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Abstract. In this article, we discuss that an initial-oblique derivative boundary value
problem for nonlinear uniformly parabolic complex equation of second order

A0uzz̄−Re[Quzz+A1uz]−Â2u−ut =A3+G(z, t, u, uz) in G,

in a multiply connected domain, the above boundary value problem will be called Problem
O. If the above complex equation satisfies the conditions similar to Condition C′ and (1.12),
and the boundary conditions satisfy the conditions similar to (1.4)-(1.7) and (1.11), then we
can obtain some solvability results of Problem O in G.
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1. Formulation of initial-oblique derivative problems for second order
parabolic complex equations

Let D be an (N+1)-connected bounded domain in the z = x + iy plane C with
the boundary Γ =

∑N
j=0 Γj ∈ C2

µ(0 < µ < 1). Without loss of generality, we may
consider that D is a circular domain in |z| < 1 with the boundary Γ =

∑N
j=0 Γj ,

where Γj = {|z − zj | = γj}, j = 0, 1, · · · , N, Γ0 = ΓN+1 = {|z| = 1} and z = 0 ∈ D.
Denote G = D × I, in which I = {0 < t ≤ T}. Here T is a positive constant, and
∂G = ∂G1 ∪ ∂G2 is the parabolic boundary of G, where ∂G1, ∂G2 are the bottom
{z ∈ D, t = 0} and the lateral boundary {z ∈ Γ , t ∈ Ī} of the domain G respectively.

We consider the nonlinear nondivergent parabolic equation of second order

Φ(x, y, t, u, ux, uy, uxx, uxy, uyy)− ut = 0 in G, (1.1)

where Φ is a real-valued function of x, y, t (∈G ), u, ux, uy, uxx, uxy, uyy(∈R ). Under
certain conditions, the equation (1.1) can be reduced to the complex form

A0uzz̄ − Re[Quzz + A1uz]− Â2u− ut = A3, (1.2)

where z = x + iy,Φ = Ψ(z, t, u, uz, uzz, uzz̄), and
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A0 =
∫ 1

0
Ψτuzz̄(z, t, u, uz, τuzz, τuzz̄)dτ = A0(z, t, u, uz, uzz, uzz̄),

Q = −2
∫ 1

0
Ψτuzz(z, t, u, uz, τuzz, τuzz̄)dτ = Q(z, t, u, uz, uzz, uzz̄),

A1 = −2
∫ 1

0
Ψτuz(z, t, u, τuz, 0, 0)dτ = A1(z, t, u, uz),

Â2 = −
∫ 1

0
Ψτu(z, t, τu, 0, 0, 0)dτ = A2(z, t, u) + |u|σ,

A3 = −Ψ(z, t, 0, 0, 0, 0) = A3(z, t),

(1.3)

where σ is a positive constant (see [4]).
Suppose that the equation (1.2) satisfies the following conditions, namely

Condition C. (1) A0(z, t, u, uz, uzz, uzz̄), Q(z, t, u, uz, uzz, uzz̄), A1(z, t, u, uz), A2(z,
t, u), A3(z, t) are measurable for any continuously differentiable function u(z, t) ∈
C1,0(G) and measurable functions uzz, uzz̄∈L2(G∗) and satisfy the conditions

0 < δ ≤ A0 ≤ δ−1, (1.4)

|Aj | ≤ k0, j = 1, 2, Lp[A3, G] ≤ k1, p > 4, (1.5)

where G∗ is any closed subset in the domain G.
(2) The above functions with respect to u ∈ R, uz ∈ C are continuous for almost

every point (z, t) ∈ G and uzz ∈ C, uzz̄ ∈ R.
(3) For almost every point (z, t) ∈ G and u ∈ R, uz, U

j ∈ C, V j ∈ R, j = 1, 2,
there is

Ψ(z, t, u, uz, U
1, V 1)−Ψ(z, t, u, uz, U

2, V 2)

= Ã0(V 1 − V 2)− Re[Q̃(U1 − U2)], δ < Ã0 ≤ δ−1,
(1.6)

sup
G

(Ã2
0 + |Q̃|2)/ inf

G
Ã2

0 ≤ q < 4/3. (1.7)

In (1.4)-(1.7), δ (> 0), q (≥ 1), k0, k1, p (> 4) are non-negative constants. For in-
stance the nonlinear parabolic complex equation

uzz̄ = G(z, t, u, uz, uzz)+(1+ |u|4)u+ ut,

G(z, t, u, uz, uzz)=

{
u2

zz/8 for |uzz|≤1,

u−2
zz/8 for |uzz|>1,

satisfies Condition C. In this article, the notations are the same as in References
[1-8].

Now we explain the derivation of 3/4 in the condition (1.7). Let Λ = r inf
G

A2
0 > 0,

thus inf
G

Ã2 = inf
G

A2
0/Λ = inf

G
A2

0/(r inf
G

A2
0) = 1/r. By the requirement below, we



Oblique derivative problem for parabolic equations 3

need the inequality

η = sup
G

[(Ã0 − 1)2+|Q̃|2] <
1
4
, i.e. sup

G
[Ã2

0 + |Q̃|2 − 2Ã0] <
1
4
− 1,

so it is sufficient that
sup
G

[A2
0+|Q|2]

r2 inf
G

A2
0

<
2
r
− 3

4
, i.e.

sup
G

[A2
0+|Q|2]

inf
G

A2
0

<2r − 3
4
r2 = f(r).

We can find the maximum of the function f(r) = 2r − (3r2)/4 on (0,∞), due to
f ′(r) = 2 − (3r)/2 = 0. It is easy to see that f(r) takes its maximum on (0,∞) at
the point r = 4/3, and then f(4/3) = 2(4/3) − (3/4)(4/3)2 = 4/3, leading to the
inequality (1.7). (see [2,4])

In this article, we mainly discuss the nonlinear parabolic equation of second order

A0uzz̄ − Re[Quzz + A1uz]− Â2u− ut = A3 + F (z, t, u, uz), (1.8)

satisfying Condition C′, in which the coefficients Aj(j = 0, 1, 2, 3), Q of equation
(1.8) satisfy the conditions (1.4)–(1.7) and F (z, t, u, uz) satisfies the the condition:

(4) |F (z, u, uz)|≤B1(z)|uz|η+B2(z)|u|τ , |Bj |≤k0, j =1, 2, (1.9)

for positive constants η, τ, k0. We can see that F (z, t, u, uz) implies the nonlinear
items.
Problem O. The so-called initial-oblique derivative boundary value problem for
the equation (1.8) is to find a continuous solution u(z, t) ∈ C1,0(G) of (1.8) in G
satisfying the initial-boundary conditions




u(z, 0) = g(z) on ∂G1 = D,

∂u

∂ν
+ b1(z, t)u = b2(z, t) on ∂G2, i.e.

2Re[λ(z, t)uz] + b1(z, t)u = b2(z, t) on ∂G2,

(1.10)

where ν is the unit vector at every point on ∂G2. There is no harm in assuming that
ν is parallel to the plane t = 0. In addition, g(z), bj(z, t)(j = 1, 2) and λ(z, t) =
cos(ν, x)− i cos(ν, y) are known functions satisfying the conditions





C2
α[g, ∂Γ1] ≤ k2,

∂g

∂ν
+ b1(z, 0)g = b2(z, 0) on ∂G1 × {t = 0},

C1,0
α,α/2[η, ∂G2] = C0,0

α,α/2[η, ∂G2]+C0,0
α,α/2[ηz, ∂G2] ≤ k0, η = {b1, λ},

C2,1
α,α/2[b2, ∂G2]≤k3, b1(z, t)≥0, cos(ν, n)>0 on ∂G2,

(1.11)

in which n is the unit outward normal vector at every point on ∂G2, α(1/2 < α <
1), k0, k2, k3 are non-negative constants. The above initial-boundary value problem
is the initial-oblique derivative boundary value problem (Problem O). In particular,
Problem O with the condition ν = n, a1(z, t) = 1, a2(z, t) = 0 on ∂G2 is the so-called
initial-Neumann boundary value Problem, which will be called Problem N. Problem
O for (1.2) with A3(z, t) = 0 and g(z) = 0, b2(z, t) = 0 is called Problem O0.



4 Guo Chun Wen

In order to discuss the uniqueness of solutions of Problem O for the equation (1.2),
we add the condition: For any uj ∈ R, uj

z(j = 1, 2), U ∈ C, V ∈ R, there is

Ψ(z, t, u1, u1
z, U, V )−Ψ(z, t, u2, u2

z, U, V )

=Ã0(u1−u2)zz̄−Re[Q̃uzz+Ã1(u1−u2)z+Ã2(u1−u2)] on ∂G2,
(1.12)

where Ã), Q̃ satisfy (1.7) and Ãj(j = 1, 2) satisfy

|Ãj | < ∞ in Ḡ, j = 1, 2. (1.13)

Theorem 1.1. Suppose that the equation (1.2) satisfies Condition C and (1.12).
Then the solution u(z, t) of Problem O for (1.2) is unique. Moreover the homogeneous
Problem O (Problem O0) of equation (1.2) with A3 = 0 only has the trivial solution.

Proof. Let uj (j = 1, 2) be two solutions of Problem O for (1.2). It is easy to see that
u = u1(z, t)− u2(z, t) is a solution of the following initial-boundary value problem

Ã0uzz̄ − Re[Q̃uzz + Ã2uz]− Ã3u− ut = 0 in G, (1.14)




u(z, 0) = 0 on D,

∂u

∂ν
+ b1(z, t)u = 0 on ∂G2,

(1.15)

where





Ã0 =
∫ 1

0
Ψs(z, t, v, p, q, s)dτ, s=u2zz̄+τ(u1−u2)zz̄, q=u2zz+τ(u1−u2)zz,

Q̃=−2
∫ 1

0
Ψq(z, t, v, p, q, s)dτ, p=u2z+τ(u1−u2)z, v=u2+τ(u1−u2),

Ã1 =−2
∫ 1

0
Ψp(z, t, v, p, q, s)dτ, Ã2 =−

∫ 1

0
Ψv(z, t, v, p, q, s)dτ.

(1.16)

Introducing a transformation v = v(z, t) = ue−Bt, where B is an undetermined real
constant, the complex equation (1.14) and the initial-boundary condition (1.15) can
be reduced to the form

Ã0vzz̄ − Re[Q̃Vzz + Ã1vz]− (Ã2 + B)v − vt = 0, (1.17)




v(z, 0) = 0 in D,

∂v

∂ν
+ b1(z, t)v = 0 on ∂G2.

(1.18)

Let the above equation be multiplied by v, thus an equation of v2

1
2
[Ã0(v2)zz̄ − Re[Q̃(v2)zz − (v2)t]

= Ã0|vz|2−Re[Q̃(vz)2+
1
2
Ã1Re(v2)z]+(Ã2+B)v2

(1.19)
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can be obtained. If the maximum of v2 occurs at an inner point P0 ∈ G with
|v(P0)|2 6= 0, then in a neighborhood of P0, the right hand side of (1.19) ≥ [B−k0]v2.
Moreover, we choose the constant B such that B > k0. By using the maximum
principle (see [3,4]), the function v2 can not take the positive maximum in G. If v2

takes the positive maximum at a point P0 ∈ ∂G2, then we have
[
1
2

∂v2

∂ν
+ b1(z, t)v2

] ∣∣∣∣
P=P0

> 0. (1.20)

This contradicts (1.18). Hence we derive that u = 0, i.e. u1− u2 = 0 in G. Similarly
we can prove the other part in this theorem.

2. A prior estimate of solutions of the initial-oblique derivative problem
of second order parabolic complex equations

Theorem 2.1. If the equation (1.2) satisfies condition C, then the solution u(z, t)
of Problem O for (1.2) satisfies the estimate

Ĉ1,0
β,β/2[u, G]=C1,0

β,β/2[|u|σ+1, G]≤M1, ||u||W 2,1
2 (G)

≤M2, (2.1)

where β (0 < β ≤ α), k = k(k0, k1, k2, k3), Mj = Mj(δ, q, p, β, k,G) (j = 1, 2) are
non-negative constants only dependent on δ, q, p, β, k,G.

Proof. We shall prove that the following estimate holds

Ĉ1,0[u, Ḡ]=C1,0[|u|σ+1, G] ≤ M3 = M3(δ, q, p, β, k,G). (2.2)

If (2.2) is not true, then there exists a sequence of parabolic equations

Am
0 uzz̄ − Re[Qmuzz + Am

1 uz]− Âm
2 u− ut = Am

3 in G, (2.3)

and a sequence of initial-boundary conditions




u(z, 0) = gm(z) on D,

∂u

∂ν
+ bm

1 u = bm
2 on ∂G2,

(2.4)

with {Am
0 }, {Qm}, {Am

1 }, {Âm
2 }, {Am

3 } in G satisfying Condition C and gm, bm
1 , bm

2

satisfying (1.11), where {Am
0 }, {Qm}, {Am

1 }, {Âm
2 }, {Am

3 } in G weakly converge to
A0

0, Q0, A0
1, Â0

2, A0
3 and {gm(z)}, bm

1 (z, t)}, bm
2 (z, t)} in D, ∂G2 uniformly converge to

g0(z), b0
1(z, t), b0

2(z, t) respectively, and the initial-boundary value problem (2.3)–(2.4)
have the solution um(z, t) ∈ Ĉ1,0(G) (m = 1, 2, · · · ) such that Ĉ1,0[um, G] = Hm →
∞ as m →∞. There is no harm in assuming that Hm ≥ max[k1, k2, k3, 1]. Let Um =
um/Hm, it is easy to see that Um satisfies the complex equation and initial-boundary
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conditions




Am
0 Um

zz̄ − Re[QmUm
zz + Am

1 Um
z ]− Âm

2 Um − Um
t = Am

3 /Hm in G,

Um(z, 0) = gm(z)/Hm on D,

∂Um

∂ν
+ bm

1 Um = bm
2 /Hm on ∂G2.

(2.5)

We can see that the some coefficients in the above equation and boundary condi-
tions satisfy the condition C and

|u(m)|σ+1/Hm≤1, Lp[A
(m)
3 /Hm, G] ≤ 1,

Cα[g(m)(z)/Hm, D] ≤ 1, |b(m)
2 /Hm| ≤ 1.

Hence by Theorem 5.3.1, [7], we can obtain the estimates

Ĉ1,0
β,β/2[u

m, G] ≤ M4, ||um||
W 2,1

2 (G)
≤ M5, (2.6)

in which β (0<β≤α),Mj =Mj(δ, q, p, β, k,G) (j =4, 5) are non-negative constants.
Thus from {Um}, {Um

z } we can select the subsequences {Umk}, {Umk
z }, such that

they uniformly converge to U0, U0
z in G and {Umk

zz̄ }, {Umk
zz }, {Umk

t } weakly converge
to U0

zz̄, U
0
zz, U

0
t in G respectively, and U0 is a solution of the following initial-boundary

value problem




A0
0U

0
zz̄ − Re[Q0U0

zz + A0
1U

0
zz + Â0

2U
0]− U0

t = 0 in G,

U0(z, 0) = 0 on D,

∂U0

∂ν
+ b0

1U
0 = 0 on ∂G2.

(2.7)

From Theorem 1.1, we see that U0 = 0. However, from Ĉ1,0[Um, Ḡ] = 1, there exists
a point (z∗, t∗) ∈ Ḡ, such that |U0(z∗, t∗)|+ |U0

z (z∗, t∗)| > 0. This contradiction
shows that the estimate (2.2) is true. Moreover, by using the method from (2.2) to
(2.6), two estimates in (2.1) can be derived.

Theorem 2.2. Suppose that Condition C ′ holds. Then any solution u(z, t) of
Problem O for (1.8) satisfies the estimates

Ĉ1,0
β,β/2[u, Ḡ] = C1,0

β,β/2[|uσ+1, G] ≤ M6k
′, ||u||

W 2,1
2 (G)

≤ M7k
′, (2.8)

where β (0 < β ≤ α), k′ = k1 + k2 + k3 + k0(|uz|η + |u|τ ), Mj = Mj(δ, q, p, β, k0, G)
(j = 6, 7) are non-negative constants.

Proof. If k′ = 0, i.e. k0 = k1 = k2 = k3 = 0, from Theorem 1.1, it follows that
u(z) = 0 in G. If k′ > 0, it is easy to see that U(z) = u(z)/k′ satisfies the complex
equation and boundary conditions

A0Uzz̄ − Re[QUzz + A1Uz]− Â2U − Ut = [A3 + F (z, t, u, uz)]/k′, (2.9)
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and 



U(z, 0) =
g(z)
k∗

, z ∈ D,

∂U

∂ν
+ b1(z, t)U =

b2(z, t)
k∗

, (z, t) ∈ ∂G2.

(2.10)

Noting that

Lp[A3(z, t)/k′, G] ≤ 1, C1
α[g/k′, D] ≤ 1, C1,0

α,α/2[b2/k′, ∂G2] ≤ 1,

and according to the proof of Theorem 2.1, we have

Ĉ1,0
β,β/2[U,G] ≤ M6, ||U ||W 2,1

2 (G)
≤ M7. (2.11)

From the above estimates, it immediately follows that two estimates in (2.8) hold.

3. Solvability of the initial-oblique derivative problem of second order
parabolic complex equations

We consider the complex equation (1.8) namely the equation

A0uzz−Re[Quzz]−ut =f(z, t, u, uz), f(z, t, u, uz) =

= Re[Quzz + A1uz] + Â2u + A3 + F (z, t, u, uz) in G,
(3.1)

in which A0 = A0(z, t, u, uz, uzz), Q = Q(z, t, u, uz, uzz), A1 = A1(z, t, u, uz), Â2 =
A2(z, t, u)+|u|σ, A3 =A3(z, t).

Theorem 3.1. Suppose that equation (1.8) satisfies Condition C ′ and (1.12).
(1) When 0 < η, τ < 1, Problem O for (1.8) has a solution u(z, t) ∈ C1,0(G).
(2) When min(η, τ) > 1, Problem O for (1.8) has a solution u(z, t) ∈ C1,0(G),

provided that
M8 = Lp[A3, G] + C2

α[g, D] + C2,1
α,α/2[b2, ∂G2] (3.2)

is small enough.
(3) When F (z, t, u, uz) in (1.8) possesses the form

F (z, u, uz) = ReB1uz + B2|u|τ in D (3.3)

in which 0 < τ < ∞, Lp[Bj , D] ≤ k0 (< ∞, p > 4, j = 1, 2) with a positive constant
k0, if τ < 1, and if τ > 1 and M8 in (3.2) is small enough, then (1.8) has a solution
u(z, t) ∈ C1,0(G).

Proof. (1) Consider the algebraic equation for t

M6[k1 + k0(tη + tη) + k2 + k3] = t. (3.4)

Because 0 < η, τ < 1, the the above equation has a solution t = M9 > 0, which is
also the maximum of t in (0,+∞). Now, we introduce a closed, bounded and convex
subset B of the Banach space C1,0(G), whose elements are of the form u(z) satisfying
the condition

C1,0[|u(z)|n+1, G] ≤ M9. (3.5)
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We choose an arbitrary function u(z) ∈ B and substitute it into the proper positions
in the following equation and initial-boundary conditions (Problem Oh) with the
parameter h ∈ [ 0, 1]





A0uzz̄ − Re[Quzz]− ut − hf(z, t, u, uz) = A(z, t), (z, t) ∈ G,

u(z, 0) = g(z), z ∈ D,

∂u

∂ν
+ hb1(z, t)u = b(z, t), (z, t) ∈ ∂G2,

(3.6)

where A(z, t) are any measurable functions with the condition A(z, t) ∈ Lp(G),
p > 4, and b(z, t) is a continuously differentiable function with the condition b(z, t) ∈
C1,0

β,β/2(∂G2). When h = 0, according to Theorem 4.3, Chapter IV, [4], we see that

there exists a solution u0(z, t) ∈ B = Ĉ1,0
β,β/2(Ḡ) ∩W 2,1

2 (G) of Problem O0. Suppose
that when h = h0 (0 ≤ h0 < 1), Problem Oh0 for (3.6) is solvable. We shall prove
that there exists a positive constant ε independent of h0, such that for any h ∈ E =
{|h− h0| ≤ ε, 0 ≤ h ≤ 1}, Problem Oh for (3.6) possesses a solution u(z, t) ∈ B. Let
the above problem be rewritten in the form





A0uzz̄−Re[Quzz]−ut−h0f(z, t, u, uz)

= (h− h0)f(z, t, u, uz) + A(z, t) in G,

u(z, 0) = g(z) on D,

∂u

∂ν
+ h0b1u=(h0 − h)b1+b(z, t) on ∂G2.

(3.7)

We arbitrarily choose a function u0(z, t) ∈ B and substitute it into the position of u
on the right hand side of (3.7). It is easily seen that

(h− h0)f(z, t, u0, u0
z) + A(z, t) ∈ Lp(G),

(h0 − h) b2(z, t) + b(z, t) ∈ C 0,0
α,α/2(∂G2).

(3.8)

By the hypothesis of h0, there exists a solution u1(z, t) ∈ B of Problem Oh corre-
sponding to





A0uzz̄−Re[Quzz]−ut−h0f(z, t, u, uz)

= (h− h0)f(z, t, u0, u0
z) + A(z, t) in G,

u(z, t) = g(z) in D,

∂u

∂ν
+ h0b1u = (h0 − h)u0 + b(z, t) on ∂G2.

(3.9)

By using the successive iteration, we obtain a sequence of solutions um(z, t) (m = 1, 2,
· · · ) ∈ B of Problem Oh, which satisfy
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



A0u
m+1
zz̄ − Re[Qum+1

zz ]− um+1
t −h0f(z, t, um+1)

= (h− h0)f(z, t, um) + A(z, t) in G,

um+1(z, 0) = g(z) on D,

∂um+1

∂ν
+h0b1u

m+1 =(h0−h)b1u
m+b(z, t) on ∂G2,

m = 1, 2, · · · .

(3.10)

According to the way in the proof of Theorem 2.2, we can obtain

C1,0[um+1, Ḡ] = ||um+1|| ≤ ||h− h0||M10C
1,0[um, G],

where M10 = M10(δ, q, p, β, k,G) ≥ 0. Setting ε = 1/2(M10 + 1), we have

||um+1|| = C1,0[um+1, G] ≤ 1
2
||um|| for h ∈ E.

Hence when n ≥ m > N + 2(> 2), there are

||um+1 − um|| ≤ 2−N ||u1 − u0||,

||un−um||≤2−N
∞∑

j=1

2−j ||u1−u0||=2−N+1||u1−u0||.

This shows that ‖ un − um ‖→ 0 as n,m →∞. By the completeness of the Banach
space B, there exists u∗ ∈ B, such that ‖ un − u∗ ‖→ 0 as n → ∞ and u∗ is the
solution of Problem Oh with h ∈ E. Thus from the solvability of Problem O0, we
can derive the solvability of Problem O1, in particular Problem O1 with A = 0 and
b(z, t) = 0, i.e. Problem O for (3.1) has a solution. This completes the proof.

(2) For the case min(η, τ) < 1, due to M8 in (3.2) is small enough, from

M6[k1 + k0(tη + tτ ) + k2 + k3] = t,

a solution t = M11 > 0 can be solved, which is also a maximum. Now we consider a
subset B∗ in the Banach space C1(D̄), i.e.

B∗ = {u(z) |C1,0[u, G] ≤ M11},
and apply a similar method as before. We can prove that there exists a solution
u(z) ∈ B∗ = C1,0(G) of Problem O for (1.8) with the constant min(η, τ) > 1.

(3) By using the similar method as in proofs of (1) and (2), we can verify the
solvability of Problem O for (1.8) with the conditions 0 < τ < 1 and 1 < τ < ∞ as
in (3) of the theorem.
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