Cornell University

Computer Science > Computational Geometry

Computing the obstacle number of a plane graph

Matthew P. Johnson, Deniz Sarioz

(Submitted on 22 Jul 2011 (v1), last revised 12 Aug 2011 (this version, v2))
An obstacle representation of a plane graph G is $V(G)$ together with a set of opaque polygonal obstacles such that G is the visibility graph on $\mathrm{V}(\mathrm{G})$ determined by the obstacles. We investigate the problem of computing an obstacle representation of a plane graph (ORPG) with a minimum number of obstacles. We call this minimum size the obstacle number of G.
First, we show that ORPG is NP-hard by reduction from planar vertex cover, resolving a question posed by [8]. Second, we give a reduction from ORPG to maximum degree 3 planar vertex cover. Since this reduction preserves solution values, it follows that ORPG is fixed parameter tractable (FPT) and admits a polynomial-time approximation scheme (PTAS).

Comments: 7 pages, 3 figures
Subjects: Computational Geometry (cs.CG); Discrete Mathematics (cs.DM); Data Structures and Algorithms (cs.DS); Combinatorics (math.CO)
MSC classes: 68R10, 05C10, 05C62, 65D18
ACM classes: F.2.2; G.2.2
Cite as: arXiv:1107.4624 [cs.CG] (or arXiv:1107.4624v2 [cs.CG] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse cont cs.CG
< prev | next >
new | recent | 1107
Change to browse b cs
cs.DM
cs.DS
math
math.CO
References \& Citatic

- NASA ADS

DBLP - CS Bibliogra
listing | bibtex
Matthew P. Johnson
Deniz Sarioz
Deniz Sariöz
Bookmark(what is this?)

Submission history

From: Deniz Sarioz [view email]
[v1] Fri, 22 Jul 2011 20:43:21 GMT (14kb)
[v2] Fri, 12 Aug 2011 18:43:00 GMT (14kb)
Which authors of this paper are endorsers?

