiment with new drugs, in vari-
ous doses, to cure certain diseases, or alleviate symptoms. Psychologists may
run a trial to see which of three teaching methods is most effective in helping
autistic children to understand emotions in other people. In the manufactur-
ing industry, there are frequent experiments to investigate how the process
may be improved by changing the raw materials, changing their quantities, or
altering parts of the process. (See [36] for examples and a classical statistical
approach.)
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For all of these, the items being compared, such as insecticides, drugs,
teaching methods, or raw materials, are called treatments. There may be a
single treatment factor, or treatments may consist of all combinations of two
or more factors: for example, five varieties of cow-peas with three different
methods of cultivation, giving fifteen treatments altogether. One of the treat-
ments may also be ‘untreated.’

In order to compare the treatments, they have to be applied to something
or somebody: for example, a treatment may be applied to a field, a whole
farm, an ill person for a certain amount of time, a child, a group of children,
one part of the factory for a month, and so on. Measurements are made on
these, either on each whole item, or on smaller units, such as each child in the
class. We call these observational units.

We now formalize these ideas. In a designed experiment, a finite set Γ of
treatments is applied to a finite set Ω of observational units. A measurement yω
is made on each unit ω in Ω, thus giving a data vector y in the vector space RΩ

of all real functions on Ω. Twin problems are how to design the experiment
and how to analyze the data that it produces.

There is a long history of group theory being used to develop and de-
sign the combinatorial structures used in such experiments (see, for example,
[1, 26]). As proposed by Diaconis in [23] and the many references therein, spec-
tral analysis (that is, Fourier analysis for the symmetry group of choice) is a
non-model-based approach to analyzing data that may be carried out in the
presence a natural symmetry group. Spectral analysis seeks to approximate
the data vector as a sum of its projections into orthogonal, symmetry-invariant
and naturally interpretable subspaces of RΩ, where orthogonality is with re-
spect to the standard inner product. The paper [24] contains several spectral
analysis examples as well as other examples of ways in which group theory
enters statistical analysis.

In this paper we explore some new ideas relating to the spectral analysis of
data from a designed experiment. We connect it to classical theory and show
how, in a number of cases, this approach provides new information. Necessar-
ily, this analysis depends on the representation theory of the associated sym-
metry group, and the attendant calculations depend on certain representation
(Fourier) theoretic computations and algorithms. All of this is developed as
we go along; the book [23] contains all the necessary representation-theoretic
background.

In Section 2 we look at families of subspaces of RΓ that may be used to
model expectation, introducing several examples. In Section 3 we introduce a
group of permutations of Γ, and compare the decomposition into irreducible
subspaces with that obtained from the modeling approach.

Section 4 takes a similar approach to RΩ, where structure on Ω might
suggest models for the expectation of a random vector Y on Ω or for its
variance-covariance matrix Var(Y ). Again, these may be linked to a group of
permutations of Ω.
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The following sections combine these decompositions of RΓ and RΩ when
an allocation of treatments to observational units effectively makes RΓ a sub-
space of RΩ. The overall philosophy of analysis of variance is summarized
in Section 5. In the most straightforward case, treated in Section 6, there
is geometric orthogonality between all subspaces. Otherwise, as explained in
Section 7, more complicated algebra is needed. In Section 8 we restrict at-
tention to incomplete-block designs, which avoid some of the complications of
the general case while still showing interesting behavior.

Section 9 introduces the subgroup of both previous groups that preserves
structure on Γ and Ω as well as preserving the embedding of RΓ in RΩ. An
example discussed in depth shows the utility of the approach from spectral
analysis.

Finally, Sections 10–11 consider this subgroup in the contexts of orthog-
onal designs and incomplete-block designs. This subgroup is usually smaller
than the previous ones, so its decomposition may have more subspaces. What
meaning can we attach to them?

2 Treatments

In this section we ignore the observational units, and pretend temporarily that
there is only one observation on each treatment. Different structure on the set
of treatments can lead to different plausible models for the response. Under
suitable conditions, a family of models leads to an orthogonal decomposition
of the vector space of real functions on the treatments.

Let Γ be the finite set of treatments. A linear model is typically a subspace
V of RΓ: if a measurement is made on each treatment then we expect the
resulting vector of measurements to lie in V or close to V . In fact, linear models
are frequently presented in notation that is shorthand for saying that a whole
(finite) family F of subspaces is being considered. It is usual to assume that
this family is closed under intersection and under vector-space summation.

Two subspaces V1 and V2 are defined in [54] to be geometrically orthogonal
to each other if V1 ∩ (V1 ∩ V2)⊥ is orthogonal to V2 ∩ (V1 ∩ V2)⊥ (here ⊥

denotes orthogonal complement). If F is closed under ∩ and + and every
pair of subspaces in F is geometrically orthogonal then there is a collection of
pairwise orthogonal subspaces {Wj : j ∈ J} such that

∑
V ∈F V =

⊕
j∈JWj

and every subspace in F is a direct sum of some of the spaces Wj . This is
called orthogonal treatment structure in [5, 6]. Not all sums of Wj spaces need
occur in F .

Denote by V0 the 1-dimensional subspace consisting of constant vectors.
It is usually assumed that V0 belongs to F .

Example 1. Suppose that Γ consists of all combinations of the n levels of
treatment factor C with the m levels of treatment factor D. For example,
factor C might be three different non-zero quantities of aspirin and factor D
might give two different times of day for taking the aspirin.
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One obvious model subspace is VC (of dimension n), which consists of
all vectors which are constant on each level of C. This model is appropriate
when the factor D has no effect. The m-dimensional subspace VD is defined
similarly. Then VC ∩ VD = V0 and VC is geometrically orthogonal to VD. The
subspace VC + VD is called the additive model. If this is appropriate then
the difference between two given levels of C does not depend on the level
of D. Finally, the whole nm-dimensional space RΓ is the full model, allowing
unrelated measurements on all treatments.

Figure 1 shows the Hasse diagram for this family of subspaces. The di-
mension of each is shown beside the corresponding dot.

Put W0 = V0, WC = VC ∩ V ⊥0 , WD = VD ∩ V ⊥0 , and WCD = (VC + VD)⊥.
These spaces are called the grand mean, the main effect of C, the main effect
of D, and the C-by-D interaction, respectively. Strictly speaking, it is the
orthogonal projection of the vector of measurements onto each W -subspace
that has this name. Now dim(W0) = 1, dim(WC) = n− 1, dim(WD) = m− 1
and dim(WCD) = (n− 1)(m− 1). These subspaces are mutually orthogonal.
Furthermore, V0 = W0, VC = W0 ⊕WC , VD = W0 ⊕WD and RΓ = W0 ⊕
WC ⊕WD ⊕WCD.
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Fig. 1. Hasse diagram of subspaces
in Example 1
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Fig. 2. Hasse diagram of subspaces
in Example 2

Example 2. The half-diallel. Let Γ consist of all unordered pairs from a set
of size n. This occurs in so-called half-diallel experiments in plant breeding,
where {i, j} denotes the cross between parental lines i and j (see [28]). An-
other example with n = 5 is an experiment to compare all fruit-juices made
from equal quantities of two of orange, grapefruit, mango, pineapple and pas-
sionfruit, to find the effect on the drinker’s blood-pressure.

The family of model subspaces consists of V0, V1 and RΓ, where V1 consists
of all functions f of the form f({i, j}) = ψi + ψj . Figure 2 gives the Hasse
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diagram. Since each pair of subspaces is related by inclusion, geometric orthog-
onality is assured, and the whole space is decomposed as W0⊕W1⊕W2, where
W0 = V0, W1 = V1 ∩ V ⊥0 and W2 = V ⊥1 . The last two are called general com-
bining ability and specific combining ability, respectively. Now dim(W0) = 1,
dim(W1) = n− 1 and dim(W2) = n(n− 3)/2.

Example 3. Now let Γ consist of all ordered pairs of distinct elements from a
set of size n. This occurs in breeding if the gender of the parents is relevant.
It occurs in a modification of the fruit-juice example if the treatments consist
of all instructions like ‘drink orange juice at breakfast and mango juice at
lunch’.

One model subspace is the space VS of symmetric functions f , for which
f((i, j)) = f((j, i)) for all i and j. Another is the space VA of antisymmetric
functions f , for which f((i, j)) = −f((j, i)) for all i and j. A further obvious
space VP consists of parental effects: f is in VP if there are constants αi and
βj such that f((i, j)) = αi +βj for all i and j, which is similar to the additive
model in Example 1.

There are (at least) four interesting subspaces of VP : f ∈ VP ∩VS if αi = βi
for all i; f ∈ VP ∩VA if αi = −βi for all i; f ∈ V1 if βj = 0 for all j; and f ∈ V2

if αi = 0 for all i. Now the four subspaces VP ∩ VS ∩ V ⊥0 , VP ∩ VA, V1 ∩ V ⊥0
and V2 ∩ V ⊥0 all have dimension n − 1; the sum of any two is VP ∩ V ⊥0 ; and
no pair is geometrically orthogonal except for the first two.

On the other hand, V ⊥P is the orthogonal direct sum of WS and WA, where
WS = VS ∩ V ⊥P , which has dimension n(n − 3)/2 and is analogous to W2 in
Example 2, and WA = VA ∩ V ⊥P , which has dimension (n − 1)(n − 2)/2. See
Figure 3.

Now the lack of a canonical orthogonal decomposition of VP ∩V ⊥0 can lead
to difficulties in model choice.

Example 4. Suppose that we wish to compare six makes of strawberry ice
cream. Sixty people take part in the experiment, so that each tastes four makes
and rates one of these, giving it a score out of 100. Note that each make is
tasted in the presence of all possible triples of other makes. Thus Γ consists of
the 60 pairs (i, {j, k, l}) where i is rated in the presence of j, k and l. One model
subspace V consists of functions f for which f((i, {j, k, l})) = γi+θij+θik+θil,
where θij , θik, θil each account for the effect of tasting i in the presence of j, k
and l. Note that V has dimension 30 because the subspace V1 with θij = αi
for all i and j is the same as the subspace with θij = 0 for all i and j. If we
consider only subspaces of V , we appear to obtain the same family of models
as in Example 3; however, their interpretation as subspaces of RΓ is different.

Figure 4 represents the elements of Γ in Examples 3 and 4 when n = 6.
Elements of Γ are identified by the labels of the rows and columns with ”×”
marks those cells for pairings that do not occur as elements. The real numbers
in the other cells thus represent a function in RΓ: in both cases it is the
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Fig. 3. Hasse diagram of subspaces in Example 3: Z is (VP ∩ VA) + V0

function in VP ∩ VA with α1 = −β1 = 1 and αi = βi = 0 if i 6= 1. In
Example 3, this function is orthogonal to VS ∩ VP ; in Example 4 it is not. In
Example 3, there seems to be no reason to prefer the orthogonal decomposition
(V1∩V ⊥0 )⊕ (VP ∩V ⊥1 ) over (V2∩V ⊥0 )⊕ (VP ∩V ⊥2 ), whereas in Example 4 the
explicit inclusion of γi in the formula seems to favour the former. In Example 4
there is a function h in V1 ∩ V ⊥0 with γ1 = −10/3 and γi = 2/3 if i 6= 1: when
this is added to the function f shown in Figure 4(b), the result is constant on
each column.

1 2 3 4 5 6

1 × 1 1 1 1 1

2 −1 × 0 0 0 0

3 −1 0 × 0 0 0

4 −1 0 0 × 0 0

5 −1 0 0 0 × 0

6 −1 0 0 0 0 ×

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 3 3 3 3 3 3 3 3 3 3 × × × × ×
2 −1 −1 −1 −1 −1 −1 × × × × 0 0 0 0 ×
3 −1 −1 −1 × × × −1 −1 −1 × 0 0 0 × 0

4 −1 × × −1 −1 × −1 −1 × −1 0 0 × 0 0

5 × −1 × −1 × −1 −1 × −1 −1 0 × 0 0 0

6 × × −1 × −1 −1 × −1 −1 −1 × 0 0 0 0

(a) (b)

Fig. 4. A function in RΓ: (a) Example 3 (b) Example 4.
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3 Treatment Permutations

Often, the set Γ of treatments has some combinatorial symmetry which is
preserved by a group G1 of permutations of Γ. In this section we see how
this may be used to derive an orthogonal decomposition of RΓ. We write the
elements of G1 on the right of their arguments, so that composition is done
from left to right.

The permutation representation of G1 associated with its action on Γ is
an isomorphism ρ1 from G1 to group of permutation matrices in RΓ×Γ, whose
rows and columns are indexed by Γ: for g in G1, the (α, β)-entry of ρ1(g)
is 1 if αg = β and is 0 otherwise. These matrices act on RΓ, which can be
decomposed as a direct sum of subspaces which are invariant under G1 and
irreducible under G1. The centralizer algebra C(G1) of G1 is the set of matrices
in RΓ×Γ which commute with ρ1(g) for all g in G1.

Recall that, in general, a representation of degree N of a group G over a
field F is just a homomorphism from G to the general linear group GL(N,F ),
where N is a non-negative integer. Two such representations are equivalent
if and only if they differ by a change of basis. Thus, the trace function is
an invariant of any equivalence class of representations. A representation is
irreducible if and only if it is not equivalent to a direct sum of (non-trivial) rep-
resentations. Up to equivalence, there are only a finite number of irreducible
representations of a given group over a given field. Following community stan-
dards, we refer to both the collection of matrices as well as the underlying
vector space with associated group action as “the representation.”

Since every representation over R can also be considered to be a repre-
sentation over C, we sometimes need to write words like “real-irreducible” or
“complex-irreducible” to make clear which field we are talking about. General
theory is usually expressed over the complex numbers, giving decompositions
of CΓ. However, only RΓ occurs for actual data so we use real representations.
See Section 11 for the modification from CΓ to RΓ.

Let π1 be the permutation character of G1, so that π1(g) = trace(ρ1(g))
for g in G1. Let {χi : i ∈ I} be the real-irreducible characters of G1. Then
there are non-negative integers mi for i in I such that π1 =

∑
imiχi. If

mi > 0 then there is a corresponding homogeneous subspace Ui of RΓ : it has
dimension mi deg(χi); it is G1-invariant; it is orthogonal to Uj if i 6= j. If
mi = 1 then Ui is G1-irreducible; otherwise, it can be decomposed as a direct
sum of mi irreducible subspaces, all admitting isomorphic actions of G1, in
infinitely many ways.

If mi ∈ {0, 1} for all i in I then π1 is said to be real-multiplicity-free. Then
RΓ has a unique decomposition as a direct sum of orthogonal G1-irreducible
subspaces. We may be able to use this decomposition to explain the data
vector. Otherwise, there is a choice of such decompositions.

What light does this approach from representation theory throw on the
previous examples? In Example 1, we may consider Γ to be an n×m rectangle.
Then we may takeG1 to be Sym(n)×Sym(m) (where Sym(n) denotes the sym-
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metric group on n letters) in its product action, so that (α, β)(g, h) = (αg, βh).
Its permutation character is real-multiplicity-free, and the corresponding ir-
reducible subspaces are precisely the subspaces W0, WC , WD and WCD used
by statisticians.

In Example 2, it is natural to take G1 to be Sym(n) in its action on
unordered pairs, so that {α, β}g = {αg, βg}. In the notation of [35], the
vector space supporting the permutation representation is denoted Mn−2,2,
which has a unique G1-irreducible decomposition as Sn ⊕ Sn−1,1 ⊕ Sn−2,2.
In the notation of Example 2, Sn is the representation on W0, Sn−1,1 is the
representation on W1 and Sn−2,2 is the representation on W2.

In Example 3, we take G1 to be Sym(n) in its action on ordered pairs, so
that (α, β)g = (αg, βg). The resulting permutation representation is denoted
Mn−2,1,1. The decomposition (see [35]) of this representation is below.

Mn−2,1,1 = Sn ⊕ 2Sn−1,1 ⊕ Sn−2,2 ⊕ Sn−2,1,1

dim n(n− 1) 1 2× (n− 1) n(n−3)
2

(n−1)(n−2)
2

Here Sn, Sn−2,2 and Sn−2,1,1 are the representations on the subspaces W0, WS

and WA, respectively. The notation 2Sn−1,1 denotes a representation which
is the direct sum of two representations isomorphic to Sn−1,1. Note that it is
such a sum in infinitely many ways, and there is no canonical decomposition
of the corresponding homogenous subspace of dimension 2(n − 1), which is
precisely VP ∩ V ⊥0 . Thus the group theory reinforces the previous discussion.

In [57], Yates proposed decomposing VP ∩V ⊥0 as (VP ∩VS∩V ⊥0 )⊕(VP ∩VA).
Using the above representation theory in [32], James was able to show that this
was, in some sense, an arbitrary choice. Fortini gave a different decomposition
in [27].

In Example 4, let G1 be Sym(6) in its action on pairs (i,K) where K is a
4-subset of a 6-set and i ∈ K. Such a pair is equivalent to the partition with
parts {i}, K \ {i} and the complement of K, so the resulting permutation
representation is M3,2,1, whose decomposition (see [35]) is below.

M3,2,1 = S6 ⊕ 2S5,1 ⊕ 2S4,2 ⊕ S4,1,1 ⊕ S3,3 ⊕ S3,2,1

dim 60 1 2× 5 2× 9 10 5 16.
(1)

Of course, S6 is the representation on V0. We have already seen that VP ∩V ⊥0
is the homogeneous subspace for S5,1, that WS affords one copy of S4,2 and
WA affords S4,1,1. The action of Sym(6) on 4-subsets (the column indices in
Fig. 4(b)) is M4,2, whose decomposition is S6 ⊕ S5,1 ⊕ S4,2. Thus the 15-
dimensional subspace VB of functions which are constant on each 4-subset
includes a 5-dimensional subspace affording S5,1, which must therefore be
contained in VP ∩ V ⊥0 . Indeed, the end of Section 2 gives a non-zero function
in VP ∩ V ⊥0 which is constant on each 4-subset.

Therefore VB ∩V ⊥P is a 9-dimensional subspace affording S4,2. How is this
related to WS? Figure 5 displays the function in WS defined by θij = 1 if
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{i, j} = {1, 2} or {3, 4}, θij = −1 if {i, j} = {1, 3} or {2, 4}, and θij = 0
otherwise. This is in neither VB nor V ⊥B .

We return to this example in detail in Section 9.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 0 0 0 1 1 1 −1 −1 −1 0 × × × × ×
2 0 1 1 0 0 1 × × × × −1 −1 0 −1 ×
3 0 −1 −1 × × × 0 0 −1 × 1 1 0 × 1

4 0 × × −1 −1 × 1 1 × 0 0 0 × −1 1

5 × 0 × 0 × 0 0 × 0 0 0 × 0 0 0

6 × × 0 × 0 0 × 0 0 0 × 0 0 0 0

Fig. 5. A function in WS which is neither constant on columns nor orthogonal to
columns

4 Observational Units

Now we temporarily ignore the treatments, and think about the observational
units to be used in the experiment. Again, there is a corresponding real vector
space, and we seek meaningful orthogonal decompositions of this. Such a de-
composition may be defined by inherent factors or by a group of symmetries.

In a designed experiment, there is a finite set Ω of observational units to
which treatments are applied; later, some response is measured on each unit.
Even before the treatments are applied, inherent features of Ω may suggest
something about the pattern of the response.

Example 5. An experiment comparing different methods of soil preparation
for a single cereal variety might use k fields on each of b farms, with a sin-
gle method on each field. Then Ω consists of the bk fields. Let Y be the
hypothetical random vector of responses. If some farms produce consistently
better results than others, then, in the absence of treatment differences, the
expected value of the response should just depend on the farm. On the other
hand, differences between farms may change from season to season, but then
it is plausible that fields within a farm are more alike than fields in different
farms. In this case, the grouping of fields within farms affects the covariance
(matrix) Var(Y ).

More generally, if Ω consists of bk observational units grouped into b blocks
of size k, let VB be the subspace of RΩ consisting of vectors which are constant
on each block. The first approach assumes that E(Y ) ∈ VB . In this case, blocks
are said to have fixed effects. It is usual to assume that Var(Y ) = σ2I in this
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case. The second approach assumes that E(Y ) ∈ V0 and that the covariance
has the form Var(Y ) = σ2I + kσ2

BQB , where QB is the matrix of orthogonal
projection onto VB . Blocks then are said to have random effects. In this case,
the eigenspaces of Var(Y ) are VB and V ⊥B . Both approaches make it natural
to consider the decomposition V0 ⊕WB ⊕ V ⊥B of RΩ, where WB = VB ∩ V ⊥0 .

Let G2 be a group of permutations of Ω that preserve structure on Ω,
such as the partition into blocks, before treatments are allocated. Let π2 be
the permutation character of G2. If π2 is real-multiplicity-free then there is a
unique decomposition of RΩ as a sum of G2-irreducible subspaces, which may
be pertinent for data analysis. Even without this uniqueness, a decomposition
into G2-invariant subspaces may give insight into the data.

When Ω consists of b blocks of size k, we may take G2 to be the wreath
product Sym(k) wr Sym(b) in its imprimitive action. This has a subgroup
Sym(k) for each block, permuting just the units within it, and a subgroup
Sym(b) permuting the set of whole blocks. The action is real-multiplicity-free,
with irreducibles V0, WB and V ⊥B .

Example 6. Another common structure for Ω is a rectangle with r rows and
c columns. This may be an actual physical rectangle on the ground, or an
abstract one where, for example, rows represent time-periods and columns
represent people. As in Example 1, RΩ has a natural decomposition as W0 ⊕
WR ⊕WC ⊕WRC . If rows and columns have fixed effects then E(Y ) ∈W0 ⊕
WR⊕WC . If they have random effects then Var(Y ) = σ2I+cσ2

RQR+rσ2
CQC ,

whose eigenspaces are W0, WR, WC and WRC . These four subspaces are the
irreducibles of Sym(r)× Sym(c) in its product action.

The key part of an experimental design is the function τ : Ω → Γ, which
allocates treatment τ(ω) to observational unit ω. This allocation is normally
randomized before treatments are applied: a permutation g is chosen at ran-
dom from a suitable group G2 of permutations of Ω, and τ is replaced by τg,
where τg(ω) = τ(ωg−1). It is argued in [1, 4] that this justifies the assumption
that Var(Y ) ∈ C(G2). Since Var(Y ) is symmetric, its eigenspaces form a G2-
invariant decomposition of RΩ. If π2 is real-multiplicity-free, these subspaces
are known even if the corresponding eigenvalues are not.

Hannan [29] and Speed [52, 53] considered random variables Y such that
Var(Y ) ∈ C(G2) without the complication of Γ and τ . See those papers for
more examples.

The three most common inherent structures in designed experiments are
the two that we have discussed and the unstructured one, in which G2 con-
sists of all permutations of the units in Ω. The operations of nesting (units
within blocks) and crossing (rows and columns) can be iterated, to give simple
orthogonal block structures: see [43]. Their automorphism groups are general-
ized wreath products of symmetric groups, for all of which the relevant action
is real-multiplicity-free: see [8]. The remaining examples in this paper use only
these three common structures.
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5 Analysis of Variance

Analysis of variance is often the statistician’s first step towards analyzing
the data vector. See [50] for an extensive study. This section gives a quick
summary of the method, in language more familiar to algebraists.

Classical analysis of variance (ANOVA) depends on a given orthogonal
decomposition of RΩ into subspaces Wj for j in some set J . Denote by Pj the
linear operator of orthogonal projection onto Wj . Then the data vector y is
the sum

∑
j∈J Pjy, and Pjy is orthogonal to Piy if i 6= j. The sum of squares

SSj for Wj is defined to be ‖Pjy‖2, which is just y>Pjy. Since I =
∑
j∈J Pj ,

these sums of squares add to give y>y, the total sum of squares.
Put dj = dim(Wj). The mean square MSj for Wj is defined to be SSj/dj .

If the data are purely random, in the sense that the responses are mutually
independent random variables with the same expectation and variance, then
all mean squares except MS0 have the same expectation, where W0 = V0. More
precisely, if Y is a random vector on Ω and Var(Y ) = σ2I then E(MSj) =
‖E(PjY )‖2/dj +σ2. In general, if Wj is contained in an eigenspace of Var(Y )
with eigenvalue ξi then E(MSj) = ‖E(PjY )‖2/dj + ξi.

Thus one approach to analyzing data is to calculate the mean squares
and pick out those subspaces Wj whose mean squares are particularly large
relative to the others: something interesting must be happening there. Part of
the statistical theory of hypothesis testing is quantifying “particularly large.”
We do not go into details here.

The treatment allocation τ gives a subspace VΓ of RΩ whose elements are
constant on each treatment. Thus VΓ is isomorphic to RΓ . To avoid com-
plications, we assume that every treatment occurs on the same number of
observational units. This ensures that any orthogonal decomposition of RΓ

into subspaces remains orthogonal when RΓ is embedded into RΩ as VΓ.
Here we assume that RΩ has a given G2-invariant orthogonal decompo-

sition and RΓ has a given G1-invariant orthogonal decomposition. When RΓ

is embedded in RΩ as VΓ we need another orthogonal decomposition of RΩ

which is related to the two previous ones and can be used for ANOVA. The
next three sections show how to obtain such a decomposition in some cases,
while indicating that it is difficult in general.

6 The Orthogonal Case

In this section, we start to combine the initial orthogonal decompositions
of RΓ and RΩ. Of course, this depends on the way that the design map τ
has embedded RΓ in RΩ as VΓ. The combination is relatively straightforward
under a condition on τ known as orthogonality.

Given orthogonal decompositions of RΩ and RΓ, a design map τ is said
to be orthogonal if every subspace in the given decomposition of VΓ is ge-
ometrically orthogonal to every subspace in the given decomposition of RΩ.
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Then the non-zero intersections of these subspaces give a canonical orthogonal
decomposition of RΩ that refines both of the previous two.

Example 7. When G2 = Sym(Ω), the initial decomposition of RΩ is V0 ⊕ V ⊥0 .
Such a design is called completely randomized. We always assume that V0 is in
the decomposition of RΓ, so now the combined decomposition simply adjoins
V ⊥Γ to the decomposition of VΓ. The subspace V ⊥Γ is known as residual in
ANOVA.

Example 8. For a so-called complete-block design, there are b blocks of size k,
where k = |Γ|, and every treatment occurs once in each block. If G1 = Sym(k)
and G2 = Sym(k) wr Sym(b) then the initial decompositions are V0 + WT

(for RΓ) and V0 ⊕WB ⊕ V ⊥B (for RΩ). The combined decomposition is V0 ⊕
WB ⊕ WT ⊕ (VB + VT )⊥, whose subspaces are usually called grand mean,
blocks, treatments and residual respectively. If G1 gives a finer decomposition
of RΓ then this gives a finer decomposition of WT without affecting WB or
(VB + VT )⊥.

Example 9. A third popular orthogonal design is the Latin square. Here Ω is
an n × n rectangle, where n = |Γ|. The initial decomposition of RΩ is V0 ⊕
WR ⊕ WC ⊕ (VR + VC)⊥. When treatments are applied in a Latin square,
VΓ is orthogonal to WR ⊕WC , so (VR + VC)⊥ is decomposed as WT ⊕ (VR +
VC +VT )⊥, with the second part being called residual. Again, any finer initial
decomposition of RΓ simply gives a decomposition of WT .

Example 10. The simplest case in which more than one subspace in the ini-
tial decomposition of RΩ is split up is the so-called split-plot design. The
treatments are as in Example 1. For Ω, there are rn blocks, each containing
m observational units, so that RΩ = V0⊕WB⊕V ⊥B . Each level of C is applied
to r whole blocks, and each level of D is applied to one observational unit per
block. Thus VC < VB , while WD and WCD are both orthogonal to VB . The
combined decomposition is

V0 ⊕ WC ⊕ (WB ∩W⊥C ) ⊕ WD ⊕ WCD ⊕ (V ⊥B ∩ V ⊥Γ )
1 n− 1 n(r − 1) m− 1 (n− 1)(m− 1) n(m− 1)(r − 1)

,

where the dimension is shown underneath each subspace. The third subspace is
called block residual. Under the assumption that treatments affect expectation
and blocks have random effects, MSC is compared with the mean square for
block residual while MSD and MSCD are both compared with the mean square
for V ⊥B ∩ V ⊥Γ .

In general, if W is a subspace in the initial decomposition of RΩ and
W ∩ V ⊥Γ is non-zero then W ∩ V ⊥Γ is called a residual subspace.
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7 The General Non-Orthogonal Case

This section gives a quick overview of some difficulties that can occur when
the design is not orthogonal. We show that the worst of these are avoided if
the structure on Ω is a partition into blocks of equal size. The development
follows [30, 44].

When there is not geometric orthogonality between the original decompo-
sitions of RΩ and VΓ, it is normal to start with the decomposition of RΩ and
then try to refine it. Let U be one of the subspaces in the original decomposi-
tion of RΩ. Given an orthogonal decomposition

⊕
j∈JWj of VΓ, one obvious

step is to project each Wj onto U . There are two difficulties. The first is that,
even if Wi is orthogonal to Wj , their projections onto U may no longer be
orthogonal to each other.

The second difficulty needs more explanation. Suppose that Pjy = v. De-
note by Q the (matrix of) orthogonal projection onto U . If φ is the angle

between v and Qv then the sum of squares for Q(Wj) is (cos2 φ) ‖v‖2 plus
other non-negative pieces. Even if there are no other contributions to this
sum of squares, we need to know cos2 φ in order to make a judgement about
the size of v. It is therefore helpful if all vectors in Wj make the same angle
with U .

Fortunately, both difficulties are solved if each space Wj is an eigenspace
of PQP , where P =

∑
j Pj . If this eigenspace decomposition of VΓ and the

original decomposition of VΓ have a common refinement, then it is used. If
not, there are disagreements about how to proceed: see [47].

Now consider two different subspaces U1 and U2 in the original decompo-
sition of RΩ, with projectors Q1 and Q2. If V0 ⊕ U1 ⊕ U2 = RΩ and Wj ⊥ V0

then Pj(Q1 +Q2)Pj = Pj , and so Wj is an eigenspace of PjQ1Pj if and only
if it is an eigenspace of PjQ2Pj . However, if V0 ⊕ U1 ⊕ U2 is not the whole of
RΩ then PQ1P may not commute with PQ2P , in which case these matrices
do not have common eigenspaces.

Given an original decomposition of RΩ into subspaces U1, . . . , Us with
projectors Q1, . . . , Qs, Houtman and Speed [30] defined the design to have
general balance if the matrices PQ1P , . . . , PQsP commute with each other,
where P is the projector onto VΓ. This implies that, if the structure on Ω is
defined simply by a partition into blocks of equal size, then all designs are
generally balanced.

For the rest of this paper, we restrict attention to block designs or orthog-
onal designs, so that general balance is assured. Even with this restriction,
there are still plenty of complications.

8 Incomplete-Block Designs

Apart from split-plot designs like those in Example 10, block designs in which
the blocks are too small to hold all the treatments are not orthogonal. In
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this section we give the algebraic approach to studying these, starting with
the seminal work of James [31], which was extended by Mann [39] to linear
models which may not arise from experimental designs.

When there are b blocks of size k, the initial decomposition of RΩ is V0 ⊕
WB ⊕ V ⊥B , with corresponding projectors Q0, QB and I − Q0 − QB . Here
Q0 = (bk)−1J , where J is the all-1 matrix, and Q0 +QB = k−1JB , where the
(ω1, ω2)-entry of JB is 1 if ω1 and ω2 are in the same block and is 0 otherwise.
Thus the linear operator Q0 + QB simply replaces each entry of y by the
average value on each block, so it is similar to a Radon transformf [10, 37].

Suppose that there are t treatments each occurring r times, so that tr = bk.
In an incomplete-block design, k < t and no treatment occurs more than once
in any block. Such a design is balanced if there is a constant λ such that each
pair of treatments occur together in exactly λ blocks.

Put WT = VΓ∩V ⊥0 . The orthogonal projector PT onto WT is r−1JT −Q0,
where the (ω1, ω2)-entry of JT is 1 if τ(ω1) = τ(ω2) and is 0 otherwise. Thus
Q0 +PT is another averaging operator. Let WT |B be the orthogonal projection

ofWT onto V ⊥B , which is (WT+VB)∩V ⊥B . The classical analysis of data from an
incomplete-block design uses the decomposition V0⊕WB⊕WT |B⊕(VB+VΓ )⊥.
The second and third subspaces are called blocks ignoring treatments and
treatments eliminating blocks respectively.

James seems to have been one of the first to have studied ANOVA for
balanced incomplete-block designs from the point of view of the algebraic
properties of the idempotents which yield the sum of squares decomposition.
In [31] he defined the “relationship algebra of an experimental design” as the
complex algebra A generated by the matrices I, J , JB and JT . He showed
that PTQBPT = (1 − e)PT , where e = t(k − 1)/(t − 1)k, which is called the
efficiency factor of the design. As James and Wilkinson later showed in [34],
every vector in WT has angle φ with WB , where cos2 φ = 1− e.

James proposed refining the classical ANOVA by decomposing WB into
QB(WT ) and its orthogonal complement. The latter is zero if and only if b = t;
the former has dimension t−1 (this gives an easy proof of Fisher’s Inequality,
which states that b ≥ t for a balanced incomplete-block design). He showed
that the algebra A has dimension six if b = t and dimension seven otherwise.
Since the generating matrices are symmetric, the algebra A is semisimple and
thus may be decomposed as a direct sum of matrix algebras, in this case two
or three one-dimensional algebras and one 2 × 2 matrix algebra (which is a
four-dimensional algebra). The one-dimensional algebras correspond to the
subspaces V0, (VB +VΓ)⊥ and, if it is non-zero, WB ∩V ⊥Γ . The projector onto
their orthogonal complement can be written as a sum of two idempotents in
the algebra in infinitely many ways.

James closed [31] by remarking that “For certain designs, the relationship
algebra is the commutator algebra of the representation of a group expressing
the symmetry of the experimental design.” We take up the relevance of this
remark in the Section 11.
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This work was extended to arbitrary incomplete-block designs in [34]. If
PTQBPT has rank less than t − 1 then VΓ ∩ V ⊥B is non-zero. The vectors in
this subspace are said to have canonical efficiency factor 1. Let the distinct
non-zero eigenvalues of PTQBPT be µ1, . . . , µs, where µi has multiplicity di.
Then there are corresponding di-dimensional subspaces Ui of WB and Vi of
WT such that every vector in Vi makes angle φi with Ui, and vice versa, where
cos2 φi = µi, and 1 − µi is the canonical efficiency factor for vectors in Vi. If
i 6= j then Ui ⊥ Vj , Ui ⊥ Uj and Vi ⊥ Vj .

Now RΩ has an orthogonal decomposition as

V0⊕ (VB ∩ V ⊥Γ )⊕ (VΓ ∩ V ⊥B )⊕ (VB + VΓ)⊥⊕ (U1 + V1)⊕ · · · ⊕ (Us + Vs), (2)

where the second or third subspace may be zero. The algebra A is the sum of
scalar algebras on the first four subspaces, plus one 2 × 2 matrix algebra on
each of U1 + V1, . . . , Us + Vs.

When s = 1 but the design is not balanced then there are just two canoni-
cal efficiency factors, one of which is 1. Such designs are called partial geomet-
ric designs in [11, 12], C-designs in [49], and 11

2 -designs in [45]. They appear
to be rather useful (see [16]). One way of obtaining them is to exchange the
roles of blocks and treatments (thus forming the dual design) in a balanced
design with b > t. Other examples include transversal designs and the lattice
designs of Yates [56]. Some classes of such designs have been shown to be
optimal (see [7, 22]).

9 Ice Cream Data

So far, we have assumed that the measurement yω on ω is influenced by ω
itself and its inherent relation to the rest of Ω, as well as the treatment τ(ω)
and its relation to the rest of Γ. This paradigm does not cover experiments
where yω might also be influenced by the treatments on observational units
which are, in some sense, near to ω. For example, tall varieties of sunflower
will shade their shorter neighbors, or the taste of one ice cream may affect the
score given by the taster to another ice cream.

In such circumstances, it seems appropriate to consider the group G of
strong symmetries of the design. This is the subgroup of the group G2 of per-
mutations of Ω which preserve the partition of Ω defined by the inverse images
under τ (in particular, they stabilize VΓ) and whose induced permutations on
Γ are in G1.

Example 4 is, in fact, silly. It wastes resources, because 240 items are tasted
but only 60 are rated. In the actual experiment reported by Calvin in [17],
only 15 people took part, each tasting four items and scoring each one. The six
treatments were six quantities of vanilla added to the basic ice cream. There
was one taster for each subset of size four, and they were asked to give each
tasted item an integer score between 0 and 5 inclusive. It is not clear whether
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the tasters were told that their four treatments were all different (e.g., four
tasters gave the same score to two of their items).

In this case, t = |Γ| = 6 and G1 is Sym(6) in the natural action. Also, |Ω| =
60. Calvin considered the tasters as blocks, so that G2 is Sym(4) wr Sym(15)
in its imprimitive action. The design was a balanced incomplete-block design
with fifteen blocks of size four. Thus G is Sym(6) in the action described at
the end of Section 3.

Let B(ω) be the block containing ω. Calvin proposed the model that
E(Y ) = f + d, where d(ω) = δB(ω) and f(ω) = γi + θij + θik + θil if τ(ω) = i
and the other treatments in B(ω) are j, k and l. Furthermore, θij = −θji
for all i and j. Thus d ∈ VB ; the γ-parameters give a vector in V1; and the
θ-parameters give a vector in VA, in the notation used in Example 4.

As we saw in Sections 2 and 3, there is a 5-dimensional subspace ṼB of
VB such that the sum of any two of ṼB , V1 ∩ V ⊥0 and VP ∩ VA is the same
10-dimensional subspace, the homogeneous subspace for S5,1. Thus the δ-, γ-
and θ-parameters are not all identifiable. Calvin got around this problem by
restricting the θ-parameters to give a vector in the 10-dimensional subspace
WA, which is the homogeneous subspace for S4,1,1.

Calvin gave the ANOVA in Table 1. As is common for statisticians, he
omitted the line for V0, he wrote “d.f.” (degrees of freedom) for “dimension,”
and he called the residual line “Error.” We have added the column for sub-
spaces to clarify what he meant by “Source of variation.”

Table 1. Expanded version of the ANOVA table given by Calvin in [17]

Subspace Source of variation d.f. S.S. M.S.

V0 Grand mean 1 390.15 390.15
WB Blocks (unadjusted) 14 18.10 1.29

(V1 + VB) ∩ V ⊥B Treatments (adjusted) 5 71.17 14.23
WA Correlations (adjusted) 10 27.17 2.72

(VA + VB)⊥ Error 30 40.41 1.35

V Total 60 547.00 —

In (1) we gave the decomposition of V into homogeneous subspaces. The
approach outlined in [48] (via the discrete Radon transform [10]) gives the
sum of squares (S.S.) for each of these as follows.

M3,2,1 = S6 ⊕ 2S5,1 ⊕ 2S4,2 ⊕ S4,1,1 ⊕ S3,3 ⊕ S3,2,1

S.S. 547 = 390.15 + 77.667 + 23.40 + 27.167 + 8.083 + 20.533
(3)

Let U1 and U2 be the reducible homogeneous subspaces of dimensions 10
and 18 respectively. We now explore different ways of decomposing these two
subspaces into orthogonal irreducibles.

Each block can be labelled by the pair of treatments which are not present
in it. Thus the fifteen blocks have structure similar to that in Example 2.
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The method given by Yates in [57] decomposes the sum of squares for blocks
into 6.50 for ṼB and 11.60 for WB ∩ Ṽ ⊥B . These two subspaces are U1 ∩ VB
and U2 ∩ VB respectively. We have already seen that Ṽ ⊥B ∩ U1 = VP ∩ VA =
(V1 + VB) ∩ V ⊥B , whose sum of squares is given in Table 1 as 71.17 (to two
decimal places). Then 6.50 + 71.17 = 77.67, which gives the sum of squares
for U1, as confirmed in (3). The sum of squares for U2 is 23.40, so the sum of
squares for U2 ∩ V ⊥B is 23.40− 11.60 = 11.80.

A statistician expects there to be differences between the blocks. It is
therefore standard to begin with the decomposition V0 ⊕WB ⊕ V ⊥B and then
refine that. Refining it into irreducibles gives the ANOVA in Table 2.

Table 2. ANOVA table obtained by refining the original decomposition (defined by
blocks) into group-irreducibles

Original Group refinement d.f. S.S. M.S.

V0 V0 1 390.15 390.15

WB U1 ∩ VB 5 6.50 1.30
U2 ∩ VB 9 11.60 1.29

V ⊥B U1 ∩ V ⊥B = VP ∩ VA 5 71.17 14.23
WA 10 27.17 2.72

U2 ∩ V ⊥B 9 11.80 1.31
S3,3 5 8.08 1.62
S3,2,1 16 20.53 1.28

V Total 60 547.00 —

It is not unusual for the mean square for V0 to be much larger than the
rest. The interesting question for data analysis is: which other mean squares
are significantly larger than the rest?

One notable feature of Table 2 is that the four smallest mean squares are
all approximately equal (about 1.3). In particular, the two subspaces of WB

are among these, so it appears that there are no differences between blocks.
In fact, given the way that the experiment was carried out, this is not

surprising. Each taster had to give four integer scores in the range [0, 5], and
most of them thought that they should not give the same score twice. It was
therefore almost impossible for one taster to give consistently higher scores
than another.

If blocks are not important, what other natural subspaces of U1 and U2

should we look at? To Calvin, the next most obvious subspace of U1 was WT ,
where WT = V1 ∩ V ⊥0 and f ∈ V1 if there are constants γ1, . . . , γ6 such that

f((i, {j, k, l})) = γi. (4)

The constant γi is estimated by the mean of the responses for treatment i,
and this gives the sum of squares for WT as 63.35.

However, Calvin also proposed that treatments should affect each other
asymmetrically: the taster has a fixed, short scale, so if one treatment’s score
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goes up then another comes down. Another submodel of his model is

f((i, {j, k, l})) = µ+ 3αi − αj − αk − αl, (5)

where µ is an overall constant. This corresponds to the subspace V0⊕(VP∩VA).
Since VP ∩ VA = U1 ∩ V ⊥B , we have already seen that the sum of squares for
this is 71.17. Thus model (5) fits the data better than model (4).

In Table 3, the tasters’ scores (the data) are shown at the top of each box.
Below that are the fitted values for model (5), which can be easily calculated
from Calvin’s results. They fit the data rather well. The third row gives the
fitted values for the more general asymmetric model

f((i, {j, k, l})) = µ+ θij + θik + θil where θrs = −θsr for all r and s: (6)

this corresponds to the subspace V0 ⊕ (VP ∩ VA)⊕WA = V0 ⊕ VA.

Table 3. Ice cream analysis: data (top row); fitted values in model (5) (second row);
fitted values in model (6) (third row); fitted values in model (7) (bottom row)

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 2 0 0 1 0 0 2 0 0 2 × × × × ×
1.02 0.99 0.86 0.75 0.62 0.60 0.65 0.52 0.49 0.25
1.49 0.70 −0.05 0.78 0.01 −0.76 2.09 1.32 0.55 0.61
2.42 2.33 2.17 3.25 3.08 3.00 2.50 2.33 2.25 3.17

2 4 4 3 3 2 1 × × × × 0 1 2 1 ×
2.46 2.44 2.31 2.20 2.06 2.04 1.73 1.60 1.58 1.33
3.82 3.05 3.28 2.11 2.34 1.57 1.34 1.57 0.80 −0.14
2.75 3.33 2.83 3.25 2.75 3.33 3.17 2.67 3.25 3.17

3 0 3 4 × × × 3 0 2 × 2 1 3 × 4
2.88 2.85 2.72 2.51 2.38 2.36 2.15 2.02 1.99 1.65
1.90 2.47 1.86 2.84 2.24 2.80 2.42 1.82 2.38 2.76
0.92 2.50 2.17 1.33 1.00 2.58 2.00 1.67 3.25 2.08

4 3 × × 4 4 × 1 3 × 4 3 2 × 4 3
3.85 3.58 3.45 3.48 3.35 3.08 3.12 2.99 2.72 2.62
2.99 3.28 3.17 2.92 2.82 3.11 3.51 3.40 3.70 3.34
1.75 2.58 3.08 1.50 2.00 2.83 1.17 1.67 2.50 1.42

5 × 5 × 5 × 4 4 × 3 1 1 × 5 5 1
3.91 3.67 3.52 3.56 3.41 3.17 3.20 3.05 2.81 2.70
3.97 4.03 4.65 2.34 2.97 3.03 2.92 3.55 3.61 1.92
3.83 3.08 3.00 3.00 2.92 2.17 3.33 3.25 2.50 2.42

6 × × 5 × 5 5 × 4 3 4 × 4 4 2 2
4.31 4.06 4.04 3.96 3.94 3.70 3.60 3.58 3.33 3.23
5.11 4.67 4.73 3.82 3.88 3.45 3.40 3.47 3.03 2.17
2.83 2.92 2.33 3.00 2.42 2.50 3.00 2.42 2.50 2.58
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The asymmetric effect is sometimes known as competitionx. It occurs when
neighbouring treatments compete for finite resources, be they food or tasters’
good opinions. In some situations, a symmetric effect is more natural: that is,
θij = θji for all i and j. In many wildlife habitats, there is synergy between
organisms filling different niches, to each others’ mutual benefit, so that θij
is positive. On the other hand, antagonism gives a symmetric effect with
negative θij .

The symmetric model is

f((i, {j, k, l})) = µ+ θij + θik + θil where θrs = θsr for all r and s. (7)

The corresponding subspace VS is similar to the whole space in Example 2,
and decomposes as V0 ⊕ (VP ∩ VS) ⊕ WS . A slight modification of Yates’s
method gives the corresponding sums of squares as 390.15, 7.64 and 16.54,
respectively. The fitted vector in VS is shown in the last row of Table 3. It is
clearly not as good a fit to the data as either of the two rows above.

We now have three natural ways of decomposing U1 as a pair of or-
thogonal irreducible subspaces. Table 4 shows the corresponding sums of
squares and mean squares. Starting with blocks or with the asymmetric treat-
ment model (5) gives (a); starting with direct effects of treatments, which is
model (4), gives (b); and starting with the symmetric treatment model (7)
gives (c). Of these, the only one where the larger mean square corresponds
to a meaningful subspace and the other mean square is about 1.3 is the first.
Thus consideration of U1 suggests that we should include the subspace VP ∩VA
in the explanation for the data but that the rest of U1 is just random noise.

Of course, there is a fourth decomposition, into the G-irreducible subspace
containing the projection of y onto U1 and its orthogonal complement, with
mean squares 15.53 and 0 respectively. This is the most extreme decomposition
of U1 into orthogonal irreducibles, but we cannot consider it seriously for data
analysis. In the first place, this decomposition is not known before the data
are obtained. In the second place, the zero mean square is just too small: when
four others are around 1.3 then anything much smaller is suspicious.

Table 4. Three natural ways of decomposing the subspace U1

subspace S.S. M.S.

U1 ∩ VB 6.50 1.30
VP ∩ VA 71.17 14.23

U1 77.67

subspace S.S. M.S.

WT 63.35 12.67

U1 ∩W⊥T 14.32 2.86

U1 77.67

subspace S.S. M.S.

VP ∩ VS 7.64 1.53

U1 ∩ V ⊥S 70.03 14.01

U1 77.67

(a) blocks or (b) direct treatment effects (c) symmetric model
asymmetric model

For decomposing U2, we have the two possibilities shown in Table 5 (ignor-
ing the extra one defined by the data). Starting with blocks gives (a), while
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starting with the symmetric treatment model gives (b). In the first, both mean
squares are about 1.3, which is consistent with random noise. In the second,
the larger mean square is 1.84. This is less than twice 1.3, so is unlikely to
indicate anything meaningful. Moreover, it corresponds to the subspace WS .
Figure 3 shows that any natural treatment subspace containing WS must con-
tain the whole of VS , in particular VP ∩ VS , whose contribution to the data
we have already decided is just random noise. These considerations suggest
that no part of U2 is anything more than random noise.

Table 5. Two natural ways of decomposing the subspace U2

subspace S.S. M.S.

U2 ∩ VB 11.60 1.29

U2 ∩ V ⊥B 11.80 1.31

U2 23.40

subspace S.S. M.S.

WS 16.54 1.84

U2 ∩W⊥S 6.86 0.76

U2 23.40

(a) blocks (b) symmetric model

There are three remaining subspaces in Table 2. Of these, S3,2,1 has the
smallest mean square, while the mean square for S3,3 is 1.62, less than that
for WS , which we have already decided to ignore. That leaves just WA, with
a mean square of 2.72. As Figure 3 shows, including WA in the treatment
subspace that already includes V0 and VP ∩ VA gives the rather natural sub-
space V0 + VA. This corresponds to model (6).

The conclusion from the spectral analysis is that model (6) explains the
data well. That is, the different quantities of vanilla compete with each other
for the tasters’ scores, but there is no evidence of any direct effect of quan-
tities or any differences between tasters. These conclusions differ from those
in [17], because Calvin assumed that the most important effects would be the
differences between tasters and the differences between the direct effects of
the quantities of vanilla.

Note that the computational aspects of this are an instance of computing
projections of a data vector onto the isotypic components of a representation
of the symmetric group (see e.g., [25]). The general computational problem of
isotypic projection for arbitrary groups is considered in [40] as well as [41].

10 Strong symmetries of orthogonal designs

Even without the complication of the effects of neighboring treatments, we
can define the group G of strong symmetries of the design. Do its irreducible
subspaces help us to analyze the data? In this section we revisit Examples 7–10
and consider their strong symmetries.

The simplest orthogonal case is the completely randomized design in Ex-
ample 7, where Ω is unstructured and each treatment is applied to r observa-
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tional units, for some integer r. Then G = Sym(r) wrG1, and [19] shows that
every decomposition of RΩ into orthogonal G-irreducible subspaces has the

form
(⊕

j∈JWj

)
⊕ V ⊥Γ , where

⊕
j∈JWj is an orthogonal decomposition of

VΓ into G1-irreducible subspaces. Here V ⊥Γ is the subspace which is classically
called “Error” or “residual” in the ANOVA, and so the approach using strong
symmetries gives nothing new.

For a complete-block design in b blocks of size k, as in Example 8, we have
|Γ| = k, G2 = Sym(k) wr Sym(b), and G = G1×Sym(b) in its product action.
Let U0 and U1 be the irreducibles of Sym(b) in its natural action, of dimen-
sions 1 and b − 1 respectively. If

⊕
j∈JWj is an orthogonal G1-irreducible

decomposition of RΓ then the subspaces in an orthogonal G-irreducible de-
composition of RΩ are Ui⊗Wj for i in {0, 1} and j in J . Here U0⊗W0 = V0,
and U1 ⊗ W0 = WB , which is the subspace for differences between blocks.
The subspaces U0 ⊗Wj , for j in J \ {0}, give the decomposition of VΓ ∩ V ⊥0
specified by G1. If |J | = 2 then the only remaining subspace is U1⊗W1, which
is (VB + VΓ)⊥, the unique residual subspace. This case was discussed, from
the point of view of strong symmetries, in [29, 38]. However, if |J | ≥ 3 then
(VB + VΓ)⊥ is not G-irreducible.

For example, suppose that k = mn and that Γ is as in Example 1. The
approach of Section 6 gives the ANOVA in Table 6(a), while consideration of
strong symmetries gives the decomposition in Table 6(b). Which should be
used?

There is disagreement among statisticians about how to answer this ques-
tion. The approach described by Nelder in [43, 44] is that in Sections 6–7:
start with the decomposition of RΩ determined by G2 and refine it using the
decomposition of VΓ. If there are simply fifteen treatments then (VB + VΓ)⊥

is used as the residual subspace: why should this be decomposed if the fif-
teen treatments are all combinations of five varieties of cow-peas with three
methods of cultivation? This gives the decomposition in Table 6(a). A pop-
ular alternative approach is to start with a list of factors (that is, partitions
of Ω with named parts) and close it under infima, where the infimum of two
partitions is their coarsest common refinement. This gives the decomposition
in Table 6(b). These two approaches are contrasted in [13].

It is not uncommon for the initial structure on Ω to be defined by a fam-
ily P2 of partitions of Ω (such as the partitions into blocks, rows or columns)
and the structure on Γ to be defined by a family P1 of partitions of Γ (such as
those defined by factors C and D in Example 1). Each partition defines the
subspace of vectors which are constant on each of its parts. Two partitions are
said to be orthogonal to each other if their corresponding subspaces are geo-
metrically orthogonal. The design function τ enables us to consider partitions
of Γ to be partitions of Ω which refine the partition defined by the inverse
images of τ . If P1∪P2 contains the two trivial partitions of Ω, is closed under
suprema, and has the property that each pair of partitions is orthogonal, then
it defines an orthogonal decomposition W of RΩ [54]. Now G is the group of
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Table 6. Two different decompositions for a factorial design in complete blocks

Subspace Source of variation d.f.

U0 ⊗W0 = V0 Grand mean 1
U1 ⊗W0 Blocks b− 1
U0 ⊗WC Main effect of C n− 1
U0 ⊗WD Main effect of D m− 1
U0 ⊗WCD C-by-D interaction (n− 1)(m− 1)

(VB + VΓ)⊥ Residual (b− 1)(mn− 1)

V Total bmn
(a) Method of Section 6

Subspace Source of variation d.f.

U0 ⊗W0 = V0 Grand mean 1
U1 ⊗W0 Blocks b− 1
U0 ⊗WC Main effect of C n− 1
U1 ⊗WC Residual for main effect of C (b− 1)(n− 1)
U0 ⊗WD Main effect of D m− 1
U1 ⊗WD Residual for main effect of D (b− 1)(m− 1)
U0 ⊗WCD C-by-D interaction (n− 1)(m− 1)
U1 ⊗WCD Residual for C-by-D-interaction (b− 1)(n− 1)(m− 1)

V Total bmn
(b) Irreducible subspaces of group of strong symmetries

permutations of Ω which preserve every partition in P1 ∪P2. In order for the
subspaces in W to be G-irreducible, it is necessary that each partition have
all its parts of the same size (otherwise, G cannot be transitive on Ω) and
that P1 ∪ P2 be closed under infima. It is arguable that the problem with
the preceding example of a factorial design in complete blocks is the lack of
closure under infima.

If, in addition to satisfying the preceding properties, the lattice of parti-
tions in P1 ∪ P2 is distributive, then G is a generalized wreath product and
its irreducible subspaces are precisely those in W [8]. In this case, the strong
symmetries give the same decomposition as that in Section 6. The split-plot
design in Example 10 is a case in point.

To show that lack of closure under infima is not the whole explanation,
we conclude this section by considering the Latin-square design in Example 9,
and suppose that G1 = Sym(n). The partitions of Ω into rows, columns, and
letters, together with the two trivial partitions, satisfy all the aforementioned
conditions, except that the lattice is not distributive. Now G is the subgroup
of Sym(n) × Sym(n) which preserves the partition into letters. If the Latin
square is not the Cayley table of a group then G may not even be transitive
on Ω: indeed, it may be trivial. Even when it is such a Cayley table, the
results in [2] show that there may be surprisingly many G-irreducibles in a
decomposition of RΩ. However, neither of the common approaches to ANOVA
described above uses any finer decomposition than the one in Section 6.
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Thus considerations of symmetries, partitions, combinatorial conditions,
or models, may lead to different analyses. The Latin square seems to be a
relatively straightforward design, yet subtle differences in assumptions have
led to arguments over the correct data analysis ever since Neyman [46].

11 Strong symmetries of incomplete-block designs

In this section we return to the incomplete-block designs of Section 8, and
use the notation introduced there. Thus Ω consists of b blocks of size k, and
Γ consists of t treatments, where t > k. We assume no structure on Γ. The
group G of strong symmetries consists of all permutations of Ω which preserve
the partition into blocks and the partition into treatments.

James argued in [32] that ANOVA should use a decomposition of RΩ into
orthogonal G-irreducible subspaces. Here we compare this approach with that
of Section 8.

Let ρ be the permutation representation of this action of G, with permu-
tation character π. If g ∈ G then ρ(g) fixes the subspaces V0, WB and WT .
Therefore ρ(g) commutes with QB and PT as well as with I and J , and so
A ⊆ C(G). Hence each of the summands in (2) is G-invariant, while Ui is
G-isomorphic to Vi for i = 1, . . . , s.

For simplicity, write VB∩V ⊥Γ as WB−T , VΓ∩V ⊥B as WT−B and (VB+VΓ)⊥

as W . Assume that k ≥ 2 and r ≥ 2, so that V0 and W are both non-zero. Let
δ be the number of subspaces among WB−T and WT−B that are non-zero, so
that δ ∈ {0, 1, 2}.

A block design is said to be resolvable if there is a partition of Ω into
replicates, coarser than the partition into blocks, such that each treatment
occurs once in each replicate. For a resolvable design, define WR analogously
to WB . Then dim(WR) = r− 1 and WR ≤WB−T : hence the latter cannot be
zero and so δ ≥ 1.

Returning to the general case, recall that the rank p of G is defined to be
the number of orbits of G in its induced action on Ω × Ω (see [55]). If G is
transitive on Ω then p is equal to the number of orbits on Ω of the stabilizer
in G of any element of Ω. Less obviously, p is also equal to the sum of the
squares of the multiplicities of complex-irreducible characters in π.

As in Section 3, there are non-negative integers mi such that π =∑
i∈Imiχi, where {χi : i ∈ I} is the set of real-irreducible characters of G.

The relation to complex-irreducibles is explained in [4, 9, 18, 42, 51], as fol-
lows. The set I is the disjoint union of I1, I2 and I3. If χ ∈ I1 then χ is
also complex-irreducible, of real type; if χ ∈ I2 then χ = 2η, where η is a
complex-irreducible of quaternionic type; if χ ∈ I3 then χ = ζ + ζ̄, where ζ is
complex-irreducible of complex type. Therefore

p =
∑
i∈I1

m2
i + 4

∑
i∈I2

m2
i + 2

∑
i∈I3

m2
i . (8)
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For an incomplete-block design, comparison of (8) with (2) shows that

p ≥ 2 + δ + 4s,

with equality if and only if each of V0, WB−T , WT−B , W , U1, . . . , Us is G-
irreducible, admitting a complex-irreducible character of real type, and there
are no G-isomorphisms among this list of subspaces. In particular, if p ≤ 9
then s = 1 and U1 is G-irreducible.

Furthermore, if p = 6 then s = 1, δ = 0, the design is a balanced
incomplete-block design with b = t, and W is G-irreducible. If p = 7 then
s = 1. In this case either δ = 1, t 6= b, the design or its dual is a balanced
incomplete-block design, and W is G-irreducible; or δ = 0, the design is a
balanced incomplete-block design with b = t, and W is the sum of two G-
irreducible subspaces. If p = 8 then s = 1, then either δ = 2, the design and
its dual are both partial geometric designs, and W is G-irreducible; or δ = 1,
t 6= b, the design or its dual is a balanced incomplete-block design and one of
W , WB−T , WT−B is the sum of two G-irreducible subspaces; or δ = 0, the
design is a balanced incomplete-block design with b = t, and W is the sum of
three G-irreducible subspaces.

We now specialize these results to several well-known families of incomplete-
block designs.

Example 11. Let q be a prime power. Then there is a Desarguesian projective
plane Π of order q. Its points and lines can be used as the treatments and
blocks in an incomplete-block design with t = b = q2 + q + 1, r = k = q + 1
and δ = 0. The group of strong symmetries is PΓL(3, q), which is transitive
on sets of four points in general position. This can be used to show that G
has rank 6: the details are in [4, 14, 15, 20, 21, 32]. Hence a G-irreducible
decomposition of RΩ, with dimensions, is

V0 ⊕ WB ⊕ WT ⊕ W
dim 1 q2 + q q2 + q q3 ,

where only the middle two subspaces are non-orthogonal to each other. In this
case, the G-decomposition is the same as that used in classical ANOVA.

Example 12. Consider the affine plane ∆ obtained from the projective plane Π
in Example 11 by deleting one line and all points on it. This gives a resolvable
balanced incomplete-block design with t = q2, b = q(q + 1), r = q + 1, k = q,
and δ = 1. This design is also known as a balanced square lattice design. Its
group G of strong symmetries is the stabilizer in PΓL(3, q) of the omitted line.
This is transitive on the units in Ω, which may be identified with the flags
(x, λ) where x is a point of ∆ incident with the line λ of ∆. The stabilizer
in G of (x, λ) has the following orbits on Ω:

{(x, λ)}
{(x, µ) : x ∈ µ 6= λ}
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{(z, λ) : x 6= z ∈ λ}
{(z, µ) : z ∈ µ, z ∈ λ, x /∈ µ}
{(z, µ) : z ∈ µ, z /∈ λ, x ∈ µ}
{(z, µ) : z ∈ µ, µ‖λ}
{(z, µ) : z ∈ µ, z /∈ λ, µ 6 ‖λ, x /∈ µ}.

Thus the rank of G is 7, and so a G-irreducible decomposition of RΩ, with
dimensions, is

V0 ⊕ WR ⊕ (WB ∩W⊥R ) ⊕ WT ⊕ W
dim 1 q q2 − 1 q2 − 1 (q − 1)2(q + 1)

.

All pairs of subspaces are orthogonal, apart from the two with dimension
q2 − 1. Moreover, WR = WB−T . This decomposition was obtained by Burton
and Chakravarti in [15].

For a resolvable block design, the classical ANOVA normally splitsWB into
WR and WB ∩W⊥R . These subspaces are called replicates and blocks within
replicates respectively. So this is another example where the G-decomposition
is the same as that used in classical ANOVA.

Example 13. The simple square lattice design introduced by Yates in [56] is
resolvable with r = 2. The treatments are identified with an abstract n × n
array, so that t = n2, where n > 1. In the first replicate, the rows of the array
are blocks; in the second replicate, the columns of the array are blocks. Thus
k = n and b = 2n.

Now dim(WR) = 1 and so WB ∩ W⊥B−T has dimension at most b − 2,

which is 2(n − 1). Therefore dim(WT−B) = t − 1 − dim(WB ∩ W⊥B−T ) ≥
n2 − 1− 2(n− 1) = (n− 1)2 > 0. Hence WB−T and WT−B are both non-zero
and so δ = 2. Both the design and its dual are partial geometric designs.

Now the group G of strong symmetries is Sym(n)wrSym(2) in its product
action. It is generated by all permutations of the set of rows (Sym(n)), all
permutations of the set of columns (Sym(n)), and the interchange of rows
and columns (Sym(2)). It is transitive on flags. If x is the treatment in row λ
and column µ then the stabilizer in G of the flag (x, λ) has the following orbits
on Ω:

{(x, λ)}
{(x, µ)}
{(z, λ) : x 6= z ∈ λ}
{(z, µ) : x 6= z ∈ µ}
{(z, ν) : z ∈ λ, z ∈ ν 6= µ, ν is a column}
{(z, ν) : z ∈ µ, z ∈ ν 6= λ, ν is a row}
{(z, ν) : z /∈ λ, z ∈ ν 6= µ, ν is a column}
{(z, ν) : z /∈ µ, z ∈ ν 6= λ, ν is a row}.
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Hence the rank of G is 8, and the subspaces V0, WB−T , WT−B , U1, V1 and
W are all G-irreducible. Since WR is G-invariant and WR ≤WB−T , we must
have WR = WB−T . Hence the decomposition, with dimensions, is

V0 ⊕ WR ⊕ U1 ⊕ V1 ⊕ WT−B ⊕ W
dim 1 1 2(n− 1) 2(n− 1) (n− 1)2 (n− 1)2 .

Only the pair U1 and V1 are non-orthogonal. In spite of the equality of their
dimensions, the subspaces WT−B and W are not G-isomorphic, because other-
wise the rank would be greater.

Example 14. Projective spaces of higher dimension are also considered in [4,
15]. Here we consider dimension 3. Let q be a prime power and let Θ be
the projective space of dimension 3 over the field with q elements. Take the
treatments and blocks to be the points and planes of Θ, so that t = b =
q3 + q2 + q + 1 and r = k = q2 + q + 1. The design and its dual are both
balanced, and so δ = 0. Now G = PΓL(4, q), which is transitive on ordered
sets of five points in general position, so the stabilizer in G of a flag (x,Ψ)
has the following orbits on Ω:

{(x,Ψ)}
{(x,Φ) : x ∈ Φ 6= Ψ}
{(z,Ψ) : x 6= z ∈ Ψ}
{(z,Φ) : x 6= z ∈ Φ 6= Ψ, z ∈ Ψ, x ∈ Φ}
{(z,Φ) : z ∈ Φ, z ∈ Ψ, x /∈ Φ}
{(z,Φ) : z ∈ Φ, z /∈ Ψ, x ∈ Φ}
{(z,Φ) : z ∈ Φ, z /∈ Ψ, x /∈ Φ}.

Thus G has rank 7, and so U1 and V1 are G-irreducible while W is the sum
of two G-irreducibles.

The space Θ contains (q2 + 1)(q2 + q+ 1) lines, each incident with (q+ 1)2

flags. Let VL be the subspace of RΩ spanned by the characteristic vectors
of the lines. Then VL is G-invariant. Analysis of the permutation characters
of G on lines, flags and points shows that VL is the sum of three G-irreducible
subspaces: one is V0; one is G-isomorphic to both WB and WT ; the third is
orthogonal to VB + VT and has dimension q4 + q2. Hence the G-irreducible
subspaces of W are VL∩W and W ∩V ⊥L . The decomposition, with dimensions,
is

V0 ⊕ WB−T ⊕ WT−B ⊕ (VL ∩W ) ⊕ (W ∩ V ⊥L )
dim 1 q3 + q2 + q q3 + q2 + q q4 + q2 q5 + q4 + q3 .

In this case, the group of strong symmetries decomposes the classical residual
subspace into two parts.
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Example 15. A triple square lattice is made from a simple one by adding an
extra replicate. A Latin square is superimposed on the n × n array. A block
in the third replicate contains all treatments in a given letter of the square.

Now G is the group of all permutations of the square array which preserve
the set of three partitions into rows, columns and letters, in its action on
the 3n2 flags. Depending on the Latin square, G may not be transitive, and
finding a meaningful G-irreducible decomposition may be as difficult as for
the case of a Latin-square design discussed at the end of Section 10.

These examples show that the decomposition defined by the group of
strong symmetries may be the same as the classical one, may give further
decomposition of the residual subspace, or may prove intractable. James [33]
and Bailey [3] have both suggested that using the group of weak symmetries of
Γ may give a meaningful decomposition of VΓ. This group consists of those per-
mutations of Γ whose permutation matrices commute with X>QBX, where
X is the Ω × Γ incidence matrix whose (ω, i)-entry is equal to 1 if τ(ω) = i
and is equal to 0 otherwise. However, this approach does not get the extra
residual subspace in Example 14, nor does it make Example 15 tractable.
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