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1. The problem

There are two fundamental concepts in deterministic dynamical systems: fixed
point (equilibrium point) and periodic solutions. For stochastic dynamical sys-
tems, they correspond to fundamental ideas: pathwise stationary solutions and
random periodic solutions. The question is to give their proper definitions, con-
ditions for their existence and stability (stable and unstable manifolds).

Stationary solution: concept: well-known, results: a lot to do.

Random periodic solution: did not exist as far as we know.



2. The concept of stationary solutions

Consider a random dynamical system on a measurable space (S ,B) over a
metric DS (Ω,F , P, {θ(t)}t∈T) with time T

φ : T ×Ω × S → S , (t, ω, h)→ φ(t, ω, h).

A stationary solution is a F -measurable random variable Y∗ : Ω→ S such that

φ(t, ω,Y∗(ω)) = Y∗(θtω), t ∈ T a.s.

This is the corresponding notion of a steady or equilibrium state in deterministic
dynamical systems φ : T × S → S .

Example 1 Simplest ever nontrivial example:



As a random perturbation to the deterministic equation

dy
dt
= −y, y(0) = h,

we consider the Ornstein-Uhlenbeck process

dy = −ydt + dBt, y(0) = h.

Variation of constant formula gives the following solution:

φωt h = he−t +

∫ t

0
e−(t−s)dBs(ω).

It is easy to check that

Y∗(ω) =
∫ 0

−∞

esdBs(ω)

is the stationary solution of the equation and for any h ∈ R1, as t → ∞

|φωt h − Y∗(θtω)|



= e−t|h −
∫ 0

−∞

esdBs(ω)|

→ 0.

It is well known that

�

Y∗(θ(t)ω) = φ(t, ω)Y∗(ω)

m

µ(dx, dω) = δY∗(ω)(dx)P(dω)

is an invariant measure

� Every ergodic invariant measure µ of a RDS on R1 is a random Dirac mea-
sure.



In general, this is not true. However, the following is also well known:

� Every invariant measure is Dirac by considering the extended probability
space:

(Ω̄, F̄ , P̄, (θ̄(t))t∈T) = (Ω × S ,F ⊗B(S ), µ, (Θ(t))t∈T)

and

φ̄(t, ω̄) = φ(t, ω).

But, by considering the extended probability space, one regards the dynamical
system as noise as well, so the dynamics is different.



Remarks

(i) The stationary solution is not a fixed point in the deterministic sense, but
a random moving fixed point or equilibrium of the stochastic system in the
state space. It describes the invariance over time along the measurable and
P-preserving transformation θt: Ω→ Ω.

(ii) For SPDEs, a stationary solution consists of infinitely many random moving
surfaces on the configuration space due to the random external force pumped
to the systems constantly.



3. Work on stationary solution of SPDEs

Previous work: The existence of stationary solutions of SPDEs is one of the
basic problems: no general methods.

• Sinai (1991, 1996), Stochastic Burgers equations with additive C3 noise,
Feynman-Kac formula and Hopf-Cole transformation, so good regularity is
needed.

• E, Khanin, Mazel and Sinai, Annals of Mathematics (2000), Stochastic invis-
cid Burgers equations with additive C3 noise (minimizing method)

• Mattingly, 2D Stochastic Navier-Stokes equation with additive noise, CMP
(1999)



• Caraballo, Kloeden and Schmalfuss (2004), stochastic evolution equations
with small Lipschitz constant and linear noise.

• Mohammed, Zhang and Zhao, Memoirs of AMS (2008). Stochastic evolution
equations and SPDEs with discrete spectrum, integral equation with linear or
additive noise, stable/unstable manifolds.

A basic assumption in invariant manifold theory: there exists a stationary solu-
tion.

• Arnold, Mohammed, Scheutzow (SDE cases)

• Duan, Lu and Schmalfuss, Annals of probability (2003).

• Mohammed, Zhang and Zhao (2008).



Our more recent work:

The method of infinite horizon integral equation:

Consider the following semilinear see on H:

du(t) = −Au(t) dt + F(u(t)) dt + B0dW(t), t ≥ 0, (1)

u(0) = x ∈ H.

In the above equation, let F : H → H be a globally Lipschitz map with Lipschitz
constant L:

|F(v1) − F(v2)| ≤ L|v1 − v2|, v1, v2 ∈ H.

Let A be a self-adjoint operator on H admit a discrete non-vanishing spectrum
{µn, n ≥ 1} which is bounded below. Let {en, n ≥ 1} denote a basis for H con-
sisting of eigenvectors of A, viz. Aen = µnen, n ≥ 1. Suppose B0 ∈ L2(K,H).



Let W(t), t ∈ R, be a Brownian motion on the canonical complete filtered Wiener
space (Ω,F , (Ft)t≥0, P) and with covariance Hilbert space K. Let Tt = e−At

stand for the strongly continuous semigroup generated by −A. Then (??) has
a unique mild solution given by

u(t, x) = Ttx +
∫ t

0
Tt−sF(u(s, x))ds +

∫ t

0
Tt−sB0dW(s), t ≥ 0

Denote by µm the largest negative eigenvalue of A and by µm+1 its smallest
positive eigenvalue. Thus there is an orthogonal {Tt}t≥0-invariant splitting of
H using the negative eigenvalues {µ1, µ2, · · · , µm} and the positive eigenvalues
{µn : n ≥ m + 1} of A:

H = H+ ⊕ H−

where H+ is a closed linear subspace of H and H− is a finite-dimensional
subspace. Denote by p+ : H → H+ and p− : H → H− the corresponding
projections onto H+ and H− respectively.



Suppose that F : H → H is globally bounded, and its Lipschitz constant L
satisfies

L[µ−1
m+1 − µ

−1
m ] < 1. (2)

Theorem 1 (Mohammed, Zhang and Zhao (2008)) Assume the above condi-
tions on A, B0, F together with (??). Then there is a unique F -measurable map
Y : Ω→ H satisfying

Y(ω) =
∫ 0

−∞

T−sp+F(Y(θ(s, ω)))ds −
∫ ∞

0
T−sp−F(Y(θ(s, ω)))ds

+
[∫ 0

−∞

T−sp+B0 dW(s)
]
(ω) −

[∫ ∞
0

T−sp−B0 dW(s)
]
(ω) (3)

for all ω ∈ Ω. Moreover, u(t, ω,Y(ω)) = Y(θω) for all t a.s.

Theorem 2 (Zhao and Zhou (2009)) Under the same conditions about A and
B0 and F is globally bounded and locally Lipschitz. Then there exists at least



one F -measurable map Y : Ω → H satisfying (??). Moreover, u(t, ω,Y(ω)) =
Y(θω) for all t a.s.

The method of backwards doubly stochastic differential equations:

The problem is to find the stationary solution of the following SPDEs

dv(t, x) = [Lv(t, x) + f (x, v(t, x), σ∗(x)Dv(t, x))]dt

+g(x, v(t, x), σ∗(x)Dv(t, x))dBt, (4)

v(0, x) = h(x).

Here

L =
1
2

d∑
i, j=1

ai j(x)
∂2

∂xi∂x j
+

d∑
i=1

bi(x)
∂

∂xi

with (ai j(x)) = σσ∗(x).



Fix notation:

Let (Ω,F , P) be a probability space, (B̂t)t≥0 and (Wt)t≥0 be two mutually inde-
pendent standard Brownian motion processes with values on U and Rd. LetN
denote the class of P-null sets. For each t ≥ 0, we define

Ft,s,T = F B̂
s,T ⊗ F

W
t,s

∨
N , t ≤ s ≤ T ;

Ft,s = Ft,s,∞, s ≥ t ≥ 0.

Here for any process {ηt}, F
η
s,t = σ{ηr − ηs; 0 ≤ s ≤ r ≤ t}, F ηt,s,∞ =

∨
T≥0F

η
t,s,T .

Let ρ(x) = (1 + |x|)q, q > 3. Denote I = [t,T ] or [0,∞), S 2,−K(I; L2
ρ(Rd,R1)) the

set of jointly measurable and adapted continuous random processes {ψt, t ≥ 0}
with values on L2

ρ(Rd,Rm) satisfying

E[sup
t∈I

e−Kt||ψt||
2
L2
ρ(Rd,Rm)

] < ∞;



and M2,−K(I; L2
ρ(Rd,Rm)) the set of jointly measurable and adapted random

processes {ψt, t ≥ 0} with values on L2
ρ(Rd,Rm) satisfying

E[
∫

I
e−Ks||ψs||

2
L2
ρ(Rd,Rm)

ds] < ∞.

Take B̂s = BT−s − BT . Consider for s ≥ 0, K > 0

e−KsYs

=

∫ ∞
s

e−Kr f (Xt,·
r ,Yr,Zr)dr +

∫ ∞
s

Ke−KrYrdr

−

∫ ∞
s

e−Krg(Xt,·
r ,Yr,Zr)d†B̂r −

∫ ∞
s

e−Kr〈Zr, dWr〉, (5)

Theorem 3 ( Zhang and Zhao, JFA (2007)) v(t, ω) = Y∗(θtω) = YT−t,·
T−t (ω̂) is a

stationary solution of the SPDE (??).



Theorem 4 Under a monotonicity condition, Eq.(??) has a unique solution

(Y t,·
· ,Z

t,·
· ) ∈ S 2,−K([0,∞); L2

ρ(Rd,R1))

×M2,−K([0,∞); L2
ρ(Rd,Rd)),

and u(t, ·) = Y t,·
t is a weak solution of (2) and u(t, ·) is continuous almost surely

with respect to t in L2
ρ(Rd,R1).

4. Random periodic solutions

For a deterministic dynamical system Φt : X → X over time t ∈ I, where X
is the state space, I is the set of all real numbers, or discrete real numbers, a
periodic solution is a periodic function φ : I → X with period T , 0 such that

φ(t + T ) = φ(t) and Φt(φ(t0)) = φ(t + t0) for all t, t0 ∈ I. (6)



To see the motivation for such a definition, let’s first note two obvious but fun-
damental truth in the definition of periodic solution (??) of the deterministic
systems when I is the set of real numbers:

(i) The function φ (given in the parametric form here) is a closed curve in the
phase space;

(ii) If the dynamical system starts at a point on the closed curve, the orbit will
remain on the same closed curve.

But note, in the case of stochastic dynamical systems, although the function
φ may still be a periodic function, one would expect that φ depend on ω. In
other words, we would expect infinitely many periodic functions φω, ω ∈ Ω.
Moreover, even the random dynamical system starts at a point on the curve
φω, it will not stay in the same periodic curve when time is running. In fact,



the periodic curve actually is not the orbit of the random dynamical system, but
the random dynamical system will move from one periodic curve φω to another
periodic curve φθtω at time t ∈ I.

Here in order to illustrate the concept, as a simple example, we consider the
random dynamical system generated by a perturbation to the following deter-
ministic ordinary differential equation in R2: dx(t)

dt = x(t) − y(t) − x(t)(x2(t) + y2(t)),
dy(t)

dt = x(t) + y(t) − y(t)(x2(t) + y2(t)).
(7)

It is well-known that above equation has a limit cycle

x2(t) + y2(t) = 1.

Consider a random perturbation{
dx = (x − y − x(x2 + y2))dt + x ◦ dW(t),
dy = (x + y − y(x2 + y2))dt + y ◦ dW(t).

(8)



Here W(t) is a one-dimensional motion on the canonical probability space
(Ω,F , P) with the P-preserving map θ being taken to the shift operator (θtω)(s) =
W(t + s) −W(t). Using polar coordinates

x = ρ cos 2πα, y = ρ sin 2πα,

then we can write  dρ(t) = (ρ(t) − ρ3(t))dt + ρ(t) ◦ dW(t),
dα = 1

2πdt.
(9)

This equation has a unique close form solution as follows:

ρ(t, α0, ρ0, ω) =
ρ0et+Wt(ω)

(1 + 2ρ2
0

∫ t
0 e2(s+Ws(ω))ds)

1
2

, α(t, α0, ρ0, ω) = α0 +
t

2π
.

It is easy to check that

ρ∗(ω) = (2
∫ 0

−∞

e2s+2Ws(ω)ds)−
1
2



is the stationary solution of the first equation of (??) i.e.

ρ(t, α0, ρ
∗(ω), ω) = ρ∗(θtω)

and

Φ(t, ω)(α0, ρ0) = (α0 +
t

2π
mod 1, ρ(t, α0, ρ0, ω))

defines a random dynamical system Φ(t, ω) = (Φ1(t, ω),Φ2(t, ω)) : [0, 1] ×
R1 −→ [0, 1] × R1.
Define

Lω = {(α, ρ∗(ω)) : 0 ≤ α ≤ 1},

then

Lθtω = {(α, ρ∗(θtω)) : 0 ≤ α ≤ 1}.

It is noticed that

Φ(t, ω)Lω = {(α +
t

2π
mod 1, ρ∗(θtω)) : 0 ≤ α ≤ 1}

= {(α, ρ∗(θtω)) : 0 ≤ α ≤ 1}.



Therefore

Φ(t, ω)Lω = Lθtω,

i.e. L· is invariant under Φ. Moreover

Φ(2π, ω)(α, ρ∗(ω)) = (α, ρ∗(θ2πω)).

Define for (x, y) ∈ R2, x = ρ cos 2πα, y = ρ sin 2πα

Φ̃(t, ω)(x, y)

= (Φ2(t, ω)(α, ρ) cos(2πΦ1(t, ω)(α, ρ)), Φ2(t, ω)(α, ρ) sin(2πΦ1(t, ω)(α, ρ))),

and

φω(t) = (ρ∗(ω) cos(2πα + t), ρ∗(ω) sin(2πα + t)).

It is obvious that

φω(2π + t) = φω(t),



and

Φ̃(t, ω)φω(0) = Φ̃(t, ω)(ρ∗(ω) cos(2πα), ρ∗(ω) sin(2πα))
= (ρ∗(θtω) cos(2πα + t), ρ∗(θtω) sin(2πα + t))
= φθtω(t).

From this we can tell that the random dynamical system generated by the
stochastic differential equation (??) has a periodic invariant solution. More-
over if x2(0) + y2(0) , 0, then

x2(t, θ(−t, ω)) + y2(t, θ(−t, ω))→ ρ∗(ω)2

as t → ∞.

Andrei Yevik’s movie.

Definition 1 An invariant random periodic solution is an F -measurable peri-
odic function φ : Ω × I → X of period T such that

φω(t + T ) = φω(t) and Φωt (φω(t0)) = φθtω(t + t0) for all t, t0 ∈ I. (10)



5. Random maps–stationary solutions and random periodic solutions

Consider the random map

fθ(x) = θx(1 − x),

where

P(θ = λ) = p, P(θ = µ) = 1 − p.

(0 < p < 1). Define

Ω = {(· · · , ε−2, ε−1; ε0, ε1, ε2 · · ·) : εk = λ, µ, f or k = 0,±1,±2, · · ·}

as the sample space of the random dynamical system. For

ω = (· · · , ε−2, ε−1; ε0, ε1, ε2, · · ·),

Define

θω = (· · · , ε−1, ε0; ε1, ε2, · · ·),
θ−1ω = (· · · , ε−3, ε−2; ε−1, ε0, ε1, · · ·),



and for x ∈ [0, 1],

Φ0(ω, x) = x,
Φ(ω, x) = fε0(x),
Φk(ω, x) = Φ(θk−1ω) · · ·Φ(θω)Φ(ω, x).

Theorem 5 (Lian and Zhao (2009)): When 1 < µ < λ ≤ 3, there exists a
unique Y(ω) ∈ (0, 1) such that

Φk(ω,Y(ω)) = Y(θkω)

Φn(θ−nω, x)→ Y(ω)

as n→ ∞.

The idea is to prove there exist constants M > 0, L < 1 and a function ξ(n)
(ξ(n)→ ∞ as n→ ∞) such that for any x, y ∈ [1 − 1

µ, 1 −
1
λ]

| fε−1 fε−2 · · · fε−n(x) − fε−1 fε−2 · · · fε−n(x)| ≤ MLξ(n)|x − y|. (11)



Random periodic solution of period 2 is a pair of the random variable {α(ω), β(ω)}
such that when n is even

Φn(ω, α(ω)) = α(θn(ω)),
Φn(ω, β(ω)) = β(θn(ω)),

and when n is odd,

Φn(ω, α(ω)) = β(θn(ω)),
Φn(ω, β(ω)) = α(θn(ω)).

Recall deterministic case, for 3 < θ < 1 +
√

5,

αθ =
θ + 1 −

√
(θ + 1)(θ − 3)
2θ

,

βθ =
θ + 1 +

√
(θ + 1)(θ − 3)
2θ

.

For the random case, define

Fθ = fθ fθ, θ = λ, µ,



Consider

ω = (· · · , ε−2, ε−1; ε0, ε1, · · ·)

with

ε2n = ε2n+1, n = 0,±1,±2, · · · . (12)

Proposition 1 Assume 3.0176 ≤ µ < λ ≤ 1+
√

5, there exists α(ω), β(ω) such
that for any x ∈ [αλ, αµ]

Fε−1Fε−2 · · · Fε−n(x)→ α(ω),

and for any x ∈ [βµ, βλ]

Fε−1Fε−2 · · · Fε−n(x)→ β(ω).

Define

α(θω) = fε0(β(ω)), β(θω) = fε0(α(ω)).



Then

Theorem 6 (Lian and Zhao (2009)) For ω satisfying (??), {(α(ω), β(ω)} is a
random periodic solution of period 2.


