

arXiv.org > math > arXiv:1204.0663

Mathematics > Differential Geometry

Information geometry and the hydrodynamical formulation of quantum mechanics

Mathieu Molitor

(Submitted on 3 Apr 2012)

Let (M,g) be a compact, connected and oriented Riemannian manifold. We denote D the space of smooth probability density functions on M.

In this paper, we show that the Frechet manifold D is equipped with a Riemannian metric g^{D} and an affine connection \nabla^{D} which are infinite dimensional analogues of the Fisher metric and exponential connection in the context of information geometry. More precisely, we use Dombrowski's construction together with the couple (g^{D},\nabla^{D}) to get a (non-integrable) almost Hermitian structure on D, and we show that the corresponding fundamental 2-form is a symplectic form from which it is possible to recover the usual Schrodinger equation for a quantum particle living in M. These results echo a recent paper of the author where it is stressed that the Fisher metric and exponential connection are related (via Dombrowski's construction) to Kahler geometry and quantum mechanics in finite dimension.

Subjects: Differential Geometry (math.DG)

MSC classes: 81P99, 94A15, 62B10, 53B35, 58B10, 37K99 Cite as: arXiv:1204.0663 [math.DG] (or arXiv:1204.0663v1 [math.DG] for this version)

Submission history

From: Mathieu Molitor [view email] [v1] Tue, 3 Apr 2012 11:45:32 GMT (67kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

We gratefully acknowledge supp the Simons Fo and member ins

Search or Article-id

(<u>Help</u> | <u>Advance</u> All papers -

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.DG

< prev | next >

new | recent | 1204

Change to browse b

References & Citatio

Bookmark(what is this?)