

Volume 9, Issue 3, Article 71

New Bounds for The Identric Mean of Two Arguments

Authors:	Omran Kouba,
Keywords:	Arithmetic mean, Geometric mean, Identric mean
Date Received:	16/04/08
Date Accepted:	27/06/008
Subject Codes:	26D07, 26D20, 26E60.
Editors:	Jozsef Sandor,
Abstract:	Given two positive real numbers x and y , let $A(x,y)$, $G(x,y)$, and $I(x,y)$ denote their arithmetic mean, geometric mean, and identric mean,

respectively. Also, let $K_p(x,y) = \sqrt[p]{rac{2}{3}}A^p(x,y) + rac{1}{3}G^p(x,y)$ for p>0. In this note we prove that $K_p(x,y) < I(x,y)$ for all positive real numbers x
eq y if and only if $\, p \leq 6/5,$ and that $\, I(x,y) < K_p(x,y)$ for all positive real numbers $x \neq y$ if and only if $p \geq (\ln 3 - \ln 2)/(1 - \ln 2)$. These results, complement and extend similar inequalities due to J. Sándor [2], J. Sándor and T. Trif [3], and H. Alzer and S.-L. Qiu [1].

