3.3 拓扑基

想法:度量空间中的开集是若干个互不相交的球形邻域的并。度量拓扑由球形邻域生成;乘积拓扑由一个特定的子集族生成。**拓扑基**就是从上述方法中抽象出来的。

Def 1. 集合 X 的子集族 Γ 为集合 X 的拓扑基,如果 Γ 是 X 的一个拓扑;称拓扑空间 (X,τ) 的子集族 Γ 为这个拓扑空间的拓扑基,如果 $\Gamma = \tau$ 。 **Pro1.** Γ 是集合 X 的拓扑基的充分必要条件是:

$$(1) \bigcup_{B \in \Gamma} B = X ;$$

(2) 若 B_1 , $B_2 \in \Gamma$, 则 $B_1 \cap B_2 \in \overline{\Gamma}$ (即 $\forall x \in B_1 \cap B_2$, 存在 $B \in \Gamma$, 使 得 $x \in B \subset B_1 \cap B_2$)。

Ex1. 规定 \mathbb{R} 的子集族 $\Gamma = \{[a,b) | a < b\}$,则 $\Gamma \in \mathbb{R}$ 的一个拓扑基。(Γ 称**实数下限拓扑**)

注 1:规定 \mathbb{R} 的子集族 $\Gamma_1 = \{[a,b) \mid a < b,b$ 是有理数 $\}$,则 Γ_1 也是 \mathbb{R} 的一个拓扑基。

 $oldsymbol{\dot{z}}$ 2:规定 \mathbb{R} 的子集族 $\Gamma_2 = \{[a,b) \mid a < b,a,b$ 是有理数 $\}$,则 Γ_2 也是 \mathbb{R} 的一个拓扑基。

注3:
$$\overline{\Gamma} = \overline{\Gamma_1}$$
,但 $\overline{\Gamma} \neq \overline{\Gamma_2}$ 。

设 τ 是实数下限拓扑, τ_2 是由注 2 的拓扑基生成的拓扑。则[$\sqrt{2}$,3) $\in \tau$ 但是[$\sqrt{2}$,3) $\notin \tau_3$ 。

事实上,若 $[\sqrt{2},3)\in au_2$ 则 $[\sqrt{2},3)=\bigcup_{\alpha\in\Lambda}[a_\alpha,b_\alpha)$, $(a_\alpha,b_\alpha\in\mathbb{Q})$ 故存在一个 $a_0\in\Lambda,\sqrt{2}\in[a_{a_0},b_{a_0})$, 于 是 $a_{a_0}\leq\sqrt{2}$ 。 若 $a_{a_0}<\sqrt{2}$,则 $[\sqrt{2},3)\neq\bigcup_{\alpha\in\Lambda}[a_\alpha,b_\alpha)$, $(a_\alpha,b_\alpha\in\mathbb{Q})$,若 $a_{a_0}=\sqrt{2}$,这与 a_{a_0} 是有理数矛盾。

Pro2. Γ 是拓扑空间 (X, τ) X 的拓扑基的充分必要条件是:

(1) $\Gamma \subset \tau$;

(2) $\tau \subset \overline{\Gamma}_{\circ}$

Ex2. 若 Γ 是 拓 扑 空 间 (X,τ) 的 拓 扑 基 , $A \subset X$ 。 规 定 $\Gamma_A = \{A \cap B \mid B \in \Gamma\}$ 。则 Γ_A 是 (A,τ_A) 的拓扑基。

Ex3. 设 \mathbb{R} 的子集族 $\Gamma = \{(a,b) | a < b, a, b$ 为有理数 $\}$,则 $\Gamma \in E^1$ 的拓扑基。

补充知识:拓扑空间的子基 (可参考熊金城《点集拓扑讲义》)

Def 2. 设 (X,τ) 是一个拓扑空间, φ 是 τ 的一个子族。如果 φ 的所有非空有限子族的交构成的集族,即

$$\Gamma = \{S_1 \cap S_2 \cap \cdots \cap S_n \mid S_i \in \varphi, i = 1, 2, \cdots, n; n \in \mathbb{Z} + \}$$

是拓扑空间 Γ 的一个基,则称集族 φ 是拓扑 τ 的一个**子基**。或称集族 φ 是 拓扑空间X的一个**子基**。

Ex4. 实数空间 $\mathbb R$ 的一个子基: $\varphi = \{(a, +\infty) | a \in \mathbb R\} \cup \{(-\infty, b) | b \in \mathbb R\}$ 。作业:

1. 定义 $\rho_1, \rho_2: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$,使得对于

$$\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$$
, **有**

$$\rho_1(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}, \ \rho_2(x, y) = |x_1 - y_1| + |x_2 - y_2|_{\bullet}$$

证明:(1) ρ_1, ρ_2 都是 \mathbb{R}^2 上的度量。

(2) ρ_1, ρ_2 以及 \mathbb{R}^2 上的通常度量 ρ 诱导出的拓扑是相同的。

提示:利用 $\rho_1(x, y) \le \rho(x, y) \le \rho_2(x, y) \le 2\rho_1(x, y)$ 。

2.03 X 是度量空间,证明:如果 X 有一个基只含有有限个元素,则 X 必为只含有有限多个点的离散空间。