3.1 紧致与列紧

- **定义 2.1** 拓扑空间称为**列紧的**,如果它的每个序列有收敛(即有极限点)的子序列。
- **命题 2.9** 定义在列紧拓扑空间 X 上的连续函数 $f: X \to E^1$ 有界 , 并达到最大、最小值。
- **定义 2.2** 拓扑空间称为**紧致的**,如果它的每个开覆盖有有限的子覆盖。

3.2 紧致度量空间

- **命题 2.10** 紧致 C_1 空间是列紧的。
- **命题 2.11** 对任给 $\delta \succ 0$, 列紧度量空间存在有限的 δ 网。
- **定义 2.3** 设 μ 是列紧度量空间(X,d)的一个开覆盖, $X \notin \mu$,称函数 $\varphi\mu$ 的最小值为 μ 的 Lebesgue **数**,记作 $L(\mu)$ 。
- 命题 2.12 $L(\mu)$ 是正数;并且当 $0 \prec \delta \prec L(\mu)$ 时, $\forall x \in X$, $B(x,\delta)$ 必包含在 μ 的某个开集 U 中。
 - 命题 2.13 列紧度量空间是紧致的。
 - **定理 2.5** 若 X 是度量空间,则 X 列紧 $\Leftrightarrow X$ 紧致。

3.3 紧致空间的性质

- **命题 2.14** $A \in X$ 的紧致子集 $⇔ A \in X$ 中的任一开覆盖有有限子覆盖。
 - 命题 2.15 紧致空间的闭子集紧致。
 - 命题 2.16 紧致空间在连续影射下的像也紧致。
- **推论** 定义在紧致空间上的连续函数有界,并且达到最大、最小值。

3.4 Hausdorff 空间的紧致子集

命题 2.17 若 $A \in Hausdorff$ 空间 X 的紧致子集, $x \notin A$, 则 $x \in A$ 有

不相交的邻域。

推论 Hausdorff 空间的紧致子集是闭集。

定理 2.6 设 $f:X\to Y$ 是连续的一一对应,其中 X 紧致, Y 是 Hausdorff 空间,则 f 是同胚。

命题 2.18 Hausdorff 空间的不相交紧致子集有不相交的邻域。

命题 2.19 紧致 Hausdorff 空间满足 T_3 , T_4 公理。

3.5 乘积空间的紧致性

引理 设 $A \in X$ 的紧致子集, $y \in Y$ 的一点,在乘积空间 $X \times Y$ 中, $W \in A \times \{y\}$ 的邻域,则存在 A 和 y 的开邻域 U 和 V ,使得 $U \times V \subset W$ 。 **定理 2.7** 若 X 与 Y 都紧致,则 $X \times Y$ 也紧致。

3.6 局部紧致与仿紧

定义 2.4 拓扑空间 X 称为**局部紧致的,**如果 $\forall x \in X$ 都有紧致的邻域。

命题 2.20 设 X 是局部紧致的 Hausdorff 空间,则

- (1) X 满足T₃公理;
- (2) $\forall x \in X$, x 的紧致邻域构成它的邻域基;
- (3) X的开子集也是局部紧致的。

定义 2.5 拓扑空间 X 称为**仿紧的**, 如果 X 的每个开覆盖都有局部有限的开加细。

例题:拓扑空间 X 是紧空间当且仅当 X 中每个满足有限交性质的闭集族{ F_{α} } α 有 $\bigcap F_{\alpha} \neq \Phi$.

证 必要性 设 X 的某个具有有限交性质的闭集族 $\{F_{\alpha}\}_{\alpha}$ 满足

 $\bigcap_{\alpha \in \Gamma} F \alpha = \Phi$. 令 $\cup_{\alpha} = X - F_{\alpha}$, 则 $\{\cup_{\alpha}\}_{\alpha}$ 是 X 的一个开覆盖. 因 X 是紧

的,故存在 Γ 的有限子集 B,使 $\bigcup_{\alpha \in B} U\alpha = \bigcup_{\alpha \in B} (X - F\alpha) = X^- \bigcap_{\alpha \in B} F\alpha = X$. 因此

 $\bigcap_{\alpha \in B} F\alpha = \quad \text{, 这与}\{ \ \mathbf{F}_{\alpha} \ \}_{\alpha} \quad \text{满足有限交性质矛盾 , 所以} \bigcap_{\alpha \in \Gamma} F\alpha \neq \Phi.$

充分性 设 $\{U_{\alpha}\}_{\alpha}$ 是 X 的开覆盖,若对 Γ 的每个有限子集 B,有 X— $\bigcup_{\alpha \in B} U\alpha = \bigcap_{\alpha \in B} (X - U\alpha) \neq$,令 $F_{\alpha} = X - U_{\alpha}$,则 $\{F_{\alpha}\}_{\alpha}$ 是 X 的具有

有限交性质的闭集族. 由条件知 Φ $\bigcap_{\alpha \in \Gamma} F\alpha = \bigcap_{\alpha \in \Gamma} (X - U\alpha) = X - \bigcup_{\alpha \in \Gamma} U\alpha$,这与 $X \subset \bigcup_{\alpha \in \Gamma} U\alpha$ 矛盾 ,所以 X 是紧空间 .

作业: P59 Ex4、 Ex8、 Ex18