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Abstract

For a non-empty set X, the collection Top(X) of all topologies on X sits inside the Boolean lattice P(P(X))
(when ordered by set-theoretic inclusion) which in turn can be naturally identified with the Stone space 2P(X).
Via this identification then, Top(X) naturally inherits the subspace topology from 2P(X). Extending ideas of
Frink (1942), we apply lattice-theoretic methods to establish an equivalence between the topological closures of
sublattices of 2P(X) and their (completely distributive) completions. We exploit this equivalence when searching
for countably infinite compact subsets within Top(X) and in crystalizing the Borel complexity of Top(X). We
exhibit infinite compact subsets of Top(X) including, in particular, copies of the Stone-Čech and one-point
compactifications of discrete spaces.

2010 Mathematics Subject Classification: Primary 06B23, 54H10; Secondary 06E15.

1 Introduction

For a non-empty set X , the collection Top(X) of all topologies on X sits inside the Boolean lattice P(P(X)) (when
ordered by set-theoretic inclusion) which in turn can be naturally identified with the Stone space 2P(X). Via this
identification then, Top(X) naturally inherits the subspace topology from 2P(X) (see [1]), a subspace about which
little is known. Frink [3] showed that endowing the lattice P(P(X)) with either the interval or the order topology
yields the same space as 2P(X). In the same paper, Frink also proved that a lattice is complete if and only if it is
compact in its interval topology.

These ideas enable us to apply lattice-theoretic techniques in the investigation of an object, whose individual
elements provide a rich source of topological inquiry and knowledge. Just as the Stone-Čech compactification βN

for discrete space N is homeomorphic to the subspace of all ultrafilters on N, so the question of how all topologies on
a fixed infinite set X behave collectively as a natural subspace of 2P(X) is interesting and yet is little explored. We
establish that complete sublattices of P(P(X)) provide a rich supply of compact subsets within 2P(X). It is then
possible to find infinite compact subsets of Top(X) by purely lattice-theoretic means and to gain further insight
into the topological complexity of Top(X).

The first section of this paper focuses on extending the aforementioned results by describing the equivalence
between the topological closures of sublattices of 2P(X) and their (completely distributive) completions. We exploit
such an equivalence when searching for countably infinite compact subsets within Top(X) and in crystalizing the
Borel complexity of Top(X). The last section is devoted to describing other infinite compact subsets of Top(X)
including, in particular, copies of the Stone-Čech and one-point compactifications of discrete spaces.

2 Preliminaries

For convenience and unless otherwise indicated, 2P(X) shall denote the usual Boolean algebra for an infinite set X
equipped with the subset inclusion order (⊆) in addition to the usual product space, where 2 is the discrete space.
We reserve the use of the symbol ⊂ for cases of proper or strict containment only. The topology of any subset P
of 2P(X) then is simply the usual subspace topology on P (which we shall denote where necessary by PΠ) while P

will denote the topological closure of P in the space 2P(X).

∗Corresponding author.

1

http://arxiv.org/abs/1202.6180v2


For a sublattice P of 2P(X), we denote by P̂ its lattice-theoretic completion. Thus P̂ =
⋂

{L ⊆ 2P(X) | P ⊆ L,
L a sublattice of 2P(X) and L = L̂}. Of course, finite sublattices are trivially complete and, in general, the free
completion of a lattice does not exist (see [2], [7], [8]). That said, the completely distributive completion of any
partial order exists and is unique up to isomorphism [6]. Moreover, for a partial order P :

x ∈ P̂ if and only if x =
∧∨

S for all S ⊆ P so that x ≤
∨

S.

Since 2P(X) (as well as any sublattice thereof) is completely distributive we have an explicit description of each
element in the lattice-theoretic completion of any sublattice of 2P(X).

Definition 2.1. Let (P,≤) be a poset with p ∈ P . We define p↓ = {x ∈ P | x ≤ p}, p↑ = {x ∈ P | p ≤ x},
p↓ = p↓ r {p} and p↑ = p↑ r {p}.

Definition 2.2. We shall adopt the following notation:

(i) If P is a lattice, and S ⊆ P , then we denote by < S >L the sublattice of P generated by closing off S under
finite meets and finite joins.

(ii) If S ⊆ P(X), then < S >T denotes the topology σ on X generated by closing off S under finite intersections
and arbitrary unions. Thus S ∪ {∅, X} is a subbase for σ.

Definition 2.3. Given any S ⊆ 2P(X) we let RS = {a ∈ 2P(X) | ∀b ∈ S, either b ⊆ a or a ⊆ b} and refer to it as
the set of relations of S.

3 Completeness and compactness of sublattices

Lemma 3.1. Let P be a sublattice of 2P(X), let S ⊆ P and let x =
∨

S. If x 6∈ P , then x is a limit point of P .

Proof. Let
⋂

A+
i ∩

⋂

B−
j be an arbitrary open neighbourhood of x. Then for each of the finitely many i, there is

si ∈ S such that Ai ∈ si; furthermore Bj 6∈ si for each j and each i. Thus
∨

i si ∈
⋂

A+
i ∩

⋂

B−
j ∩ P and clearly

∨

i si 6= x.

Recall that the interval topology on a poset P is the one generated by {x↑ | x ∈ P} ∪ {x↓ | x ∈ P} ∪ {P, ∅}
as a subbase for the closed sets; we denote it by P<. The order topology PO on a lattice P is defined in terms of
Moore-Smith convergence. A filter F of subsets from P is said to Moore-Smith-converge to a point l ∈ P whenever

∧

F∈F

∨

F = l =
∨

F∈F

∧

F.

We then take F ⊆ P to be closed if and only if any convergent filter that contains F converges to a point in F .
For a lattice P , P< ⊆ PO [3].

Lemma 3.2. Let P be a sublattice of 2P(X). Then P< ⊆ PΠ ⊆ PO and all three topologies coincide when P is a
complete sublattice of 2P(X). Moreover, all three topologies on P are compact if and only if P is complete.

Proof. The first inequality is true since for any x ∈ P , we have that

x↑ ∩ P =
⋂

A∈x

(A+ ∩ P ).

A similar argument holds for x↓ ∩P . For the second inequality and without loss of generality, take any subbasic
closed set A+ and let F be a convergent filter in P containing A+ ∩ P ; this forces

∧

(A+ ∩ P ) to exist in P . Since
P is a sublattice of 2P(X) then

∨

F∈F

∧

F =
⋃

F∈F

⋂

F

and A ∈
⋃

F∈F

⋂

F . Consequently,
⋃

F∈F

⋂

F ∈ A+ ∩ P .

Next, if P is complete then for any A ⊆ X , it follows that
⋂

(A+ ∩ P ) ∈ P and
⋃

(A− ∩ P ) ∈ P . In turn,
(A+ ∩ P ) = (

⋂

(A+ ∩ P ))↑, (A− ∩ P ) = (
⋃

(A− ∩ P ))↓ and P< = PΠ. Since P< is T2 then PO must be compact
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Hausdorff [4] and PO = P<. The last claim is true since Frink [3] shows that a complete lattice is compact in its
interval topology if and only if it is complete.

Not only is a sublattice P compact in 2P(X) precisely when P is complete but also the closure of P within 2P(X)

is indeed its lattice theoretic completion:

Theorem 3.3. Given an infinite sublattice P of 2P(X) and x ∈ 2P(X),

(i) x is a limit point of P only if x can be expressed in the form
∧

j∈J

∨

i∈Ij
xi,j , where x 6= xi,j for each i, j and

{xi,j | i ∈ Ij}j∈J are infinite subsets of P .

(ii) P = P̂ ; that is, the topological closure of P in 2P(X) coincides with its lattice-theoretic completion.

Proof. (i) Let x be a limit point of P and assume, without loss of generality, that x is infinite. If x = P(X) then
since all neighbourhoods of x meet P , we must have x =

∨

(x↓ ∩ P ) and we are done. Otherwise fix any B 6∈ x

and notice that ∀A ∈ x we have that A+ ∩ B− ∩ P 6= ∅. Furthermore |A+ ∩ B− ∩ P | ≥ ℵ0 since otherwise we
can find (in Hausdorff 2P(X)) a neighbourhood of x which is disjoint from P . Holding B fixed, it is simple to see
that x ⊆

∨

A∈x

(
∨

(A+ ∩B− ∩ P )) while B 6∈
∨

A∈x

(
∨

(A+ ∩B− ∩ P )). To this end, we must only intersect all such

suprema for each B 6∈ x and we have the required form. In symbols:

x =
∧

B 6∈x

∨

A∈x

(

∨

(A+ ∩B− ∩ P )
)

.

For (ii) we must only notice that (i) ⇒ (ii). Indeed, take any x ∈ P̂ . If x ∈ P , we are done. Otherwise, if
x =

∨

S, for S ⊆ P then Lemma 3.1 applies. The last possibility is for x =
∧

k∈K

∨

Sk where Sk ⊆ P and x ⊂
∨

Sk.

Take a basic open set
⋂

A+
i ∩

⋂

B−
j about x and observe that for all i and for all k ∈ K, A+

i ∩ Sk 6= ∅. As for the

B−
j , we know that for any j we can find a kj for which Bj 6∈

∨

Skj
. Hence, for each j take a finite collection of

elements from its corresponding < Skj
>L (i.e. the one for which Bj 6∈

∨

Skj
) so that the join of such a collection

contains all Ai. Taking the intersection of all such collections for each j we have an element of P that is contained
in the aforementioned basic open set and thus x is a limit point of P .

Thus for example, a chain Ω in 2P(X) is by default a sublattice of 2P(X) and so its closure Ω in 2P(X) is its
lattice-theoretic completion, which is again a chain. In fact, observe that

Ω̂(= Ω) =
{

⋂

Ω
}

∪
{

⋃

Ω
}

∪Ω ∪
{

⋃

(b↓ ∩Ω) | b ∈ RΩ

}

∪
{

⋂

(b↑ ∩ Ω) | b ∈ RΩ

}

.

Remark 3.4. Let (X, σ) be any topological space containing a convergent sequence (xn)n∈ω where xn → xω. That
xn → xω is equivalent to demanding that any open set containing xω must contain all but finitely many points
from (xn). Notice that the same is true for ω in the ordinal space ω + 1 (with the order topology) . Moreover, any
natural number in ω + 1 is isolated and hence ω is a discrete subspace of ω + 1. Thus ω + 1, as an indexing set for
any convergent sequence with its limit {xn, xω}, sets up a natural and continuous mapping φ : ω+1 → {xn, xω}n∈ω

(where n → xn) whereupon compactness naturally transfers. With that in mind, let Ω = {a1, a2, . . .} be a well-
ordered chain in 2P(X) with α as its indexing ordinal. If β ∈ α is a limit ordinal, then any open set about β contains
infinitely many ordinals below β. Notice that this might not be the case with aβ , for if aβ 6=

⋃

(aβ)↓ then aβ can
be separated from (aβ)↓ by means of open sets. Thus, the bijection h : α → Ω for which β 7→ aβ is clearly open: h
is a homeomorphism if and only if for any limit ordinal β ∈ α we have aβ =

⋃

(aβ)↓.

4 For X infinite, Top(X) is neither a Gδ nor an Fσ set

Lemma 4.1. For any {Ai | i ∈ ω} ⊆ P(X),
⋂

i∈ω A+
i contains a sublattice of P(X) that is not join complete; that

is,
(
⋂

i∈ω A+
i

)

∩ (LatB(X)r Top(X)) 6= ∅.

Proof. Consider < {Ai | i ∈ ω} >L and suppose that it is join complete (otherwise, we are done). Notice that
its countable cardinality demands that only finitely many of the Ais can be singletons. Since X is infinite, we
may choose a countable infinite collection of singletons S = {{p} | p ∈ X} from P(X) and generate a lattice
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K =< {Ai} ∪ S >L. Then K cannot be join complete for there are uncountably many subsets of ∪S (i.e. joins of
S) and only ℵ0 many elements in K.

Theorem 4.2. Top(X) is not a Gδ set.

Proof. Suppose that Top(X) =
⋂

k∈ω Ok, where

Ok =
⋃

α∈βk



(
⋂

iα≤nα

A+
iα
) ∩ (

⋂

jα≤mα

B−
jα
)



 .

Now, the discrete topology D on X must be in this intersection of open sets. Thus for each k ∈ ω, it must
belong to at least one basic open set of the form (

⋂

iα≤nα
A+

iα
) ∩ (

⋂

jα≤mα
B−

jα
) and since D contains all sets, then

no subbasic open set can be of the form B−. That is, D ∈
⋂

k∈ω A+
k after some renumeration of the As. Applying

Lemma 4.1 to
⋂

k∈ω A+
k we can find a sublattice of P(X) that belongs to

⋂

k∈ω A+
k and that is not join complete -

a contradiction.

In fact, Lemma 4.1 proves something much stronger. Define recursively:

G0
δ := {all Gδ sets}

G0
δσ := {all countable unions of Gδ sets}

G
β
δ := {all countable intersections of Gβ−1

δσ sets} (for β a successor ordinal)

G
β
δσ := {all countable unions of Gβ

δ sets} (for β a successor ordinal)

G
γ
δ :=

⋃

β∈γ

G
β
δ (for γ limit ordinal)

G
γ
δσ :=

⋃

β∈γ

G
β
δσ (for γ limit ordinal)

Take for any n ∈ N a set Gn, say, from Gn
δ and assume that Top(X) =

⋂

n∈ω Gn. Since D ∈
⋂

n Gn then for
each n ∈ N we can find a countable collection {Ain}i∈ω of subsets of X corresponding to each Gn so that

D ∈
⋂

in

A+
in

⊂ Gn

and consequently

D ∈
⋂

n∈ω

⋂

in

A+
in

⊂
⋂

n∈ω

Gn.

By Lemma 4.1, there is a lattice that is not join complete belonging to
⋂

n∈ω

⋂

in
A+

in
. Hence, Top(X) 6=

⋂

n∈ω Gn. Notice that the same is true for any countable limit ordinal. That is, for any β ∈ ω1 so that D ∈ G ∈ G
β
δ

it is possible to extract a countable collection of open sets Ai (i ∈ ω) so that D ∈
⋂

i∈ω A+
i ⊆ G, in which case

Lemma 4.1 completes the proof.

Corollary 4.3. Top(X) 6∈ G
β
δ for β ∈ ω1.

In other words, it is not possible to generate (in the sense of Borel sets) Top(X) by means of open sets. If 2P(X)

was metrizable (which it is not) then the above corollary would suffice to show that Top(X) is not a Borel set.

Corollary 4.4. Top(X) is not Čech complete.

Proof. We showed above that any countable intersection of open sets from 2P(X) containing the discrete topology
on X contains an element of LatB(X)r Top(X). Hence, Top(X) is not a Gδ set in LatB(X).

Theorem 4.5. Top(X) is not an Fσ set.

4



Proof. If Top(X) is an Fσ set, then it must be of the form

Top(X) =
⋃

k∈ω

Ck

where each Ck is a closed set. We will show by contradiction that at least one such closed set must contain a
sequence of topologies whose limit is not a topology. Since the limit of any sequence must be present in the closure
of the sequence, then the aforementioned closed set will contain an element that is not a topology. We prove the
above for |X | = ℵ0 and note that the same is true for any X with |X | ≥ ℵ0.

Let k : [0, 1] → P(N) be an injective order morphism so that ∀a ∈ [0, 1],
⋃

b<a k(b) = k(a) and k(1) 6= N.
That is, k([0, 1]) is a dense and uncountable linear order in P(N) where a < b ⇒ k(a) ⊂ k(b). Next, for any a

define τa = P(k(a)) ∪ {N}. Notice that ∀a ∈ [0, 1], τa ∈ Top(N) and
⋃

b<a τb 6∈ Top(N) (since k(a) 6∈
⋃

b<a τb),
and {τa}a∈[0,1] is an uncountable dense linear order in Top(N). If Top(N) =

⋃

k∈ω Ck where each Ck is closed then
there must exist one set C from {Ck}k∈ω which contains an uncountable set D ⊂ {τa}a∈[0,1] for which µ(D) > 0
(non-zero measure). We immediately get that D must contain a densely ordered subset that in turn contains a
strictly increasing sequence, call it S. By Theorem 3.3,

⋃

S ∈ Ŝ but
⋃

S 6∈ Top(N). To this end we have
⋃

S ∈ C,
a contradiction.

Corollary 4.6. For β ∈ ω1, the following are equivalent:

(a) Top(X) ∈ G
β
δ .

(b) Top(X) is a Gδ set.

(c) Top(X) is an Fσ set.

(d) Top(X) is Čech complete.

(e) X is finite.

5 Compact infinite subsets of Top(X)

In this section, we provide examples of compact infinite subsets of Top(X). Note in particular that any countable
chain of topologies must converge to its union which may not itself be a topology. For example, consider the nested
sequence of finite topologies {τi | τi = P({x0, x1. . . . , xi})∪{X, ∅}}, where {x0, x1, . . .} is a countable infinite subset
of X . Then τn →

⋃

τi but notice that
⋃

τi fails to be a topology as {x0, x1, . . .} does not belong to any τi. Of
course, LatB(X), as a compactification of Top(X), will contain all such limits.

Example 5.1. For simplicity, take a countable infinite subset C of X . Enumerate C = {a0, a1, a2, . . .} and create
a sequence in P(C) as follows: C0 = {a0}, C1 = {a0, a1}, ..., Cω = C. Now, for any n ∈ ω let τn = {Cm | m ≤
n} ∪ {X, ∅} and τω = {Cm | m ∈ ω} ∪ {C,X, ∅}; then (τn)n∈ω converges to (non-Hausdorff) τω in Top(X). Indeed,
let B =

⋂

A+
i ∩

⋂

B−
j be a basic open set containing τω. Then no Bj = Cm for any m ∈ ω and any Ai must be

either ∅, X , C or a Cn, for some n ∈ ω. Since there are only finitely many Ai then there exists an m ∈ ω for which
all Ai ∈ τm.

In view of the above example, we can construct a convergent sequence of compact non-Hausdorff topologies,
whose limit is both compact and Hausdorff.

Example 5.2. Let [a, b] ⊂ R, and define any strictly increasing sequence {xn | a < xn < b}n∈ω whose limit is b.
Next, let Nb = {(c, b] | a ≤ c ≤ b}, Na(x) = {[a, c) | c ≤ x} and

τ0 =< {[a, b)} ∪ Nb ∪ Na(x0) ∪ {∅} >T

τ1 =< {[a, b)} ∪ Nb ∪ Na(x1) ∪ {∅} >T

...

τω =
⋃

i∈ω

τi
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By design, τn → τω. Observe also that τω is the usual Euclidean topology on [a, b] and so is compact and
Hausdorff. Indeed, given any c ∈ [a, b] we must only check that (c, b] ∈ τω . Since xn → b then there exists a k ∈ ω

so that xk > c, hence (c, b] ∈ τk. To show that each τn (n ∈ ω) is compact, take an open cover C of [a, b] from τk
(k ∈ ω). Notice that since a must be covered then [a, c1) ∈ C for some c1 ≤ xk. Since xk must also be covered by
some element in C then, for some c2 ≤ xk, either (c2, b) or (c2, b] belong to C. If c1 > c2 then we’re done. Otherwise,
notice that τk ↾ [c1, c2] is the usual topology on R restricted to [c1, c2] (which yields a compact space). Finally, no
τn is Hausdorff (since b can’t be separated from all points in [a, b]).

The above example confirms that the collection of compact non-T2 topologies on a set X fails to be closed given
the existence of a countable chain of compact non-T2 topologies whose union (and topological limit)is a T2 and
compact topology.

Even though any compact topology is contained in a maximal compact topology [5] it is possible to construct
strictly increasing sequences of compact topologies whose limits are not compact. Consider the half-open half-
closed interval [a, b) equipped with the (convergent) sequence of topologies τi as in the previous Example, with
Nb = {(c, b) | a ≤ c} modified accordingly. It is clear that every topology, with the exception of τω, is compact.

Nested sequences are not the only type of compact infinite subsets of Top(X). Recall that an atom in Top(X)
is a topology of the form {∅, A,X} where A is a nonempty and proper subset of X . Consider then the following
theorem where I denotes the trivial topology on X .

Theorem 5.3. Let T be an infinite collection of atoms in Top(X). Then T = T ∪ {I}.

Proof. Let A ⊂ P(X) so that ∅ 6∈ A, τA = {X, ∅, A} and TA = {τA | A ∈ A}. Consider the following closed set

C = X+ ∩ ∅+ ∩





⋂

D∈P(X)\A

D−



 ∩





⋂

B,C∈A

(B− ∪C−)





where, of course, B 6= C. Then TA ⊆ C and I ∈ C. Any family that contains any element from P(X) \ A
can’t belong to C and any family (and topology) that contains elements from A can contain at most one. Thus
TA ∪ {I} = C. Finally, any neighbourhood of I must intersect TA and the result follows.

Corollary 5.4. Let T be any infinite collection of atoms in Top(X). Then T ∪{I} is the one-point compactification
of T in 2P(X).

Given two topologies in Top(X) we say that they are disjoint provided their intersection is the trivial topology
I on X .

Theorem 5.5. Let T be an infinite collection of pairwise disjoint topologies on X . Then T ∪ {I} = T is the
one-point compactification of T in 2P(X).

Proof. In the following expression, σ and ρ denote topologies in T while A and B denote certain nonempty and
proper open subsets of X . We claim that

C = X+ ∩ ∅+ ∩





⋂

D 6∈∪T

D−



 ∩









⋂

(A,B)∈(σ,ρ)
σ 6=ρ

(A− ∪B−)









∩









⋂

A 6=B
A,B∈σ

(A+ ∪B−)









= T ∪ {I}.

Clearly C is closed and T ∪ {I} ⊆ C. Let x ∈ 2P(X)
r T such that I ⊂ x. If x 6⊆ ∪T then there must exist

O ∈ x so that O 6∈ ∪T ; since x 6∈ O− then x 6∈ C. If x ⊆ ∪T then it is either contained in a topology from T or
not. In the former case, take ρ ∈ T where x ⊂ ρ, U ∈ ρ \ x and V ∈ ρ ∩ x where V is neither empty nor X . Then
x fails to belong to U+ ∪ V −. Otherwise we are guaranteed a pair of distinct topologies, ρ and σ, in T for which
there exists V ∈ x ∩ ρ and U ∈ x ∩ σ and neither open set is equal to X or ∅. Hence, x 6∈ V − ∪ U− and we have
that C = T ∪ {I}. Finally, any neighbourhood of I must have a cofinite intersection with T and the result follows.

Corollary 5.6. For any (infinite) discrete space Y , where |Y | ≤ 2|X|, Top(X) contains a copy of its one-point
compactification.

Proof. There are 2|X| atoms in Top(X) and all are disjoint from each other.
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6 βN in Top(N)

An ultratopology T on a set X is of the form T = P(X r {x}) ∪ U , where U is an ultrafilter on X and {x} 6∈ U .
We shall use the notation TU for such an ultratopology when we wish to identify the associated ultrafilter U . We
denote by Ult(X) the set of all ultratopologies on X . Whenever U is a principal (non-principal) ultrafilter, T is
called a principal (non-principal) ultratopology. Denote by TYPE(x) the set {F | F is an ultrafilter and {x} 6∈ F}
and by TYPE[x] the set {T ∈ Top(X) | T is an ultratopology and {x} 6∈ T }. Note that {TYPE[x]: x ∈ X} is a
partition of Ult(X).

Given X , define UX to be the set of all ultrafilters on X and for any F ∈ UX and A ⊂ X let

FA = F ↾ (X rA) = {N ∩ (X rA) | N ∈ F}.

In other words, FA is the trace of F on X rA. Whenever A = {a} we let F{a} = Fa.

Lemma 6.1. Let n ∈ N and denote N
′ = Nr {n} then

(i) ∀F ∈ TYPE(n), F = Fn ∪ {M ∪ {n} | M ∈ Fn},

(ii) ∀F ∈ TYPE(n), Fn ∈ UN′ and

(iii) F ,G ∈ TYPE(n) so that G 6= F implies that Fn 6= Gn.

Proof. (i) We must only show that Fn ⊂ F . Indeed, if Fn ⊂ F then given any A ∈ Fn we have that A∪{n} ∈ F
since F is a filter. So let A ∈ Fn and notice that either A ∈ F or A ∪ {n} ∈ F . Since the former case
is trivial assume that A ∪ {n} ∈ F . Notice that since F ∈ TYPE(n) then (N′

r A) ∪ {n} 6∈ F and thus
A = N r ((N′

rA) ∪ {n}) ∈ F .

(ii) Take A ∈ Fn. If A ⊂ B ⊆ N
′, then B ∈ F and consequently B ∈ Fn. Next, let A,B ∈ Fn and notice that

A,B ∈ F and A ∩B ∈ F . Thus, A ∩B ∈ Fn. Lastly, let A ⊂ N
′ and notice that either A or its complement

in N belong to F . In the former case we are done so assume N r A ∈ F . To this end, we must only notice
that N′

rA = (N rA) ∩ N
′ ∈ Fn.

(iii) This follows directly from (i).

Theorem 6.2. For any n ∈ N the mapping F : TYPE(n)→ UN′ for which F 7→ Fn is a bijection.

Proof. Lemma 6.1 part (ii) tells us that the range is well-defined. Also, for any filter H ∈ UN′ it is easy to see that
FH = H ∪ {M ∪ {n} | M ∈ H} ∈ TYPE(n) and that FH ↾ N

′ = H. Lastly, from part (iii) of Lemma 6.1 we get
injectivity.

Theorem 6.3. For any n ∈ N, TYPE[n] is homeomorphic to βN.

Proof. Since TYPE(n) can be bijected with UN′ (by F 7→ Fn) then the same is true of TYPE[n]. That is, for any
TF ∈ TYPE[n] we canonically map TF 7→ Fn so that TF = P(N′) ∪ F . Recall that a subbase for βN′ is comprised
of sets of the form A′ = {F ∈ UN′ | A ∈ F} for all A ∈ P(N′). We claim that for any A ⊆ N

′, A′ 7→ (A ∪ {n})+∩
TYPE[n]. Indeed, if A ∈ Fn for some F ∈ TYPE(n) then by Lemma 6.1 A ∪ {n} ∈ F and TF ∈ (A ∪ {n})+∩
TYPE[n].

Similarly, for any A ∈ P(N′), A+∩ TYPE[n]= TYPE[n] which bijects to UN′ . If A ⊆ N with n ∈ A then for
any ultratopology TF in A+∩ TYPE[n] it must be the case that A r {n} ∈ Fn. Consequently, A+∩ TYPE[n]
7→ (Ar {n})′.

In a nutshell, we have the following diagram of the above claim:

βN′

��

Fn 7→TF

,,
UN′

OO

Fn 7→F
// TYPE(n)

F7→TF

//oo TYPE[n]oo

ll
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Corollary 6.4. The Fσ set Ult(N) =
⋃

n∈N
TYPE[n] is not compact.

Proof. Consider the following open cover of Ult(N):

⋃

n∈N

{n}−.

Note that ∀n ∈ N, {n}−∩Ult(N) = TYPE[n] and so no finite subcollection of the above cover can cover Ult(N).

In particular, the discrete topology on N is a limit point of Ult(N). Lemma 6.1 and Theorem 6.3 can be extended
to any infinite set X . That said, for |X | > ℵ0, Ult(X) is not an Fσ set.

Theorem 6.5. For Y a discrete space with |Y | ≤ |X |, Top(X) contains a copy of βY .

Proof. The proof is trivial for |Y | = |X |. Otherwise, take a copy of βY within Top(Y ) and an injection i : Y → X .
Then ∀ρ ∈ Top(Y ), ρX = {A ⊂ X | i−1(A) ∈ ρ} ∪ {X} is a topology on X . Moreover, {ρX | ρ ∈ βY } is a
homeomorphic copy of βY in Top(X).
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