Mathematics > Geometric Topology

Finite-sided deformation spaces of complete affine 3-manifolds

Virginie Charette, Todd A. Drumm, William M. Goldman
(Submitted on 14 Jul 2011 (v1), last revised 17 Nov 2012 (this version, v2))

Abstract

A Margulis spacetime is a complete affine 3-manifold M with nonsolvable fundamental group. Associated to every Margulis spacetime is a noncompact complete hyperbolic surface S . We show that every Margulis spacetime is orientable, even though S may be nonorientable. We classify Margulis spacetimes when S is homeomorphic to a two-holed cross-surface, that is, the complement of two disjoint discs in the real projective plane. We show that every such manifold is homeomorphic to a solid handlebody of genus two, and admits a fundamental polyhedron bounded by crooked planes. Furthermore, the deformation space is a bundle of convex quadrilateral cones over the space of marked hyperbolic structures. The sides of each quadrilateral cone are defined by invariants of the two boundary components and the two orientation-reversing simple curves. The twoholed cross-surface, together with the three-holed sphere, are the only topologies for which the deformation space of complete affine structures is finite-sided.

Comments: 29 pages, 8 figures. Accepted for publication in the Journal of Topology
Subjects: Geometric Topology (math.GT)
MSC classes: 57M05, 20H10, 30F60
Cite as: arXiv:1107.2862 [math.GT]
(or arXiv:1107.2862v2 [math.GT] for this version)

Submission history

From: William M. Goldman [view email]
[v1] Thu, 14 Jul 2011 16:20:34 GMT (758kb)
[v2] Sat, 17 Nov 2012 22:29:20 GMT (895kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.GT
< prev | next >
new | recent | 1107
Change to browse b math

References \& Citatic

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

