Nonlinear elliptic equations in
conformal geometry

Prof. Sun-Yung Alice Chang

May 10, 2004



This is the set of Nachdiplom lectures which I have given during April-July
2001 at Zurich. In the lectures, I have focused the study on some non-linear par-
tial differential equations related to curvature invariants in conformal geometry.
A model of such a differential equation on compact surface is the the Gaussian
curvature equation under conformal change of metrics. On manifolds of dimension
four, an analogue of Gaussian curvature is the study of the Pffafian integrand in
the Gauss-Bonnet formula. To be more precise, on a Riemannian manifold (M, g)
of dimension four, denote the Weyl-Schouten tensor A as

R
—= 9ij

Ay =Ry — &

where R;; is the Ricci tensor and R is the scalar curvature of the Riemannian
metric g; denote the second elementary symmetric function of A as

oa(A) =D Ai); = %[(TTA)2 — A7,

i<j

where \; (1 < i < 4) are the eigenvalues of A; then one has the Gauss Bonnet
formula

s = (W + ra(A))do,

where W denotes the Weyl tensor. Under conformal change of metrics, since
|W|dv is pointwisely conformally invariant, [ o2(A)dv is conformally invariant.
The main focus of this lecture notes is to study the partial differential equation
describing the curvature polynomial o3(A4) under conformal change of metrics.

The lecture is organized as follows: In chapters 1 and 2, we discussed the
equation of prescribing Gaussian curvature on compact surface and provided the
background and the main analytic tool (Moser-Trudinger inequalities) in the study.
In chapter 3, we described the connection between Moser-Trudinger inequality
to that of the Polyakov formula for the functional determinant of the Laplacian
operator on compact surfaces. In chapters 4 to 6, we discussed general conformal
invariants, the connection of conformal invariants to conformal covariant operators
on manifolds of dimension three and higher, with emphasize on a special 4-th
operator (called the Paneitz operator) on manifold of dimension 4. Finally in
chapters 7-10, we studied the connection of the Paneitz operator to the curvature
polynomial o2(A) described above. We also reported the work of Chang-Gursky-
Yang [23] on the existence on manifolds (M*, g) of solutions with ga(A) > 0 under
the assumptions that [ o(A) > 0 and g be of positive Yamabe class.

The lectures were given at the beginning stage when the study of the fully
non-linear PDE like that of o3(A) were first developed. Since then, there have
been much progress both in the existence and regularity results in the study of
such equations. The readers are, in particular, referred to the article by Gursky-
Viaclovski [56], where a simpler proof, from a somewhat different perspective, of
the main result in [23] discussed in this note was given. There have also been



important development in the existence results of general conformal invariants by
works of Graham-Zworski, [50] Fefferman-Graham [44]. There is also a more up to
date survey article [20] for recent developements in this research field.

This notes were organized and taken by Heiko von der Mosel during the lec-
tures. Without his many inputs, and the very careful reading of the materials, the
notes may never be in published form. The author appreciate very much the correc-
tions suggested later by Meizun Zhu, Fengbo Hang, Paul Yang and proof readings
by Sophie Chen and Edward Fan. Finally and not the least, the author appreciate
the many collegial discussions among participants at ETH during the lectures; she
wishes to thank in particular, Michael Struwe, for making the arrangement for a
very pleasant and rewarding visit.

Alice Chang
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§ 1 Gaussian curvature equation

Let(M?, go) be a compact closed two-dimensional surface with a given metric go
and Gaussian curvature K . We are interested in the behavior of the Gaussian
curvature under conformal change of the metric. That is, we consider the metric

g: = pgo (L.1)

for some p € C*°(M), p > 0. Notice that g is conformal to g, i.e while the length
of a vector changes; the angle between any two vectors is preserved under the
change of metrics from gy to g on M. From now on we write

g=9gw: =g (1.2)

for some function w € C*°(M).

Proposition 1.1 Let K, be the Gaussian curvature of (M?,g,,). Then
Aow + K, e*" = K. (1.3)

Equation (1.3) is called the prescribed Gaussian curvature equation, where
Ay = Ay, denotes the Laplace-Beltrami operator with respect to the background
metric gg. Sometimes we also denote Ay as A when the background metric is
specified.

Proof of Proposition 1.1. Recall the definition of the Riemann curvature tensor
(cf [3], [86]). For that let p € M™, and take an orthonormal basis {e;} of the tangent
space T, M of M at p. Then for two vector fields X,Y € T}, M one has

R(X,)Y): =VxVy = VyVx - Vix vy,
R(eire;) = Ve, Ve, — Vo, Ve,

where the two-form R defines the curvature of the Riemannian connection V.
The Christoffel symbols of g are given by

1 gy Ogj  0gi;
k. — Lk ! it _ 99i
K 29 oxJ + oxt oxt )’

and they satisfy
Ve €5 = Ffjek.

Let Rfﬂ-j: = g(R(e;, e;)ek, e1), then the Ricci tensor is defined as
Rij: = Ry,

and the scalar curvature is obtained by contraction again:

R: = leg”



For g = pgo, p > 0 one computes directly (using gi, = p(go)ir, g* = p~'g&'), that

the Christoffel symbols I‘fj of g satisfy

- 1 Ologp dlogp Ologp
Ok =1k L Z(F ‘ 5k P ghlg —=0).
ij ij T 2< i Oy +0; GI% 9 Gij oz

When n = 2 we write p = e?* and get after a lengthy calculation

Rig12 = e ?"((Rgy)1212 — 2A0w),

which is equivalent to (1.3), since K4, = %(Rgo)lglg and K, = %nglg. m]

Remark 1.2 Integrating both sides of (1.3) over M gives in case M is orientable

/Kgodvoz/ K,,e*" dvg
M M

= K, dv
/M Jw Jw (1 4)

= 2mx(M)
=27(2 — 2ge),

where dvg = dvg,, x(M) is the Euler characteristic and ge the genus of M. Here
we used the Gauss-Bonnet Theorem. Hence [ K, dvg is conformally invariant, and
its sign is determined by the sign of x(M).

One of the central problems is: Given a function K € C'*°(M) on a compact
closed two-dimensional manifold M with fixed background metric gg, when does
there exist a metric g conformal to gg, such that

In other words, does (1.3) admit a solution w, such that K, = K7 This is usually
called the problem of “prescribing Gaussian curvature”. In the case when the
compact surface is the standard 2-sphere, the problem is commonly attributed to
L. Nirenberg and is called the “Nirenberg” problem.

Kazdan and Warner [59] gave some necessary and sufficient conditions for
the existence of solutions for (1.3) in some cases.

Theorem 1.3 Let x(M) = 0. Then (1.3) has a solution w iff either (i) K =0 or
(ii) K changes sign with fM Ke2?/ dvg < 0, where f is a solution of Aof = K.

Proof. By (1.4) and the assumption x (M) = 0, we have

O:/ Kgodvoz/ K, dvg,,, (1.5)
M M
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hence Ay f = K, is solvable on M. Moreover, f is unique up to a constant. If w
solves (1.3), then one easily checks that u: =w — f is a solution of

Agu + Ke2w+h) = o, (1.6)

which implies by integration

/ Ke? dvg = —/ (Agu)e™" dug
M M

= / V()U . VO(€72u) d’UO (17)
M
= —2/ |Voul?e™ " dvy < 0.
M

Equality occurs iff |Vou| = 0, which implies that u = counst., i.e. Agu = 0, hence
by (1.6) K = 0. If K # 0, on the other hand, we have [ Ke*/ dvy < 0, and we
infer from (1.5) that K changes sign. This proves necessity.

If K =0, then w := f with Agf = K, solves (1.3). If K # 0, K changes
sign and fM Ke?f dvy < 0, then we claim that we can find a solution u of equation
(1.6), which also solves (1.3) setting w := u + f as seen above.

To prove this claim consider the set

C: ={ueWh?*(M): / KeQ("ﬂc)de:Oand/ udvg = 0},
M M

which is not empty, since K changes sign by assumption.
If we find a minimizing function ug € C of the energy functional

1
E(u): =3 M|V0u|2dvo,

i.e. with
E(ug) = infC’E(u)7 (1.8)
ue

then there exist some Lagrange multipliers «, 8 € R, such that
Aoug + a + K>t =0 on M. (1.9)

Integrating this equation over M we immediately obtain o = 0 by the first integral
constraint in the definition of C.
By the same argument we obtain for 3

ﬁ/ Ke2f dvg = —/6_2“°A0u0 dug
M
= /VQ(@iQuO) . VQUO d’UO

= —2/|V0U0|2672u0 dvg < 0,



which by our assumption | u K e?f dvy < 0 means that 8 > 0. Thus the shift
vo: = ug + %logﬁ satisfies

Agvo + Ke2F) =0 on M (1.10)

as a consequence of (1.9) with o = 0.

To justify the above arguments involving the Euler-Lagrange equation point-
wise on M, we need to show that any minimizer of E(-) in C is sufficiently smooth
to carry out the differentiation. In fact, it will be shown below (see Corollary 1.7),
that for all v € W12(M) with finite energy E(v) < oo one obtains

e’ € LP(M) for allp > 1. (1.11)

This implies that Agug € LP(M) for all p > 1 by (1.10), in particular vg € C*°(M)
by standard elliptic estimates.

It remains to show that a minimizer ug € C satisfying (1.8) actually exists.
Taking a minimal sequence {u;}ien C C,E(u;) — infuec E(u) as ¢ — oo, we
readily get weak convergence u; — ug € W2(M) with

E(uo) <liminf E(u;) = inf E(u). (1.12)

i—00 uel

O:/ uidvo—>/ ug dvg  for i — oo,
M M

and we will see later (Corollary 1.8) that also

Hence

0= / K2t dyy — / Kot duy  asi — oo, (1.13)
M M

which shows uy € C. Thus by (1.12)

inf E(u) < E(ug) < inf E E(ug) = inf E
inf (u) < (“0)—3& (u) = E(up) inf (u),

which concludes the proof of Theorem 1.3. a

Now we are going to provide the analytical tools necessary to prove (1.11) and
(1.13).

Recall Sobolev’s embedding theorem, which states that for a domain 2 C R”
one has W9 (Q) — LP(Q) for % = % -2 gqa <n.

If o = 1,n = 2,q < 2 we obtain W;9(Q) < LP(Q). In general one cannot
take the limits ¢ — 2,p — oo, i.e.

Wo () o L(9),

as one can see for the function u(z): = log(1l + log |916—|) on B;(0) C R%

Instead N. Trudinger proved exponential LZ-integrability in the following
sense.
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Proposition 1.4 [87] Let Q C R? be a bounded domain and u € Wy (Q) with
fQ|Vu|2 dx < 1. Then there exist universal constants § > 0,C1 > 0, such that

/ ¢ 4z < €119, (1.14)
Q

and we write Wy () < el ().

Remark 1.5 Under the assumption fQ|Vu|2 dx <1 the inequality (1.14) is equiv-
alent to the following:
There is a universal constant Co > 0, such that

l|ul| Lo () < Car/BlQ7 for all p > 2. (1.15)

Let us prove this remark first.
=" For all k € N one has

1
] Q(»BUQ)k dx < C11Q,
hence
* /g *
</Qu2k dz) < <6—,'€01|Q|)
= (R)F—=C ol

< 6'2@“2'%7

since (k:!)% < k. This proves the claim for p: = 2k, k € N. For odd p a simple use
of Holder’s inequality gives

1 1
P 2p ~
( |u|sz> < (/u2pd:c) Q75 < Cy\/2p|0 2 - Q]
Q Q

=: Cy\/pIO7.
“<:77
.2 — 1
/Qeﬁ dm:/{zzﬁ(ﬂhﬂz)kdu’c
k=0
= Z E”u”%}gk(ﬂ)

b
Il
=]

k
|

[czx/ﬁmﬁrk

IA
M8
?v|m

b
Il
=]

H(26C3R)F10) < G4,

[l
NE
K"|)—A

el
Il
=)



if one chooses 3 so small that 28C% < e~!, which according to Stirling’s formula
implies that the infinite series ", ) £ (268C3k)" is finite.

Proof of Proposition 1.4. Using the previous remark, it suffices to show (1.15).
By symmetric rearrangement! and scaling we may take Q: = B;(0) C R?. Fur-
thermore, we may assume u € C*°.
We can represent u as
1

u(z) = — 5= Au(y)loglz — y| dy,
271' Bl(O)

which after integration by parts leads to the estimate
u(z)] < C Vu(y)llz —y|~" dy

B1(0)

SC(/ IVU(y)IQIw—yI“dy> </ Iw—y|“>
B1(0) B (0)

( / |Vu<y>|2dy>
B1(0)
using Hélder’s inequality for % +5=1

Now fBl(O)|I —y|~*dy is finite, since for z,y € B1(0) one has B;(0) C Ba(x)
and then

Nl=

N
S0

2—a 17=2

[ e—vays [ |a:—y|ady—c{’" ] <Cp+2).  (116)
B1(0) Bs () 2—aj,—

Consequently,

/Bl<o)|u|p = O[/&(o) /Bl<o)|vu(y)|2|x u e dx} 1921 o 0+ 2)*
< ||VU||€,2(31(0))(Z’+2)%+1,

where we used Fubini’s Theorem and (1.16) to obtain the last inequality. By as-
sumption ||Vul|z2(p,0)) < 1, i.e. we have

[|ullzr (B, (0)) < Cay/p

for some universal constant Cy > 0. O

Corollary 1.6 Let (M?2,g) be compact and closed. Then there exist constants
B=08(g) >0 and C = C(g) > 0, such that for all u € W12(M) with

/ udvg = O,/ |Voul* dv, <1
M M

. eBu? dr < fBl(O) A2 g and fBl(O)\Vuﬂzd:c < JolVul?de, if u* is the symmetric

rearrangement of u, see [78].
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one has
/ et dvg < Cvol(M, g). (1.17)
M

Proof. Take a partition of unity (U;, ¢;) of M, such that each U; is diffeomorphic
to the unit ball B1(0) C R? with 0 < ¢; < 1,¢; € C§°(U;),>.; ¢ = 1 on M, and
set u;: = ¢;u. Then Vu; = (Vu)d; + (Vé;)u, and by Proposition 1.4 we have

[uill 2o ) < Cov/pl|Vuil| 2w, (vol(U3) » for p > 2.

Hence

lullzeary < leuzllmm < Cay/p(vol(M, g)) ZHVUZHN

< Co/B(vol(M, 9))% (||Vul [ 2qary + llullz2ar)
< C(g)y/p(vol(M, 9)) 7 ||Vl 2 (ar).

where we used Poincaré’s Inequality, which is valid, since f v wdvg = 0. Notice
that C = C(g) depends on the metric g via the partition of unity, in particular
the terms involving V¢;. O

Corollary 1.7 For a compact and closed manifold (M?,g) there are constants
1> 0 and c = c(g), such that for each p > 2

2
w—w D
/M P00 gy, < cexp {WZHVWH%?(M)} (1.18)

for all w € WH2(M), where

),
w: = wdvg = ———— wdv,.
][M g VOI(M7g) M g

Proof. By Young’s inequality we get for |[Vw||r2(ar) # 0

(w-w)?> 1p*
m + 2 71 Vw22,

where 3 > 0 is the constant of Corollary 1.6. Taking the exponential of this inequal-
ity and integrating one obtains for u: = i — (=7 = 0 and ||Vu||g2(ar) < 1)

IVullLzan

_ 1 2
/ eP(w—0) dvy < / eﬁu2 . eEPTHVWHL2(M) dvg,
M M

1 p?
< exp | SE IVl aqap | - o) vol (3.,

plw—w) <p

which concludes the proof if one sets n: = 87! and ¢: = ¢(g) vol(M, g). O
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Corollary 1.8 Ifu; — uin W'2(M) asi — oo, and [,,|Vul® dvg < ¢, [,,|Vui|* dvg <
¢ with [, u;dvg =0 for all i € N, then for each f € L>°(M)

/ fel"i dvy — / feP*dvg asi — oo. (1.19)
M M
Proof. Using the simple estimate |e? — 1| < |z|e®l we can write

/M|ep“i — e dvy = /M ep“(ep(“ﬁ“) — 1) dv,

Pyl — qulePlti—ul
§/ e’ plu; — ule dvy
M

1 1 1
1 2 1
<C (/ edru dvg> </ s — u|2dvg> </ edplui—ul dvg> ,
M M M

using Holder’s inequality. The right-hand side tends to zero as i — oo, since the
middle term does by Rellich’s theorem, and the two integrals involving exponential
terms stay bounded according to (1.18). O

Remark. The case x(M) < 0 has also been considered by Kazdan and
Warner([59]), but is not completely settled. There are necessary conditions and
also sufficient conditions, but a complete characterization of the solvability of the
Gaussian curvature equation (1.3) as in Theorem 1.3 remains an open problem for
X(M) < 0. Let us now turn to the case x(M) > 0.
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§ 2 Moser-Trudinger inequality (on the sphere)
When x(M) > 0, then either x(M) = 2, in which case M is diffeomorphic to the
sphere S?, or x(M) = 1, i.e. M = RP? the real projective space.

Consider (M, g) := (S?, g.) with the canonical metric g. and Gaussian cur-
vature Ky, = 1. The Gaussian curvature equation (1.3) then reads as

Aw+ Ke* =1 on (S?,g.), (2.1)

where we denote A = Ag, as before. Here, K € C°°(S5?) is a given function.

Theorem 2.1 [59] Let w € W12(S?) be a solution of (2.1). Then

/52 (VK,V)e?™ dv,, =0, (2.2)

where @ is any of the first eigenfunctions of A on the sphere, i.e.
Ap+2p=0 onS> (2.3)

(o=, for ¢: R3 — R, @(z) = Z?:l c;zt, for some real constants c;, i = 1,
2, 38.)

Remark 2.2 By the Gauss-Bonnet Theorem

Ke*" dv,, = 4, hence K > 0
S2

somewhere on S2. But this information is not sufficient for the existence of solu-
tions for (2.1). In fact, for K = K. := 14+ ¢ep,e | 0, the Kazdan-Warner condition
(2.2) is violated for every € > 0, which means that there are functions K arbitrarily
close to 1, for which (2.1) is not solvable.

Proof of Theorem 2.1. One has V. V% = @g; for ¢(x) = x; on S2, hence (2.3)
implies

2Vlega = A(pgkl for @Y = ¢|s2' (24)
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Integrating by parts repeatedly, and inserting (2.1) and (2.3) we compute

/ (VK,Vp)e?V dv,, = — | KApe*  dv,, —2 | K(Vp, Vw)e?™ do,,
52 52 52

= — [ Ap(l-Aw)dyy, — 2/ (Vo, Vw) (1 — Aw) dug,
(2.1) g2 ’ S2 ’

= 2/ (1 — Aw) dug, +2/ pAw dvg, +2/ (Vo, Vw)Aw dug,
(2.3) Js2 ‘ 52 ‘ 52 '

—/ Apdug, +2/ VieViwAw dog,
2/ Vi(VipVw)Viw dug,

2
-2

/ 9 ViwViw(Ap) dug, — / VipeVi(ViwViw) dug,
52 52

[9))

ViVipViwViw dug, —2/ ViV i ViwViw dog,

2 52

[9))

/52 |Vw]?Ap dv,, / Ap|Vw|? dv,,

O

A sufficient condition for the solvability of (2.1) was given by Moser in [64],
see also [65].

Theorem 2.3 [Moser] If K(—&) = K (&) for all € € S?, and if maxg> K > 0, then
(2.1) has a solution w € C°°(S?) with

w(—&) = w(&) for all € € S*.
Sketch of the proof.

We consider a variational approach using the functional

1
Jr[w] :=log f Ke*¥ dv,, — 4—/ |Vw|*dv,, — 2][ w dvg,, (2.5)
Sa T Jg2 52

whose critial points, i.e. w € W12(S5?) satisfy the equation?

K€2w

FKe? dvg,
S2

—Aw+1= on S2. (2.6)

2We have seen before that W1:2-solutions of (2.6) are in fact of class C°(S?), compare with
the proof of Theorem 1.3.
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Then the shifted function
~ 1 2w
wi=w— - log{ Ke ™ dvg,
2 §2 )

solves (2.1).

Consequently, the proof boils down to showing the existence of a critical point
for the functional Jg[-]. For that we need some sharpened versions of Proposition
1.4, Corollary 1.6 and Corollary 1.7. We are going to state these results without
proof.

Theorem 2.4 [Moser-Trudinger inequality] Let @ C R™ be a bounded domain,
we Wy ™(Q) with Jo IVu|™ d < 1. Then there is a constant C' = C(n), such that

/ e’ dz < C|Q), (2.7)
Q

1
where p = L=, a < ay, = nw, _1, wy = k-dimensional surface measure of Sk,

Remark 2.5 For n = 2 one has p = 2, as = 2w; = 4mw. Moser has shown that the
constant «,, in the theorem is sharp in contrast to the constant § in Proposition
1.4. In fact, he constructed a sequence uy, € Wy ™" (B1(0)) with fBl(O) [Vug|™de <1
such that

P
/ el " dr — 0o ask — oo,
B1(0)

if a > ay,.

We have seen in Corollary 1.6 that for general compact closed (M, g) the
constant on the right-hand side of (1.17) depends on the metric g. Working on
(52, g.) allows us to control the constants.

Theorem 2.6 [Moser| There is a universal constant Cy > 0, such that for all
w e WH2(52) with [g, |[Vw|® dvg, <1 and [g wdvg, =0

/52 emw’? dvg, < C1. (2.8)

In the same way as we deduced Corollary 1.7 from Corollary 1.6 one can show

Corollary 2.7 For Cs :=log(Cy + log ﬁ

1
log][ e*™ dv,, < {— |Vwl|? dv,, + 2][ wdvgc} + Cq (2.9)
S2 47 S2 S2

for all w € Wh2(S?).
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Remark 2.8 For w as in Theorem 2.6 with w # 0 one easily gets

2
4m :/ dvg, </ ™ do,, < O,
52 52

hence C3 > 0. For domain in plane(i.e. n = 2 in Theorem 2.4), Carleson and Chang
[19] has proved the existence of an extremal function for the Moser-Trudinger
inequality for theorem 2.4, and the best constant C5 in the statement of Theorem
2.4is > 1+ e. This result was extended by T.L.Soong [84] proving the existence of
extremal functions for (2.8) in Theorem 2.6, see also the results on the structural
behavior of such extremal functions in M. Flucher’s work, [45]. These investigations
are also related to work of A. Beurling on the boundary behavior of analytic
functions on the disk, [8]. With different arguments we will need to prove later that
Cy = 0 is the best constant in (2.9), which is the content of Onofri’s inequality,
Theorem 2.11. For even functions on S2, Moser improved his result, Theorem 2.6:

Theorem 2.9 [Moser] If w € W'2(S?) with fwdvy, = 0, [, [Vw]*dv,, <1
52
and w(&) = w(=E&) for almost all £ € S?, then

/ 8™ du, < Cs. (2.10)
52
Again we infer

Corollary 2.10 For C4 :=log C3 + log ﬁ, a= %,

1
1og][ 2V dv,, < {a- _/ |Vw|2dvgc+2][ wdvgc] +Cu. (2.11)
S2 47 S2 S2

Let us point out that only a < 1 is crucial for later applications.

Now we finally turn to the proof of Theorem 2.3:
Proof of Theorem 2.3. Since K > 0 somewhere, and K is even,

C:={weWh"?s?): Ke*™ dv,, > 0,w even a.e. } # 0. (2.12)
S2

Consider the variational problem
Jk[] — max Jx[w] onC,
and recall that if there is some wy € C such that

sup Ji [w] = Jx[wo],
weCl

then (2.1) has a solution.
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First we observe that Jx -] is bounded from above. Indeed, by Corollary 2.10,
(2.11)

log f Ke* dvy, <logmax K + i/ |Vwl|? dvy, + 2][ wdv,, + Cy,
S2 52 47 g2 52

which leads to

1
Jr|w] <logmax K + (a — 1)—/ |Vw|? dv,, + Cy < o0,
S2 47 g2

since a = % < 1. Taking a maximizing sequence {w;};eny C C with

lim Jg[w;] = sup Ji[w] =: L
l—o0 wel

we obtain

1—-a
( yp )/S2 |le|2dvgcglogrlls%xK+C4—JK[wl]

glogrllsaQXK+C4+€—L

for some € > 0. This implies by the Poincaré inequality that the w; are uniformly
bounded in W12(S?), hence w; — wp in W12(S5?) for some subsequence. Since
all w; are even a.e. clearly wy is even a.e.by Rellich’s Theorem. Moreover we know
that by the definition of Jx[] in (2.5)

log ][Kezwl dvg, | < L+ Cllw||wr.2 < C < o0,
52

hence

Kez(wlfml) dvgc > min{4ﬂ'€75, 1} =:¢g > 0. (213)
g2

This implies by Corollary 1.8 that also

Ke*™ dv,, > c > 0. (2.14)
S2
In fact, for u; := w; —w;, where w; := wal dvg,,and f:=K € L°(S?), one infers
SQ
from (1.19)
K20 gy — K e2(wo=0) gy,
g2 ge g2 9er

which implies by (2.12), that for any € > 0, there is [y € N such that for all I > [

(co — )@= < Ke*™ du,, .
S2
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But w; — wq in L?(S?) by Rellich’s Theorem, hence (2.14) is true. O

Remarks.

1. We have omitted the proofs of Theorems 2.4, 2.6, 2.9, due to the limited
space. Theorem 2.4 is based on a calculus inequality applied to radially symmetric
functions u = u(]z|), to which the problem can be reduced, whereas the proof of
Theorem 2.6 is more sophisticated. One reduces the problem to v = u(x3) working
in spherical coordinates. A similar but more complicated reduction is done in the
proof of Theorem 2.9.

It should be pointed out that these methods do not carry over to energies
with higher order derivatives of u, since the heavily used relation

/ |Vu*|"d:c§/ |Vu|™ dx
n Sz

for the symmetric rearrangement v* of u, is not valid for higher order energies.

2. For a geometric interpretation® of the constants c,, in Theorem 2.4, we
look at the following isoperimetric problem for level sets. Let u € C*°(£2) be a
Morse function.

Li(u) := length ({x € Q: |u(x)| =t}), Ar(u) := area{z € Q: |u(z)| >t}

then the classical isoperimetric inequality states that

L}
— > 4.
A=
Defining ao(u) := lim inf ZEZ% for u € W,"*(€) one obtains

inf  as(u) =4,
uEW, 2 ()

and the infimum is attained for u € C*°(Q2) with circular level curves.
If u e WH2(Q),Q Cc R? with [, udz =0, then

L?(u) < 2m, if 90 € C?,
Ai(u) ~ | 2min; 6;, if O is piecewise smooth with interior boundary angle 6;.
If w e Wh2(S?) with [ wdvg, = 0,w even, then as(w) > 8.
Indeed, the isoperimetric inequality on S? for a closed curve with length L
and enclosed area A says
L? > A(4m — A),

which implies

~

L2
az(v) = lim 14

A2y = dm (= Ad(v)) = dr (2.15)

?[32]
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for all v € WH2(S?) with [ vdvg, = 0.

This explains the term 47 in the exponential in (2.8) of Theorem 2.6. In
particular, for w even, the level curves of w split in two equal parts of length
L;1 = Lo = L;/2. The same holds true for the enclosed areas

Apg = Ao = A/2,
which implies

L?(w) ALZ ()
ag(w) = lim =2~ = lim ———=% > 2.4,
2( ) t—o00 At(w) t—oo 2At,1(w) (235)

compare to Theorem 2.9, where 87 occurs in the exponential in (2.10).

Notice that it is not clear if this geometric interpretation extends to the
general case n > 3 because of the more complicated geometries of level sets.

We now give a sharpened version of Corollary 2.7, the Onofri inequality.

Theorem 2.11 [Onofri] Let w € W12(S?). Then

1
log][ e dv,, < — [ |Vw|*dvy, + 2][ w dv,, (2.16)
S2 4 S2 S2
with equality iff
Aw +e* =1, (2.17)
i.e.
K,, =K, =1, (2.18)

iff w= %10g|J¢|, where ¢ : S? — 82 is a conformal transformation of S%. In
other words, equality in (2.16) holds iff

€2 g, = ¢*(g.). (2.19)

Remark 2.12 An analytic proof for the equivalence of (2.17) and (2.19) was given
by Struwe and Uhlenbeck. The equivalence of (2.18) and (2.19) is the content of the
classical Cartan-Hadamard Theorem. We will see later when deriving the Polyakov
formula, why the Onofri inequality (which sharpens Corollary 2.7, allowing Co = 0
in (2.9)) is important.

Sketch of the proof of Theorem 2.11. The key idea is a result of Aubin.[5]
Lemma 2.13 [Aubin] Let S := {w € W"2(5?) : [o, e®¥ajdv,, = 0,5 =1,2,3}.

Then for w € S the following is true: For all € > 0 there is a constant C. such
that

1 1
log][ e* dv,, < (5 + 5) 4—/ |Vw|? dv,, + 2][ wdvg, + Ce. (2.20)
S2 T )52 S2
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Notice that the symmetric class S is not too special, since for each w € C1(S?)
there is a conformal transformation ¢ : 52 — S2, such that

1
Ty(w) :=wo¢p+ 3 log|Jy| isinS.

In fact Ty gives a 1 — 1 correspondence.

Using (2.20) one can obtain compactness for maximizing sequences of Jx|[-] on
S, see (2.5). The Euler-Lagrange equation for this constrained variational problem
contains Lagrange multipliers, that can be shown to vanish using the Kazdan-
Warner condition, Theorem 2.1. Finally, the uniqueness of the solution to (2.17),
which then is the Euler-Lagrange equation for Jx|[-] on S, leads to w. = 0 as the
minimizer. (2.16) follows from 0 = Jx [0] = Jx[w.] < Jx[w] for all w € W12(S?).
(see [72]) O

Remarks.

1. For nonsymmetric K > 0 Chang and Yang [31], [32] have proved an index
formula for (2.1) under very mild nondegeneracy conditions on K, e.g. for Morse
functions K, based on the Moser-Trudinger inequality. For general K, K.C.Chang
and Liu [21] have extended these results.

2. Solutions of (2.17), or equivalently (2.19), are unique, which is proven by
stereographic projection

71 (S™ — northpole ) — R"

£ 2(6)

with inverse £ = 77 1(x), & = %, §nt1 = m2—+i
For n = 2 the transformed equation becomes

—Au=¢e*" onR? (2.21)

where

u(x) = log ﬁ + w(&(z)). (2.22)

Assuming [, €2 dz < co, W.X. Chen and C. Li [36] proved that (2.21) holds iff
u(z) = log #’\7%‘2, for some A > 0,9 € R2. Hence fR2 2@ dy = 41 = |S?|.
Note that without the assumption [, e*" dz < oo, there are actually other

analytic solutions to (2.21). In fact, one has a complete picture of the solutions of

this equation on R?, see the classification of [38]. On R",n > 3, Caffarelli, Gidas
n+2

and Spruck [16] developed a full theory regarding the equation —Au = un=-2.
The idea of projecting equations on S™ to R™ will also be useful for higher order
problems leading to (—A)™?u = (n — 1)!le™ instead of (2.21).
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§ 3 Polyakov formula on compact surfaces

Theorem 3.1 Suppose (M?,go) is a compact surface, g, = €>“go is a metric
conformal to go, with vol(M, g,,) = vol(M, go).
Then
det(—A,,) 1
Flw] :=log ———2% = —— Vow|? + 2K 4ow) dvg. 3.1
] = log Gr A =~ | (Voul® + 2K w)dw. (31)

On (52, gc) we denote S[w] := |V, w|*dvg, +2 fwdv,,.
52 52

As a consequence of Theorem 3.1 and Onofri’s inequality (Theorem 2.11) we
obtain

Corollary 3.2 On (S2%,g.), one has

det(=2g,) _ Lo <o (3.2)

1 N —Jw/
® det(—A,) 3

for all w € C>(S?) with vol(M, g,,) = 4w, hence Flw] < F[0], i.e. F[] is mazimal
at the standard metric g., which corresponds to w = 0.

Notice that log(det —Ag, ) is defined via the regularized zeta function as in
Ray and Singer ([79]).

Corollary 3.3 On any compact surface (M?, go) with Ky, = const. <0 and with
vol(M,go) = 1 one has: If w € C=(M) satisfies [, e*"* dvg = vol(M,gu) = 1,
then

Flw] <0

with equality only at the constant curvature metric gg.

Proof. First notice that by Jensen’s inequality

¥ < ][ €2V dug = / e dyy = 1,
M M

thus w < 0, where W := fwdvy = [,, wdvg. Ky, < 0 implies [, 2K 4w dvy =
2K, [, wdvg > 0, hence ]g’[w] <0. ]
Observe that the above argument leads to
/ |Vow|? dvg < —127F[w],
M
which means that spectral information given by F[w] bounds the energy of w. For

a related result in case of the sphere (K, = K, = 1) we refer to the end of this
section for a result by Osgood-Phillips-Sarnak.
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For the definition of the zeta functional determinant log(det —A,), we con-
sider a compact Riemannian manifold (M™,g), M = () with

O=X <A< <...<Xx<... (33)
denoting the eigenvalues of the Laplace-Beltrami operator
1 8 . P ;
Ay =——— g9 /g— = y/det = (g;;) "N 3.4

The eigenfunctions {¢;} form an orthonormal basis for L?(M) and satisfy

Agpj +Ajp; =0 on M. (3.5)
We consider the zeta function

C(s) = DA%, (3.6)

A0

and observe that formal differentiation leads to

('(s) = Z —(log A\p) AL ®, iee.

Ak#£0
¢'(0) = — Z log A\, = —logH Ak
AR#0 k=1

This formal computation motivates the definition of the log-determinant according
to Ray and Singer [79] as

logdet(—A,) := —¢'(0). (3.7)

We will now justify the existence of ¢’(0). Denote N(\) := #{j € N: A\; < A} as
the counting function and recall Weyl’s asymptotic formula:

Proposition 3.4 Let (M™,g) be compact with OM = (). Then

n/2
N(\) ~ wy, vol(M, g)/\—, as \ — oo, (3.8)
(2m)™
i.e.,
lim YA @ vol(M, g), (3.9)

Moo A2 (2m)m
where wy, denotes the volume of the unit ball in R™. In particular, for A = X\

k- (2m)"
~— k 1
wnvol(M ) as k — oo, (3.10)

w3

(Ak)

i.e., A\ grows like k* as k tends to co.
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The asymptotic relation (3.10) implies that ((s) is well-defined for Re (s) >

5. To justify the expression ¢’(0) in (3.7) recall the Mellin transform
s = L /Oo e s dt (3.11)
I'(s) Jo 7

where I'(s) denotes the value of the Gamma function at s:

I'(s) ::/ ettt
0
Note that T'(s) has a simple pole at s = 0,

lim I'(s)s = 1. (3.12)

s—0

Using (3.11) we can rewrite ((s) in terms of the Gamma function for Re (s) > %:

_ L S ef)\jt s—1
C(s) = P(S)/O ; 571 dt
1 oo

- m/0 (Z(t) — 1)tV dt,

where -
Z(t) = | H(z,z,t)dvg(x) =Y e M =Tr(e") (3.13)
M k=0
is the trace of the heat kernel
H(z,y,t) = > e ' (x)dn(y). (3.14)
k=0

Proposition 3.5 [67], [66] H(x,y,t) is the unique fundamental solution of the
heat equation
Qu A 4 —
ot ~Bgu=0 (3.15)
lim; o u(z, t) = f(x)

on M™ (M compact, closed), i.e. for any given f € C(M), the convolution
u := H * [ solves (3.15). Moreover H is continuous on M x M x (0,00), and
H(:,-t) € C*(M x M), H(x,y,-) € C*((0,00)). In addition*,

1)% & -
H(z,z,t) ~ <E> ZBk(:c)tkT, ast — 0%, (3.16)
k=0

where By, are local invariants of M of order k. By, =0 for all odd k,(OM = 0).

4Definition: A(t) ~ B(t) iff 7thrr(l) % =0 for all m > 0.
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Consequently, by (3.13) and (3.16)

ﬂoo

Z(t ( ) Zakt 7, ast — 0T, (3.17)

where ay 1= ar(Ay) = f i (2) dvg () are the heat coefficients of M.
(3.1

For n = 2, 6) and (3.17) can be computed as
K(z)  K*(x)t 2
H t) = — o(t t— 0" 3.18
(@,2,8) = ;= + o=+ — = +O(t%), ast — 07, (3.18)
(M M t
Z() = YIM9) )+”—/ K2dvy + O(2), ast — 0%, (3.19)

In particular, ag = vol(M, g), az = 3 [,, K dvg = 3 x(M).
Thus, wherever the zeta function converges, we have

—L ! _ s—1 L > _ s—1
<(s)_r(s)/0(2(t) 1)t dt+r(s)/l (Z(t) — D)=L dt

1 Lo [vol(M,g) x(M) =t
=—— [ ¢! ’ — [ K%*dv, +t*P(t) — 1| dt
T(s) /0 { w6 60 /M vy +°P(t)

L > - e*Akt s—1
+F(s)/1 <Z )t dt,

k=1

where P(t) is a bounded function in ¢. The second integral is holomorphic in s,
since I'(s) does not vanish, and since >, e~ < Ce~M1t for large ¢, by (3.10).
The first integral may be written as

t=1

1 [t7r vol(M,g9) x(M) , mtstl 9
. ’ t* Kedv, — — B
I'(s) L -1 im0 6s 60 (s+1 / Vs -0 +B(s),
where B(s) = F(ls) fol tsTLP(t) dt is holomorphic for Res > —1. The above expres-

sion converges for all s € C with Re(s) > 1, and has a meromorphic continuation
to all of C with a simple pole at s = 1.

To summarize these observations, ((s) is holomorphic for Re(s) > 1, has a
meromorphic continuation to C with a simple pole at s = 1 and with

X(M)
¢(0) = 5 L (3.20)

(See e.g. Rosenberg [81], Chapter 5, for the corresponding result for general n > 2.)

Hence ((s) is analytic at s = 0, which means that

) — 1 S8 =CO)

s—0 S

exists, and (3.7) is justified.



3. POLYAKOV FORMULA ON COMPACT SURFACES 23

Remark 3.6 The notion of log-determinant of the Laplacian was introduced in
[79] to define analytic torsion T by

1 n
logT := 3 Z(—l)qq 2(0),
q=0
where
—(,(0) := logdet(—A,),

A, = Laplacian on g-forms. Cheeger [35] and W. Miiller [68] proved independently
later that this notion of analytic torsion coincides with a topological quantity,
namely the Retdemeister torsion.

To prove Theorem 3.1 we need to look at a more general version of Proposition
3.5, as defined by Branson and Gilkey. ([13])

Proposition 3.7 (Branson-Gilkey) Let ¢ € C*° (M), (M™, g) closed and compact,
and set Hy(x,t) == ¢(x)H (z, z,t),

Zo(t) = Tr(ge®) = [ H(w.0)duy(a)

with H(z,y,t) as in (3.14).
Then there are coefficients Bi(p, Ag)(+), ar(p, Ag), such that Bi(p, Ay) =0
for k odd,

1\2 & u
H¢<x,t>~<g) S Bilgp, Mgyt T, ast — 0, (3.21)
k=0
112 w
70~ (57 > (e ', st~ 0* (3.22)

with Bi(p, Ag)(z) = ¢(x)Bg(z), Bx(z) as in (3.16), and

an(p, Ay) = / o) Bua) dy z). (3.23)

(In particular, a, =0 for k odd.)

Notice that with this notation ar(1, Ay) = ar(Ay) = ai, as defined in (3.17),
in particular

aulip. 8g) = [ ola)doy(a), 3:24)

ol Bg) = 3 [ @)Ky (a) vy (o) (3.25)

Proof of Theorem 3.1. The following Lemma is the crucial step in the proof of
Theorem 3.1.
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Lemma 3.8 (Key Lemma) Suppose (M?, go) is closed and compact. Then

fM wdvgu
f A dvg, ’

d _ GQ(QO, Au)

— ! 0) = -2 3.26
G (0) = (3.26)

where we have set Ay, == Ay, , gy = €*%gy.

We defer the proof of this Lemma to the end of this chapter and apply (3.26)
to prove Theorem 3.1 first:
By (3.7) we obtain

det(—Ay,) d

1
Slog RS =0 -0 = [ S o)

_ /1 as(w, Apy) g —9 1 fM we2t dug "
0 o o [, e*vdug
1 1 2’wd
= i / wK(th dv(hw dt - (log M)
3.25) 61 Jo \ Sy ‘ Jos dvo
1 1

(1:3) a . </M W(—Ao(tw) +Kg0)d’l}0) dt

1 1
— —/ (t |V0w|2dvo+/ Kgowdvo) dt
67 Jo M M
1

= Ton M(|V0w|2 + 2K w) dvg.

(Notice that we used the identity d%|5:0C/Atw+sw (0) = £¢4,. (0) to apply (3.26)).
Thus (3.1) is proved. O

Proof of Lemma 3.8. Without justification of every step below we calculate
formally:

d

- T tAutep —
de |—o rle )

6725
o rete A
le=o . (3.27)
=2t - Tr(pA,ette) = —2tETr(<petA“),

where

- d
Tr(pet®e) = Tr(pet™) — 7fM P10 ,
fM dvy,

and where we used that A, = e 2“A, for n = 2, as can easily be checked by

(3.4).
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Therefore, formally,

d d d d
&l 5‘3:0@“5%(8) = sl d_E\EZOCA"“”’(S)

d d 1 &
= — - _ Tr(etButee) — 1) 51 dt
(3.13) dS|oeo dE e I‘(s)/o (Tr(e ) )

d 1 e d
= — — 57 = Tp(etPuree) dt
ds|.—o I‘(s)/o de|.—o ( )

d 1 o d -
= — —_— t°~ 2—T dt
(3.27) d8|.—q I‘(s)/o ( dt rlpe >>
d 1 ~ t=00
= 1 |2t Tr(pe e
ds|.—o I‘(s){ { rlpe >L:0

+ 2/ st AT (pett) dt}
0

d s o0 -
=2— — 5=y (petPe dt}
iAo (pe™™)

d s 1 - 00 B
=2— — 5= (petPe dt+/ 5=y (et dt}).
35 1m0 (F<s> {/ ()i | pe™)

Notice that there are no boundary terms in the integration by parts, as the in-
tegrand is of exponential decay at infinity, and, by the asymptotic behavior near
zero (3.21), the integrand vanishes at zero, if Re(s) is sufficiently large.

The last integral is holomorphic in s. In addition, I'(s) = % — sil +..., hence

2
5 9 5 d s

=85 - ——+... ticul — | =0. 3.28
) s s—|—1+ , in par icular — S 0( (s)) (3.28)

So the only term we need to consider is

d d d
— _ = 92— t 2 451 dt — ][ d
de |.=o dSls:oCA“““’(S) (3.22) " ds|,_o < / Zak (9, Au)t 2 sS4 ¢ Ugu>

= i i 82|:a0(907Au)ts—1

21 ds|,—o s—1
t=1
a2 ‘P, ag (p, k+2s—2

L 220y pg=2 } _ 2][ v,

Z kt2s - 2 t=0 M !
1 d 52 ar(p, A

= — — A 25 2 9 d

It ds‘szg {S_lao(@: )+8a2 ()07 + Z I{j—|—23 fMQO Vg

= 7012(%0, AU) — f (pdv
2T M Ju?

which proves (3.26). O
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Theorem 3.9 (Osgood-Phillips-Sarnak [73], [74]) Isospectral metrics on a closed
compact surface (M?,g) are C>-compact modulo the isometry class.

The basic idea in the proof is that on a compact closed surface (M2, gp),
each heat coeffient as; for each i > 2 controls the Sobolev W#2-norm modulo
some lower order W%2-norm for I < i of the conformal factor w for the metric
9w = €“go. But when i =1, ag = 2 x(M) is only a (topological) constant. Thus
to control the W1 2-norm of w, one needs to replace as by some other isospectral
information—which is provided by the log determinant functional F[w] as defined

in (3.1).
Sketch of the proof. Without loss of generality one can choose the background
metric gg such that K, = —1,0, or +1. For a sequence of isospectral metrics

Guwy,» a0 = vol(M, gy, ) is fixed. Moreover, by (3.1)

1
Fy = Flwg] = T (|IVowg|* + 2K gywy,) dvo.
M
If K;0 =0 or K,y = —1 we get a uniform Wh%-bound on wy, by the observation

after Corolaary 3.3 and Trudinger’s embedding theorem (Corollary 1.7 in §1).

For K, = 1 one uses conformal transformations ¢ : S — 52 and Aubin’s
Lemma (Lemma 2.13) as in the proof of Onofri’s inequality, Theorem 2.11, to work
in the symmetric class S. Then one obtains a uniform bound on [g, |V, (Ty(wr))|? dvg,
in terms of F[Ty(wx)] = Flwg] because of the isometric invariance of the spec-
trum. This together with the fact that the volume of the metric g7, (w,) s always
ap leads to a uniform bound on ||wg||1,2. The higher order coefficients ag; then
enable us to control the W¥2-norms of w as well, for all ¢ € N. O



4. CONFORMAL COVARIANT OPERATORS — PANEITZ OPERATOR 27

§ 4 Conformal covariant operators — Paneitz op-
erator

Let (M™, go) be a compact n-dimensional manifold with M = (). We consider
a formally selfadjoint geometric differential operator, i.e., an operator defined in
terms of geometric quantitives of (M, gg). We say that A is conformally covariant
of bidegree (a,b) iff

A, (p) = e M A, (™) for all p € C°(M). (4.1)
Examples.

1. The Laplace-Beltrami operator for n = 2,

1 0 y 0
— 1./
A!] . \/anz (g |g|8mj) )

satisfies

Ay, =e A, ie., (4.2)
Ay, is conformally covariant of bidegree (a,b) = (0,2). Recall that in this
case

Aow + K, e*" = K, (4.3)

which is the Gaussian curvature equation.

2. The conformal Laplacian for n > 3,

n—2
Ly :=-A;+—FR
e TSy
satisfies
Ly, (p) = e_nTHngo (engzwgo) for all p € C*°(M), (4.4)
hence L, is conformally covariant of bidegree ("T_Q, "TJFQ)

Notice that b — a = 2 in Examples 1 and 2. The usual notation g, :=
4
un—2 gy := e*¥gp leads to

n+2

n=2 Lo (up) for all ¢ € C*°(M) (4.5)

Ly, (p) =u"
instead of (4.4). In particular, for ¢ = 1,

n+2

Lg, (1) =u™ =2 Ly, (u), (4.6)

and more explicitly,

n+2

—Aou + cpRgyu = cpun—2 Ry, , (4.7
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where ¢, := 4(’;—_721), which is the scalar curvature equation or Yamabe equa-
tion.

Here we will present a formal argument to derive (4.3) from (4.4) which we
learnt from Tom Branson. The argument runs as follows: with a formal limit

n \, 2 after analytic continuation one finds that (4.3) appears as a special
case of (4.4): Taking ¢ =1 in (4.4) we get

n—2 n—2 n+t2 n—2
—A R T V) = ez Y[ -A - 1
(o0 gy ) (577) 2, 5 (et g ) )
n—2
4(n — I)R‘q“"

n+2

:eQw

Adding 0 = Ag(1) on the left-hand side leads to

n+2

n—2 n—2
— - w —S - w w
R AY) (e z W 1) +epRge 2 Y =e 2 YepRy, .

Dividing both sides by "7_2 and taking the formal limit n \, 2 we arrive at
2 n—2 1 n—2 nt2 1
— A —(Tw_l) —R,e 2z Y=e2 "—R,
°<n—2 ‘ )+2(n—1) 90€ ©T Ym—1) e
Ry,

R!]O_Qw
2 ¢ o

which is (4.3), since Ry, = 2K, Ry, = 2K, , and

. 2 n—2 . e —elv g
“lim (e 2 w—l) =lim — = —e"|pmpo=w".
n—2mn — 2 a—0 a—0 da

= — Agw +

. The first higher order example of conformally covariant operators for n = 4

is the Paneitz operator [75] given by

where d is the differential (acting on functions). If we denote by ¢ the negative
divergence, we can rewrite (4.8) as

2
(P1)g = (—0g)* +6 (gRggij - 2Rz‘j> d. (4.9)
This leads to
2
<(P4)g<ﬂa 7/)>L2(dvg) = /M(Ag : Ag@)d} dvg + /M §Rg<vg907 Vg1/)>g dvg

—2/ Ric(Vgp, V1)) dug.
M
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3a.

3b.

3c.

The Paneitz operator P, has the following basic properties
(Py)g, =€ *(P1)g,, ie., (4.10)

(Py)g is conformally covariant with degree (0,4).

Moreover,
(P1)gow +2Qg, = 2nge4w7 (4.11)

where

12Q := R’ — 3|Ricy |2 — AyRy, (4.12)
with |-|; being the Hilbert-Schmidt norm, with respect to the metric g, i.e.,
|Ricg|§ = Z |(Rij)g|§-
i,j=1

Rewriting (4.11) as —(Py)gow + 2Qq, e* = 2Qg, we discover the similarity
to (4.3), and we can interpret Ay as —(Ps),.

In general, it is tedious to check formulas (4.10) and (4.11).

We will here consider two simple examples of the Paneitz operator.

On R?* (or Q C R?) with the flat metric g = |dz|?> we have R = 0,R;; = 0
and the Paneitz operator reduces to

(P4)g = (_Ag)2- (4-13)

If (M*,g.) is an Einstein manifold, i.e., with (Rij)g. = $Rg.(9¢)ij. Ry, =
const. for the canonical metric g., we get

1

(P4)gc = (_Agc>2 - gRgcAgc
1
= (_Agc) © Lgc7

where L, is the conformal Laplacian discussed as Example 2. (4.14) holds
true, since 6d = — xd*xd = —A.

As a special example we take (S*, g.) with R, = 12, then (4.14) reads as

(P1)g. = (=Ag.) o (=Ay, +2). (4.15)
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4. In the same paper [75], Paneitz also introdued the conformal Paneitz-operators
(Pf)g- Setting

R Rg
Jo = 2(n —1)’
Ag = (Aij)g = (Rij)g — JyGijs
1
(Cig)g = ——5(Aij)g,

(Ty)ij = (n —2)Jy9i5 — 4Cygij,

and

n n
(Q4)g = §Jg2 - 2|Ag|2 —AgJy,

one gets the operator

n—4
(Pil)g = (_Ag)2 + 5ng+ 2

(Q7)g; (4.16)

and the claim is

-4 4
(P}')g is conformally covariant of bidegree (nT, n—2|— ) . (4.17)
If one accepts (4.17) one can derive (4.11) from (4.17) in the same way
(taking the formal limit n \, 4) as we deduced (4.3) from (4.4).

Remarks

1. Although the operator P;* was introduced by Paneitz, the specific ex-
pression of the Q7 was introduced by T. Branson [9]. More significantly,
in the special case when n = 4, Branson has pointed out that Q7 is part
of the integrand in the Gauss-Bonnet formula. As we will see in the theo-
rem below, the existence of P} for k > 4 was established in [49], In ([10],
[11]) Branson has also introduced the corresponding Q7-curvatures. We
now call these curvatures Q curvatures.

2. Notice in the definition of (Q}),, that (Q}), = 2Q,, compare to (4.12)
in Example 3.

3. The tensor A is called the Weyl-Schouten tensor, we will discuss some
eigenvalues problems of the tensor in later chapters of this lecture notes.

Theorem 4.1 [49]
Let k be a positive even integer. Suppose n is odd, or k < n.
Then there is a conformally covariant differential operator Py on scalar func-

tions of bidegree ("Tfk, "—;rk) with:
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(i) the leading symbol of Py, is (—A)*/2, and on (R™,|dz|?) we have Py =
(_A)k/27

(ii) P, = PY + nT_ka’ where Q. is a local scalar invariant, and PP =
0Sk_od. Here, Sx_o is a differential operator on 1-forms,

(iii) P is self-adjoint.
Remarks.

1. This theorem does not assert uniqueness of the operator Py. For exam-
ple, one can add [W|? for n =4 : (Py), + [W/|2 has the same properties
of the theorem as (Py),, where W is the Weyl-tensor, which satisfies a
pointwise conformal invariant property: [W|2 = e *|W|2 .

2. The condition k < n is necessary if n is even.

3. The work of [49] is based on the work of Fefferman-Graham, [43], where
they regard (M™,g) as the conformal infinity of (X"t ¢gT) for some
asymptotically conformally compact Einstein manifold X"+ satisfy-
ing Ricg+ = —ng™t. There is a correspondence between the conformal
invariants of (M",g) and the metric invariants of (X"*1 g7).

4. Powers of conformally covariant operators are in general not confor-
mally covariant any more, which can be seen by looking at powers of
the conformal Laplacian.

Corollary 4.2 If n is even, then there exists a curvature metric invariant (Qn)g
with

/ (@n)g., dug, :/ (@n)go dvo, (4.18)
M M
i.e., [1;,(@Qn)gduvg is a conformally invariant quantity.

Note that (Qn)g = Qg for n = 4, see (4.12). For n = 2, the total curva-

ture [ a2 Ky dvg satisfies the invariance property (4.18), it is in fact a topological
invariant according to the Gauss-Bonnet-Theorem.
Proof of Corollary 4.2 Since (P,)gw + (Qn)go = (Qn)g, ™™ obtained by an-
alytic continuation from the conformal invariance relation for P,, similar to the
case n = 2,4, we can apply part (i) of Theorem 4.1 [49] for k = n. P? is of the
form 65,,_2d, which vanishes after integration. So

/M(Qn)go dvg = /M(Qn)gw e" dvg = /M(Qn)gw dvg, -
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§ 5 Functional Determinat on 4-manifolds

Let (M™, g) be a compact n-dimensional manifold without boundary and suppose
that A is a self-adjoint, geometric differential operator with positive leading symbol
of order 21. In addition, assume that A scales like its leading symbol, i.e., if § := c?g
for some ¢ > 0, then A = (A); = ¢~ % (A), = c 2 A.

Take, e.g., A as the conformal Laplacian, that is

A=L=-Ag+c, Ry,

compare with Example 2 of Chapter 4.
Then we have the heat kernel expansion with asymptotic behavior

k—n
1

Tr(pe ) ~ Zt 2
k=0

ap(p, A), ast — 07" (5.1)

where

ai(p, A) = / ol Bl A)dy z)

for ¢ € C°°(M), where By, is a local invariant (in metric g) of order k, compare
with Proposition 3.7. Denoting the eigenvalues of A by A;,j = 0,1,2,..., then
only finitely many of the \;’s are negative, since M is compact, and the asymptotic
behavior for j tending to co is given by Weyl’s formula

.21
A~ (g, A)j

(compare with (3.10) for A = Ayl =1.)
In analogy to (3.6) the zeta function (4 for the operator A is defined as

Cals) = Y A% for Re (s) > % (5.2)
A;#0

Ca has a meromorphic continuation onto all of C with simple poles, and is analytic
at s = 0, which may be proved in a fashion similar to the argumentation used in
Chapter 3.

The determinant of A is defined as

det A := (—=1)# 12 <0 exp(—¢’4(0)), (5.3)

hence |det A| = exp(—(’;(0)), generalizing (3.7).
Notice that this definition of the determinant is not scaling invariant, that
is, for g = c2g, for ¢ > 0, one gets A =c %A, \; = ¢ 2); and

Cals) = DI = Cals).
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Hence, although (4

A

0) = Ca(0), while

Ca(s) = (logc*)¢a(0) + ¢4(0)

[s=0

s ¢ Ca(0) _ o—(loge®)¢a(0)=C4(0)

&=

¢~ 26400 exp(—¢4(0)), that is
det A = ¢264(0) det A.

This observation motivates the following definition:

21¢ A (0)

P(Ay) := (Vol(M,g)) " »  det A. (5.4)
Then

21¢ £ (0) _

n det A

QZ(A(O)

(Vol(M, g
= (Vol(M, g)) "™ 2640 det A
= (Vol(M, )+ det A

= P(A9)7

since vol(M, §) = ¢" Vol(M, g) for g = c*g,c > 0. Thus P(4,) is a scale invariant
quantity.
The following conformal index theorem is due to Branson and Orsted [14].

Theorem 5.1 (Branson-Orsted) Assume that A is as above and conformally co-
variant (or a positive integral power of conformally covariant operators). For sim-
plicity assume that

N(A) = #0j Ay = 0} =0

Then for ax(Ag) := ar(1, Ag)
d
22 Aa) = (1= Ban(f, Ay, ), (5.5)

L (0) = 2an(f, Ay, (5.6)

de le=o0 A9w+5f

Notice that (5.5) for k = n implies that a,, (4, ) is conformally invariant. We

det A t A,
can compute ngw (0) —C1’49 (0) = —log ‘kﬁtiff;”‘l = —log L Jei A, using the fact that

the number of negative eigenvalues appearing in the definition (5.3) is conformally
invariant for conformally covariant operators.

In terms of the scale invariant quantity Pa(g), the last quotient may be
rewritten as

P(Ag,) _ 2€a0)  VoI(M,gy) detdy,
P(A,) — 0 B Vol(M,g) % det4,
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By (5.6) we arrive at

1
d
h,, 0=, 0 = [ 5, O

1 (5.7)
= 21/ an(w, Ag,,, ) dt,
0
by the simple identity d%| :Ocz’%t N (0) = %g‘gt (0).
Remark 5.2 When n is odd, a, = 0 for compact closed n-manifolds. Hence

log det A, is a constant, compare to (3.6).
We now focus on the case n = 4. Assuming N(A) = N(A4,) = 0 as in Theorem
5.1, then we have

Lemma 5.3 Let A be as in Theorem 5.1 on (M*, go), M compact and closed, with
l =1. Then there are constants v1,7v2,73 depending on A but not on go, such that

B4(Ag> = 71|Wg|§ + 72Qg - 'YBAgRgv (5'8)
|W w !2]w = e_4w|Wq0 307 (5'9)
Ry, = e " (Ry — 6A0w — 6|Vowl?)), (5.10)

Agngw = 6gwd9w ng (5 11)
_ 674w(AORg0 + b1 (w) =+ bg(w) + bg(’LU)) .
with

bi(w) = —6A%w — 2A0wR,, — 2(Vow, VoRgy) g0
ba(w) = —620(|Vowl|?)) + 12(Agw)? + 12(Vow, VoAgw)g,,
bs(w) = 12A0w|Vowl|?, 4+ 12(Vow, Vo(|Vow|2,)) g0

where each b;(w) is homogeneous of degree i in w.

Remarks.

1. Recall (4.12), ie., 12Q, := R2 — 3|Ricy|? — AyR,. In general, there are
only four possible metric invariants of order 4, namely RZ, |Ricy|2, [Wy|2 and
AgRy, a linear combination of which furnishes By (A,). Apart from [Wy|2
these are not pointwise conformal invariants, only the integral of them is.
Moreover, the conformal covariance of A, i.e. b — a = 2, enforces the ratio

R? : |Ricy|2 to be 1 : —3, which allows us to express Bi(Ag) in terms of
W, [2, Ay Ry and Q.
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2. The negative divergence introduced for the Paneitz operator (Example 3 in
Chapter 4) satisfies the covariance relation

g, =€ 105, e2v, (5.12)

for any 1-form «, and

dg, f=dgf (5.13)

for any function f.

Sketch of the proof of Lemma 5.3. The fact that (5.8) holds true is
made plausible in the first remark above and (5.10) is a direct consequence of the
conformal covariance of A. For the conformal Laplacian, A = L, one obtains (recall
(4.4) in Chapter 4) for n =4,

Ly, (p) = e_3ngo (e®p) for all p € C°(M),

and setting p =1

Ry, _ e™3 (= Ag(e?) + %ew),

—A, (1
9w (1) + 6 6

which implies (5.10) (for A = L), since Agiw = Aow + [Vow|Z,.
The identity (5.11) follows from a straightforward computation using (5.12)
and (5.10).

O
Recalling (4.11) one deduces from (5.8) — (5.11) that

Ba(Ag,) = e (Bi(Agy) + 372(P)goto ~ 1a(ba(w) + ba(uw) + baw)),  (5.14)

where (Py),, denotes the Paneitz operator with respect to the background metric

go-
Under the assumption that A does not have zero eigenvalues, i.e. N(A) =0,
we can go back to (5.7) to compute the log determinant (for [ = 1):

det A,, ,
— log m = CAW (0) CAgO (0)

1
= / |:/ wB4 (Agtw) dvgtw:| dt
0 M

! 1
= 2/ / w(By(Agy) + =72t (Py) gow — 3 (tby (w) + t2ba(w) + t3b3(w)))e™ " dv,,,, | dt
G14) Jo LJm 2

= 2/Mw <B4(Ago) + 272(P4)gow — 3 (%bl(’w) + %bz(w) + %bg(’lﬂ))) dzjo, |
5.15



36

where we used dvg,,, = e* dyy and the homogeneity of the b;,i = 1,2, 3. In terms
of the scale-invariant expression P(A),

det A4, 1 Vol(M, gu)

_Z log =172 Jw)
dera, 2eaOlee oA S

—log P(A,,) +1log P(A,,) = —log
where

€a(0) =/ By(Agy) dvy = / (Y11 Wo 12, + 72Qg0 — V320 Ry, )dug
M M

69 (5.16)
=7 / [Waol2, dvo + 72 / Qg, dvo.
M M

Thus we have

Theorem 5.4 (Branson-Orsted)[14] Let A be as in Lemma 5.3, then

Falu] := ~2log % — T[] + 7aT[w] + 5 T[],

where
Tw] : = 4/ w|Wy, 30 dvg —/ |Wg0|(2]0 dvg 1og][ et duy,
M ‘ M ' M
Mw] : = / (w(Py) gow + 4wQ g, ) dug — / Qg0 dvo 1og][ e duy,
M M M
1 1 1
Iw] : = —4 wAgRg, + zwbi (w) + swba(w) + —wbs(w) | duvg
v 2 3 4
1 2 2
=3 (/M Ry dvg, — /M Ry, dvo>
Remarks.

1. The last equality in the expression III can be obtained by an integration
by parts. Notice that by (5.10), RZ duvg, = R2 e* dvg = (Rg, — 6Aqw —
6|ng|‘(2]0)2 dvg.

2. For A =L = —A+ R/6 the ratios between the ~; are as follows, see [14],
2 2
(47T) 180(’}/17 V2, ’73) =1, _4, _g .

For the square of the Dirac operator A = V2 (V is a conformally covariant

operator of bidegree (g, %)) one has

28
(47()2360(717 V2, 73) - (_7, 88, F) .

Notice that 23 > 0 in both examples.
In Branson’s notation [10] our (y1,72,v3) correspond to (51, B2, 85/6).
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Let us now recall some facts about the Yamabe metric. Given (M™, g9) com-
pact without boundary, one defines
Ry, dv
Y(M", g0) := inf —‘[M g & )
gw€[go] (IM dvgw) ™

which is called the Yamabe constant, a conformally invariant quantity. Here [go]
denotes the class of all metrics that are conformal to the background metric gg.
One central result regarding the Yamabe constant is due to Yamabe [92], Trudinger
[88], Aubin [4] and Schoen [82]:

Theorem 5.5 (i) sign(Y (M™, go)) = sign(A(Lg,)), where A1 denotes the first
eigenvalue of the conformal Laplacian L.

(i) Y(M™, go) <Y (S™,gc) with equality iff (M™,go) is conformal equivalent to
(Snvgc)'

(i1t) Y(M", go) is attained by some metric g, € [go] with Ry, = const.. This
metric is referred to as the Yamabe metric and often denoted by gy .

Proof. Since we are going to need only the first part, we will restrict our attention
to proving (i).

Let go be the background metric. For any u € C*°(M), u > 0, set g, :=
w2 go, then

1 n
Rgu = Fu7£L90u7
where Lg,u = —Aou+ Cp Ry, u is the conformal Lapalcian, C,, = 4(’;—7_21). It follows

that

1 1
/ Rj, dvg, = —/ uL g udvg = — (|V0u|2 + CnRgouQ)dvo.
M Cn Jum Cn Jum

Let ¢1 be the first eigenfunction of Ly, with ||¢1]|52(ar,g,) = 1. Then ¢y € C*°(M)
and it does not change sign. We may assume that ¢; > 0. Note that

Ju Ry, dvg,, At

=0, 2 on
(fM d”a’wl) ”(bl”L%(

M,go0)

Thus if Ay < 0, then Y(M™, go) < 0.
If Ay = 0, then the above formula shows that Y (M™", gg) < 0; while we also
have [, Ry, dvg, = & [y, uLgudvg > 0 for all uw > 0. Thus Y (M™,go) > 0.
Hence Y (M™, gog) = 0.
If \; > 0, then for any u € C*°(M), u > 0, [,, uLg udvy > )\1||u||%2(

A{,go) :
On the other hand we also have

/M WL gyudvo > ull2 gy — CON I (r1 -
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Thus we have

I d > C 2 > C 2 n
/Mu goUavy = go”u”Hl(M,go) = g°||u||Ln2*2(M7go)

by the Sobolev imbedding inequality. Hence

R; dv;
Jus B 5 > C(go) > 0.

(Jar dvg,) =

That is Y (M™, go) > C(go) > 0.
For (ii) and (iii) we refer to [4], [82]. O

Notice that if Y(M™, go) > 0, then taking the Yamabe metric gy (= Ry, =
const. > 0 according to part (iii) of the previous theorem), we are led to the
estimate (taking Vol(M, g,,) = Vol(M, gy) = 1 for simplicity),

2
/ sz dvg, > </ Ry, dvgw)
M M
2
> (/ Ry, dugy) :/ R? du, .
M M

Thus III [w] > 0 for all w in Theorem 5.4, and it is zero only when Ry, = R, . We
take this as indication that it is very non-trivial to achieve the infimum of III[w].

Before discussing extremal problems for the zeta functional determinant F[-]
in Theorem 5.4 on general manifolds, we turn our attention to studying extremal
metrics on S* with respect to the conformal Laplacian:

Theorem 5.6 (Branson-Chang-Yang) [12] On (S*,g.) det L, is minimized for
Guw = €2 g.., with the volume constraint Vol(S*, g,,) = Vol(S%, g.) = % = |54, iff
Gw = ¢*(ge) for some conformal transformation ¢ : S* — S%, i.e. g, and g. are
1sometric.

The theorem above should be viewed as a 4-dimensional analogue of the
Onofri inequality in Theorem 3.1 and Corollary 3.2.
Remarks.

1. For the Dirac operator V? one gets det ng is maximized iff g,, is isometric
to ge.

2. On (5%, g.) one has [W, |2 = 0, hence I[w] = 0, Il[w] > 0 with equality iff
gw = ¢*(gc) and III[w] > 0 as pointed out before, since g. = gy, here, with
R, =12, and equlity iff g, = ¢*(g.).
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3. We may view the fact that IT[w] > 0 as a special case of Beckner’s inequality
[7], stated for general operators P, on (5™, g.), given by

H,:T;; (—Ay, +k(n—k—1)), for n even

Py =4 " L
! (—Agc + (”771)2) 1,2, (=Ay, +k(n —k—1)), for n odd.

Branson [9] pointed out that these operators P,, may be obtained by confor-
mally pulling back the operator (—A)™? on R” via stereographic projection
m:S™ — {N} — R"; where N denotes the north pole of the sphere S™. For

instance, for n = 2 one obtains the Laplacian A, on S? by conformally
pulling back —A on R?, whereas for n = 4 one gets the Paneitz operator

1

(P4)(Jc = (_Agc) (_A(Jc + 6R90> = (_Agc)(_Agc + 2)7
compare with Example 3b of Chapter 4.
Beckner’s inequality states

log][n enw dvgc < n][n u}dvgc + ﬁ ][n an(w) dvgc

with equality iff g, = ¢*(g.).
For n = 2 this reduces to Onofri’s inequality (Theorem 2.11), while for n = 4
Beckner’s inequality implies II[w] > 0, since on (S*,¢.),Q,. = 3 according
to (4.12) with Ry, = 12.

4. For more general results we give the following overview:

standard is a for the among metrics proved
metric g, operator with fixed by
on
9 global max det(—A) area .
5 global min det V2 area Onofri [72]
lume
lobal min det L Vo
St & 2 &conformal Branson Chang Yang [12]
global max det V class
lume
lobal max det L Vo
S6 & i 2 &conformal Branson [11]
global min det V class
g3 local max det(—A) volume gaz?nformal K. Richardson [80]
local max det(—A) § K. Okikiolu [70]
volume
§2t ;>3 | saddle point | det(—a) | vomme gazznformal K. Okikiolu [70]
Sin+l local min det L o
Gin+3 local max dot I, } volume K. Okikiolu [70]




40

Here L denotes the conformal Laplace operator. The results by Okikiolu, [70]
especially the result that on the 3-sphere S3. det(—A,,) is a local maximum
of the functional det(—A,) among all metrics g (not only the ones conformal
to g.) defined on S3, are truly remarkable. An important tool in her work is
the computation of the canonical trace of odd operators in odd dimensions.
In a separate paper [69], she has also given an alternative proof of Polyakov’s
formula, Theorem 3.1, using the calculus of pseudo-differential operators.
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§ 6 Extremal metrics for the log-determinant
functional

We study the extremal metric for the functional Fa[w] given in Theorem 5.4 by
Branson and Orsted. As a basic tool we will need the following generalization of
Moser’s inequality, Adam’s inequality.

Lemma 6.1 (Adam [1]) Let Q C R™ be a bounded domain, and suppose k < n.
Then there are constants ¢ = c(k,n), Bo = Bo(k,n), such that for all w € C§(Q)

with ||VFwl|, < 1,p = %, we have

‘/Qexp(ﬁ|w(x)|p/) dx < c|Q] (6.1)

for all B < Bo, and p': =p/(p—1).

This inequality is sharp in the following sense: If 3 > (¢, then for any N € N
there exists uxy € C§°(Q) with ||[VFuy||, < 1, such that

/ exp(ﬁ|uN(x)|p,) dx > N|Q|.

Q

Notice that we denote
|[VEul]: = ||A*2u||  for k even,
IVFul|: = ||[VA™= ul| for k odd.

If n = 4,k = 2, whence p = p’ = 2, then 3y = (p(2,4) = 3272. On a compact
4-manifold, Lemma 6.1 takes the following form (cf. [12], [46] for general M™):

Lemma 6.2 On (M*,go) compact, closed, there exists a constant co = co(go) such
that for all w € C*(M) with ||Aow]|]2 < 1

/ exp(32m%|w — w|?) dvy < co. (6.2)
M

Corollary 6.3 On (M*, go) as above one has

[ Aow|f3. (6.3)

- 1
log][ M=) duy < logco + —|
M 87T

(6.3) follows from (6.2) in the same way as Corollary 1.7 was deduced from
Corollary 1.6 in the first chapter.

Define for a metric g on M

ky: :/M Qg dvg, (6.4)
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which is a conformally invariant constant, i.e., k; = kg, = fM Qo dvg for g = g, =
€2 gy. Due to the Chern-Gauss-Bonnet formula

2 a1 2
drex(M*) = §/M|W| dv+/Mde. (6.5)

Suppose in the following that 72 < 0 in the representation of F4[w] given in
Theorem 5.4 (otherwise consider (—F4) instead).

Lemma 6.4 Assume that 2 < 0, and vy2y3 > 0. Let ¢1,co € R be given constants
with ca > 0 and suppose that

kg, < 87 — ﬂ/ [Wol2 dvo. (6.6)
V2 Jm
Then for all w € S, ¢, (A), where
Serea(A): ={w e C®(M): (signvy2)Falw] < ¢1,vol(M, gy) = ca vol(M, go)},
one has the uniform estimate
w22 < Cler, 2, A, go). (6.7)

Remark. If we assume for simplicity that A = L, as we did in the proof of
Lemma 5.3, we have

2
(47‘-)2180(71572773) = <17 _45 _§> )

according to the second remark following Theorem 5.4. Hence the condition on kg,
in Lemma 6.4 reads as

1
kg, < 87+ — [ |Wolg dvo.
4 M

Proof of Lemma 6.4. We will show that, under the assumptions ~y2y3 > 0 and
(6.6), the terms II [w] and III [w] in the representation for F4[w] add up to some
multiple of the W22-norm of w. All the terms involving the background metric gq
will carry a sub — or superscript “0”, whereas g = g, = €2 go will not be indicated
explicitly, i.e., e.g., Vg4, = Vo, but V, = V.

IT[w] :/ (w,P40w)0dvo+4/ Qo(w — ) dvgy
M M
- / Qo dvg log ][ A=) gy
M M
2
= Aow)?dvg + = [ Ro|Vow|3d :
(49) /M( ow) Uo+3/M ol Vowl dvo (6.8)

— 2/ RiCo(Vow, Vo’w) dvg + 4/@0(11) — ’Lf})dl}o
M

- / Qo dvg log ][ =) gy, .
M M
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For III[w] one computes

I[w] = ! (/ R? dv—/ R? dvo)
3 M M

1
-1 / [36(Agw + [Vowl2)? — 12Ro(Aow + [Vowld)] duo (6.9)
M

= 12/ (Aow + |VO’LU|(2J)2 dvg — 4/ Ro(Aow + |VQ’LU|(2J) dvg,
M M

where we used (5.10), compare with Remark 1 after Theorem 5.4. The assumption
on kg, may be rewritten as

—")/2/ QO d’UO —’71/ |W0|3 d’Uo < —’)/2871'2, (610)
M M

since 2 < 0. This implies by (6.3)

|: — Y2 / QO d’UO -7 / |W0|g d’UO:| log][ 64(71)7@) d’UO
M M M

< —’7287T2 (L/ (Ao’w)2 dvg + Co) (611)
M

82

= —72/ (Agw)? dvg — 8m>72co.
M

Because of the strict inequality in (6.10) we may rewrite the left-hand side of (6.11)

as
[— 72/ Qodvg —m / Wold dvo} log][ W=D gy
M M M

(6.12)
< (=) [ (BowPdw+C

for some ¢ > 0.
Inserting (6.8), (6.9) and (6.12) into the expression for F)4[w] we can estimate

Falw] < (2 + 1295 — 2 — &) / (Agw)? dv
M

+ 2473/ (Aow)|V0w|g dvg + 12’}/3/ |V0w|4 dvg
M M
+ lower order terms in w.

Since € > 0,72 < 0,723 > 0, we obtain by Young’s inequality and the Sobolev
embedding W4 — W22 that first

/ |VOw|gdU0 S 0(617027FA[U‘)])7
M
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and then
/ (Aow)? dvg < C(cx, e, Falw)).
M

Lemma 6.4 now implies

Theorem 6.5 ([33]) If v2 < 0,727v3 > 0, and if
kg, < 87 — ﬂ/ [Wol2 duo,
72 Jm

then there exists an extremal metric g = g, = €% go with w € W22(M),

Falw]= sup Fall,
Scq,eq(A)

satisfying (in terms of the metric g)

71|W|2+72Q—73AR:71/ |W|2dv—|—72/ Q dv = const. (6.13)
M M

Furthermore, w € C*(M) according to [25].

Notice that this result applies to the conformal Laplacian A: = L, where
(’71,’)/2,’73) ~ (1, —4, —2/3), if kgo < 871'2 + (1/4) fM'WOl% d’UQ.
Regarding regularity even more is true:

Theorem 6.6 (Uhlenbeck-Viaclovsky [89]) Any critical point of Fal-] of class
W22(M) is C°°-smooth.

Our next goal is to derive an application of Theorem 6.5 given by Gursky,
see Theorem 6.7. Denote

R A e T
02._2(123 |E|) (6.14)

(in terms of some metric g on M), where E is the Einstein tensor on M, and recall
the identity

R
Ric = B+ g, (6.15)
to conclude by (4.12), and the fact that TrE = 0,
12Q = —AR+ R? - 3|Ric|?

1
= —AR+-R?*-3|E)?
(6.15) 4

' (6.16)
:_A i 2_E2
R+3<12R | |>

= —AR =+ 60’2.
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(The notation o9 is motivated by more general considerations regarding elementary
symmetric functions oy, of the eigenvalues of geometric tensors, see Chapter 7.)

Two alternative formulations of Theorem 6.5 turn out quite useful later on:
Theorem 6.5 If 72,73 < 0, and if

kgo :/ Qod’l}0<87'r2—£/ |W0|(2Jd’Uo,
M Y2 Jm

or equivalently, if
kq: = 71/ [Wol5 duvo +72/ Qo dvy > 7287,
M M

then there is wqg € C°°(M) such that

Falwg) = sup  Fal],
Scl,cg(A)

and in terms of the metric g = g,,, = e*“dgo,

kq

WP +72Q —13AR= ————.
VOI(M7g’lUd)

(6.17)

As it is sometimes more convenient to take s and 3 to be positive numbers
instead of negative numbers; we may take infF instead of supFs and restate
Theorem 6.5’ as :

Theorem 6.5” If 75,73 > 0, kg < 72872, then there exists wy € C°°(M) with

FA [wd] = s inf(A) FA[-],
c1,c9

such that in terms of the metric g = g, = €**4gg, (6.17) holds, or equivalently,

kq
vol(M, gu,)

kq
vol(M, guw,)

1 1
")/1|W|2+’}/2 __AR+—UQ —’}/3AR:
12 2
1 , 1
< - E% +793 | AR = — |[W]" — 57202 +

& AR = )+ a|W|? + Bos, (6.18)

ky 1 -
D L S <0
vol(M, gu,) (1272+73) =%

where

12

g Lo(Lo )
-—272 1272 V3 .

1 -1
a: =7 (—")/2 + ")/3> <0, and where
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Theorem 6.7 (Gursky [54]) If Y (M*,go) > 0, and if kg, > 0, then the Paneitz
operator (Py)g, = Po is positive, with A\1(Py) =0 and ker(Py) = {R}.

Remarks.

1. Both Y(M*, g) and k, are conformally invariant quantities, hence the as-
sumptions above are natural, since Py is conformally covariant of bidegree
(0,4), see (4.10). This implies that ker(P) is a conformally invariant set.

2. The proof of Theorem 6.7 will be used to prove the main result in Chapter
7.

3. Tt is unclear, whether the assumptions Y (M*, go) > 0,k,, > 0 are also
necessary to obtain Py to be positive. Notice that there are indeed Paneitz
operators with some negative eigenvalues. For instance, let 3 be the genus 2
hyperbolic surface and M : = £ x¥ with A1 (Ax) < 1and —6 = R < 0. Then
P= (—A)(—A+ (R/6)) = A2+A, which giVGS )\1 (P) = )\%(Az) —)\1 (AZ) <
0.

Before proving Theorem 6.7 we need to derive a few auxiliary results.

Lemma 6.8 Suppose that Y (M*, go) > 0, and assume that (6.18) holds with o <
0,0<08<4,2<0, then R: = Ry, > 0.

Proof. We are going to show that under these assumptions we actually obtain (in
terms of g = g, = €2*4gq)
LR >0, (6.19)

where L = L, is the conformal Laplacian on (M 4 gw,) as discussed in Example
2 of Chapter 4. To see that (6.19) holds, recall that for ¢ € C?(M),

R
Ly = —A¢+ TV,
so if 8 € [0,4], then

2
1n —-ans
1/1 R?
= A—a[WP-8(=(-=R*-|E]? —
(6.18) ol ﬂ(z (12 EF) )+ 5
>0
Now Lemma 6.8 follows from (6.19) and the following general result. i

Lemma 6.9 If on (M",g)
LR= AR+ c,R*>0 (6.20)

(all in terms of the metric g), cp, = 4(7:1—__21), then Y (M™, g) > 0 implies R= Ry > 0
on M".
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Proof. Let p; be the first eigenvalue of L and ¢ the first eigenfunction, ¢ > 0.
Then we know from Theorem 5.5 (i), that Y(M™,¢9) > 0 < p1 > 0. Defining
f: = R/y we compute (in terms of g)

cnR* > AR=A(fyp)
(6.20)

= fAp+ pAf +2(Vf, V)
= f(enR — 1) + @A f +2(V f, Vi)
= ¢, R* — Ru1 + oA f +2(Vf, V),

i'e'a R,“‘l > <PAf + 2<vf7 V(p>7 or

fun - %Wﬁ V) > Af.

Since p1 > 0, we can apply the minimum principle for f to obtain f > 0, hence
R > 0. If f =0 at some point, we would get f = 0, i.e., R = 0 by the strong
maximum principle, contradicting Y (M™, g) > 0 (see Theorem 5.5), whence R > 0.

O

Lemma 6.10 Let (M*, g) be a smooth, compact closed 4 manifold. ThenY (M*,g) >
0 implies k, < 872 with equality iff (M*,g) is conformally equivalent to (S*,g.).

Remarks.

1. If v < 0 and Y/(M*,g) > 0,7 > 0, then it follows from Lemma 6.10 that
the assumptions of Theorem 6.5 are automatically satisfied unless (M4, g)
is conformally equivalent to (S, g.), in which case the existence result is
known anyway.

2. Gursky gave a proof of Lemma 6.10 in [54] without using the fact that
Y(M*, g) < Y(S*, g.), which we have used in our proof below.

Proof of Lemma 6.10. Using (6.16) we may write (in terms of g)

1/1 1
k :/ de:/ —(—R2—|E|2> dv < — [ R?dv.
Y a4\ 12 48 [y,

Since k4 is conformally invariant we may assume that g = gy, the Yamabe metric,
for which R = Ry, = const. according to Theorem 5.5 (iii). Consequently,

/ R*dv = R*vol(M, g)
M

- < /M Rdv) i /vol(M, g)

= Y(M4vg)2 S Y(S4agc)2'
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Thus we obtain
kg

1
< — 4 2 = 2
48Y(S ,ge)” =8

with equality iff Y/(M*?,g) = Y (5%, g.), i.e., iff (M*,g) is conformally equivalent
to (S, g.) by Theorem 5.5 (ii). O

Lemma 6.11 Let Y(M*, go) > 0 and kg, > 0. Then there exists w € C*(Q),
such that in terms of g: = gu = €*“go,

AR = )+ 20, (6.21)
for some A <0, where R =Ry, > 0.
Proof. Taking 73 = 0,72 = 6,3 = 1 in Theorem 6 we obtain w € C*° (M) with
AR = X+ 205.

Notice that our assumption Y (M*, go) > 0 implies k,, < 872, and we may assume
kg, < 872, since otherwise (M?, go) is conformally equivalent to (S*, g.), on which
(6.21) holds trivially with |E, |2 =0, R? = 144 = —12)\ & X = —12. Note also
that the assumption k4, > 0 implies A < 0 by definition of A in (6.18). Since 8 = 2
here, we can apply Lemma 6.8 to obtain R > 0. O

Proof of Theorem 6.7. By Lemma 6.11 there is a metric g = e?“gy, such that
(in terms of g)

AR =)+ 209
1 (6.22)
=A—|E + =R?
1Bl + 15
with A < 0 and R > 0. We can write (again in terms of g), for p € C?(M),
2
(P@, ) L2 (av) =/ (Aw)deJr—/ Rlvwlzdv—Q/ Ric(Vp, Vi) dv
M 3Jm M

1
:/ (Acp)2dv+6/ R|V<p|2dv—2/ E(Vo,V)dv.
M M M

Claim.

1
2/ E(ch,Vgo)dvg/ (Ago)zdv+4—/ R|Vy|* dv. (6.23)
M M 8 Jm

Before proving the claim notice that then

7
(Po, o) 12 (dv) > E/ R|Vg|? dv,
M

which proves Theorem 6.7. O

It remains to show (6.23). The following general fact (see [85], p.234) is useful:
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Lemma 6.12 Let M = (my;) be an (n X n)-matriz with vanishing trace and norm

2

n
|M|*: = Z m?j

i,j=1
Then .
max |Mo|* < ——| M2 (6.24)
vesSn—1 n

To prove (6.23) we take n = 4, i.e.,
B(Ve. Vo)dv < 2—/ |E|[Vo]2 do

E2 3
§2/ 2l —|VelPdv + = /R|w|2dv
M 8 M

M

j 5 (6.25)
¥ 2
= 2 ——(—AR+MN)d — R d
(6.22) /M r TN+ 4/M Vel do
AR 13
< 2/ |th|2< > dv + 2 R|Vgp|2dv7

where we used A < 0, R > 0. To estimate the first term we integrate by parts:

[ 1vel (57) ao=- /|V<p|2 () vrao- [ 907er) T ao

> 761 -2 ——|Vpl||V @) d
_/1\4 R2 v M R | || | v

—/ |V2p|? dv.
M

Inserting this into (6.25) we arrive at

1
/ E(Vp,Vo)dv <2/ V2| dv + == 51 R|V<p|2dv. (6.26)
Now apply Bochner’s formula to get
/ |V20]? dv :/ (Ap)? dv —/ Ric(Vo, V) dv
M M M (6.27)

1
:/ (A(p)2dv—/ E(V@,ch)dv——/ R|Vp|* dv.
M M 4 Jm

Substituting (6.27) into (6.26) leads to

1
2/ E(Vp, V) dv g2/ (A<p)2dv—2/ E(Vp, V) dv+—/ R|V¢|? dv,
M M M 24 M
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which implies

1
2/ E(Vo,Vo)dv §/ (Ap)? dv + —/ R|V¢|? dv.
M M 48 Jm
For our investigations in Chapters 7 and 8 recall the functional

Falw] = mIw] +y2ll{w] + 31 w]

as given in Theorem 5.4. The critical points of F4[-] satisfy (6.17), i.e. in terms of

the corresponding metric g: = g, = €% go,
1 1 ka
- = AR = —v W2 - = A
<1272 * 73) W= gmee+ gy

where kg: =7 fM|W0|(2) dvg + ¥2 fM Qo duvg.
If one chooses v = 1,73 = %(36— 2),6 > 0, and finally ~y1, such that kg = 0,
then the Euler-Lagrange equations for the functional

Folw]: = yIfw] + I[w] + 5(35 — 2)IM[w]

read as (in terms of g)

SAR = 8y |W|* + 4o, (%)s

or equivalently, (for o2 = 02(A4,) as in Chapter 7)
) ,
02(Ag) = 7AR =20 [W]*. (%)5

Notice that if [, 02(Ag)dv > 0, then 71 < 0 (since kq = 0), and v, = 1,
v3 > 0, if § > %, thus y2y3 > 0; while 73 < 0 implies that « < 0 in (6.18), thus
we may apply Theorem 6.7, or more precisely Lemma 6.8 to the solution of the
equation (x)s. Also the equations (x)g, (*):; may be viewed as a d-regularization
of the equation

02(Ay) = =271 |[W* >0

for 71 < 0. That is, a regularization (depending on the parameter §) of an equation
prescribing o2(Ay). The strategy later will be to let § tend to zero.

Using the expressions for I[w], II[w], IIT[w], given in Theorem 5.4 together
with (5.10) and (4.9) one can expand F°[w] in terms of derivatives of w with
respect to the background metric go:

Folw] = Folw]: = / (36(Agw)? + 3(35 — 2)Agw|Vowl|?) dug
M

+/ 2(35 — 2)|Vouwl|* dug (6.28)
M

+ lower order terms.
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Lemma 6.13 Let £ denote the linearization of (x)s, i.e., the bilinearization of
F°[] at a critical w € W22(M) with metric g = g, = €“go, Ry > 0. Then, in
terms of g, (dv = dvy)
s d s
(0, L) 2 (dv): = el F°lw + ty]
t=0

(6.29)
:A/%uwf—4mv%vguwl—®MVﬂ%m.

Proof. To simplify the computation, notice that the functional F%[-] can be written
as

Flw + tg] = F°[w] + Fp[te],

where F[-] is given by (6.28) with the background metric go replaced by g = g, =
€2 go. This implies that

ﬁ“:OF [w + tp] = ﬁ‘tzon[W]-

Without loss of generality we may normalize the volume

][ e4wduoz][ dv =1,
M M

to obtain by a straight forward computation (in terms of g)

> 2
pTo) F)[te] = 16kq <][ @ dv — (][ stU) ) + 272(Pp, ¥) L2 (dv)
l+=0 M M

1
+ 243 </ (Ap)? dv — —/ R|Ve|? dv) .
M 3 Jm

Under our hypotheses that kg = 0 (by choice of v < 0), 2 = 1,73 = ﬁ(35 —2),
we get

& 4
o, Pl =20a+123) [ (Apdv+ 30 —60) [ RIVeP a0
dt?|,_, M 3 M
—4’)/2/ Ric(Vp, V) dv
M

= /M(35(A<p)2 —4E(Vp, Vo) + (1 = 8R|Vp|?) dv.

We conclude this section with an estimate for the operator £°.
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Proposition 6.14 Let £° be as in the previous Lemma, then, at a solution w with
R=R,, >0, one has for all p € W>2(M),

3 1)

(. L 2 § [ (80P + RIVoP) do
1y 16

In particular, L£9>0 and ker £L° =R for all § > 0.

The proof is similar to the one of Theorem 6.7, in particular like the proof of
(6.23), recovering Gursky’s result “P > 0” for § = 2/3.

In Chapter 8 we will use a continuity method to let § — 0 in (*)s. Proposition
6.14 will serve us to prove the openness for the continuity argument.
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§ 7 Elementary symmetric functions

On (M™, g) denote A: = Ric —Q(n—lil)g, the conformal Ricci tensor, compare with
Example 4 of Chapter 4. Then the full Riemannian curvature tensor Riem decom-

poses as
1
Riem =W + ——AQ@y,
n—2

where @) denotes the Kulkarni-Normizu product. Let h,k be two covectors and
1, X2, T3, x4 vectors, then

(h@k’)(l‘l ,X2,X3, 1'4) L= h(.%‘l, 1'3)]{(1'2, 1'4) + h(CEQ, $4)k($1 N ,Tg) — h(.%‘l, $4)]€(1‘2, 1'3)

— h(ze,z3)k(x1,24).

The conformal Ricci tensor A is natural in conformal geometry. In his thesis J.
Viaclovsky [90] considered the functional

Frlg): = /M o1(Ag) dvg,

where oy, (A) is the k-th elementary symmetric function of the eigenvalues of the
tensor A, e.g., if A is the conformal Ricci tensor,
Rn n—2
k=1: A)=TrA=R - = R
o1(A) =Tr 2n—1) 2(mn—1)"
1
k=2t op(A) =) A} = 5[(T7’A)2 —14}7,

1<j

k=n: o,(A) = det A.
Theorem 7.1 [90] If k # 5 and if M is locally conformally flat, then
ok (4y) = const.

for all metrics g € [go] that are critical for Fy[-].

In this section, we are going to study o2(A4,) on M*%. We remark that some
of the algebraic properites of o9 on M* listed below have analogous for o, on M™,
see [48].

Denote
R R
Aij = Rij — 5—9i = Rij — —9ij,
J J 2(71—1)9] J 69‘7
R R
Sij =—Ei; + Zgz‘j =—R;; + Egij, (7.1)

1/1
09 = O'Q(A) = 5 (ER2 - |E|2> ,
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and recall that R;; = E;; + %gij-

Lemma 7.2 (a) R? > 2409(A) with equality iff E = 0.
In particular, if o2(A) > 0, then either R >0 or R <0 on M*.

(b) Let SV : = g*gi'Sy;, g: = e*go, then
1 . 1
O'Q(Ag) = —SUAU = —<S, A>g
2 2
(c) If R>0 atp € M, then for all x € T,M and S = S;; one obtains

Mg(% ),

g(z, ).

S(z,z) >

R
. 302(A)
> = 7
Ric(z, z) >

Proof.
(a) is immediate.

(b) Recall that the inner product of two 2-tensors h, k in the metric g is given
by

(h, kg = g"*¢"" hijkap

y R R
5”141'3‘:( B+ 9" )(E”er >

R2 R2
—|EP + — =0 |E?

48
= 20’2 (A)7
where we have used the property that TrE = E¥g;; = 0.

(c¢) Using Lemma 6.12 we estimate

V3
|E(z,z)| < 7|E||z|f7 Vr € T,M.
Hence

R
5(1'71') = —FE(z,z) + Z'x@
V3 R\,
> <—7|E| t7 [,

> <—§( ”j;'z + )+§> 2l

3|E|2 1 9 302( )
= (3185 + §r) bty = 22,
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if we choose ¢: = 2/3.

Similarly,

Ric(z,z) = E(z,x) + —g(z,z) > ?|x|2 = )g(:c,:c).

Corollary 7.3 (Corollary of (b) and (c) in Lemma 7.2) If 03 = 02(4) >
0,R > 0, then
30’2

R > R;; >
Zgi; > Ry > g
27w Y R
In particular, Ric is positive definite (R = co1(A)).
We now list some basic facts concerning the tensors S, A, and oy etc. under
conformal change of metrics. Let ¢ = ¢, = e?“go, where go is the background

metric. Then
R=R,=e (Ry— 6Aqw — 6|Vowl|3). (7.2)

Notice the change of signs when using the g-metric instead of gg. In fact,

Ro = (R + 6Aw — 6|Vw|?)

= R=e¢2YRy — 6Aw + 6|Vuwl|?. (7:3)
Moreover,
Ric = Rico —2Viw — (Aow)go + 2 dw ®¢ dw — 2|Vow|3go, (7.4)
or in terms of g on the right-hand side:
Ric = Ricy —2V?w — (Aw)g — 2dw ® dw + 2|Vw|?g. (7.5)
Analogously,
A=Ay —2Viw +2dw @ dw — |Vowl|igo, (7.6)
A=Ay —2V%*w — 2dw ® dw + |Vw|?g. (7.7)
S = Sy + 2Viw — 2(Agw)go — 2 dw @ dw — |Vow|2go, (7.8)
S = 8o+ 2V%w — 2(Aw)g + 2dw @ dw + |[Vw|?g. (7.9)

The behavior of g2(A4,) under conformal change is determined by (A = A, for
9 =¢e*"g0)
2(A)e™ = 03(Ag) + 2[(Aow)? — [Viuwlg
+ <V0’w, V0(|V0w|3)>0 + A0w|V0w|(ﬂ (7.10)
— 2(Ric)o(Vow, Vow) — 2(So, Viw)o.
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The last two terms are frequently denoted as lower order terms. Notice that for
u € C°°(M), one has

o2(Viu) = 5 [(Agu)? — [Viul3],

N | =

which resembles the first two terms on the right-hand side of (7.10). o2(V3u) is a
typical example of a fully non-linear differential expression studied by Caffarelli,
Nirenberg and Spruck [17] [18].

A fully non-linear differential equation of second order

F(V?u(z), Vu(z),u(z),z) = 0in Q C R"

is called elliptic, iff there are constants 0 < 61 < 5, such that

oF
ij

f11¢)? < (8 )§i§j < 05]¢)?

(7

for all £ € R™.
In case F(V2w, Vw,w, ) = 02(4,, ), one gets
oOF

= —28%,
8wij

and if o2(A,, ) > 0, then (—F) is elliptic.
Lemma 7.4 (Divergence structure of 02) For 02(A) = g2(A4y, ) one has
(a) g2 (A)€4w = 02 (AQ) - VQ(M('LU)VQ'[U),

where

M(w): =28 +2Vaw — 2(Aow)go — 2Vow ® Vow, (7.11)
(b)  M(w) =5+ So+ [Vow[dgo,
()
VS =0. (7.12)
In particular, for M closed, compact,

/ szfdv:—/ (VS)Vfdv=0 YfeC*M).
M M

Proof.
(a) follows from a straightforward computation from (7.10)

(b) follows from (7.8) and (7.11)
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(c) follows from the first Bianchi identity

R 1
Sij =—R;; + Egij = VjSij =—-V;R;; + Esz =0.

The main theorem in [23] and [24] is

Theorem 7.5 On (M*,go) closed, compact, suppose
(i) Y (M, go) >0,
(Zl) f]\l 0'2(140) dvg > 0.
Then there is w € C°(M) with 02(A,,) =c > 0.
Corollary 7.6 Under the assumption of Theorem 7.5 there is w € C*° (M), with

R, >0 and (Ry,/2) > (Ric),, >0

Remark 7.7 The condition (ii) in Theorem 7.5 implies a topological constraint,
which may be seen as follows. Assume that M*? is orientable. According to the
Chern-Gauss-Bonnet Theorem, one has

8y (M*) = i /M|VV|2 dv + /M o2 (A) dv. (7.13)

In addition, the Signature Formula reads as

1
12727 (M%) = = (/ (W2 — |W|2]) dv (7.14)
4 \Jnm
where
WT: = self-dual part of W,

W=

T:

anti-self-dual part of W,

signature of M* (a topological invariant).

Adding (7.13) and (7.14) we arrive as

472 (2x (M*) + 37(M*)) = 1
2 M

W2 dv + / o2 (A) dv.
M

Thus (ii) in Theorem 7.5 implies the constraint

2x(M*) £ 37(M*) > 0. (7.15)
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Examples. For simply connected 4-manifolds with positive scalar curvature, there
is well-known work of Donaldson [40] see also [47] that up to homeomorphism type,
the manifolds are

k(CP?)#1(CP?) or k(S2 x S2).
If we assume in addition that [ o2(A4,)dvy > 0, then Condition (7.15) implies
0<k<4+5l, (7.16)

where x =k+1+2, 7=k —1, e.g. for ] =0,k < 4. We remark that for manifolds
of this type Sha-Yang [83] have alreday shown the existence of a metric § with
(Ric)g > 0.

Remark 7.8 To prove Theorem 7.5 we will proceed in two steps. First we deform
the given background metric go in the conformal class to some metric g,, with
o2(Ag,) = f > 0 for some positive function f. Secondly, we will deform f to be
constant. To be more precise, we will first show

Theorem 7.9 Under the assumption of Theorem 7.5 there is f € C*°(M), f >0
and w € C*° (M) such that o2(A,,) = f > 0.

The second step will be the proof of

Theorem 7.10 Suppose there is w € C*°(M), such that
(i)’ Ry, >0
(i1)” o2(Ag,) = f >0 for some f € C°(M).

If (M*,g) is not conformally equivalent to (S*,g.), then there exists a con-
stant

cr =i (Isllers (min 7)) o)

such that
[[w|[Le < C1.

We have to exclude the case of conformal equivalence to (S4,g.), since, for
instance, on (5%, g.), if €2“g. = ¢*(g.), then one has in Euclidean coordinates,

() = o 2\

xr) = _—
A g)\2+|1’—$0|2
and 02(A,, ) =6 for all A > 0, but

lim [[wx ||z = oo.

Once Theorem 7.10 is shown we will be able to conclude that there is a constant
Cg = CQ(HfHCoo,Cl) with ||’u}||coo < Cg.
By means of degree theory we finally prove
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Corollary 7.11 If (M*,go) is a closed compact 4-manifold satisfying (i), (ii) of
Theorem 7.5, then there is w € C*° (M), such that

UQ(Agw) =1.

We will prove Theorem 7.9 in Chapters 8 and 9; and Theorem 7.10 in Chapter
10.
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§ 8 A priori estimates for the regularized equa-
tion (*)5
In this chapter we will prove Theorem 7.9.

Theorem 8.1 [23] On (M*, go) closed, compact, assume
(i) Y (M*, go) >0,
(i1) fM o2(Ag) dvy > 0,
then there is f € C°(M), f >0, and w € C*(M), such that

02(Ag,) = [

Remark. Conditions (i) and (ii) are invariant under conformal change of the
metric, so sometimes we will simply write Y (M) or [,, 02(A) dv without specifying
the metric.
Outline of the proof.
We will use a continuity method on the “regularized equation” (in terms of g =
e2w90)

SAR = 8, |[W|? + 402(A). (%)s

As we take the formal limit 6 — 0 we end up with
f==2m|Wp

To make sure that f thus found is positive, we first observe that under the as-
sumption (ii) of Theorem 8.1, 47 < 0. Thus f > 0. later on we will modify f to
get f > 0 at points where the norm of the Weyl tensor |W| = 0.

There will be two main steps in the proof of Theorem 8.1
Step 1. For all § > 0 there is w € C*° (M) solving (*)s with R = Ry, > 0.
Step 2. We will show a-priori estimates for solutions of (x)s independent of § as
0 — 0.

Before setting up Step 1 notice that solving (*)s amounts to analytically
solving

—66A%w = 8((Aw)? — |V2w|* 4 ...) — 4f.

Step 1. Fix §p > 0, and consider the set

S: ={d € [do,1] : (*)s admits a smooth solution w with R, > 0}.

Lemma 8.2 Under the hypotheses (i), (ii) of Theorem 8.1, one finds 1 € S, i.e.
S # 0.
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Proof. Apply Theorem 6 with the choice vo = 1,73 = ﬁ(35—2) =L andy <0,

24>
such that k4 = 0, compare with Chapter 6.
We find a solution w € C*°(M) with

1 1
AR = 244 =R*-|E)?
R=snW+ 4 (3R~ 5B

1
=8y |[W|? + 6R2 —2|E|?
1
6
all in terms of the metric g = e?“gj.

The last inequality means LR > 0, which implies by Lemma 6.8 and hypoth-
esis (i) that R > 0 hence 1 € S.

< -R?,

O

Lemma 8.3 S is open.

Proof. If §; € S,g1: = e*“g,R;, > 0, then we know from Proposition 6.14,
that ker L5, = R, where Ls, is the linearization of (x)s,. According to [2] one finds
for every ¢ sufficiently close to 01 a smooth solution ws € C°(M) of (). Since
Ry, > 0 we get Ry, > 0 for all w sufficiently close to wy in the C**-norm, i.e.
Ry, > 0 for all 4 sufficiently close to d;. |

Lemma 8.4 S is closed.

Proof. Our aim is to show that for §; € S with §; — 6 with § > 8y > 0, we find
that a subsequence of the ws, converges to a solution wj of ()5 in W22(M*). The
result in [89] implies that wz € C°°(M). Thus Lemma 8.4 follows directly from
the following a priori estimates, in particular from (8.2). O

Proposition 8.5 Suppose w with g = g, = €*“ gy solves (*)s with R = R, > 0.
Assume that fM wdvg = 0, then there are constants Cy, C1 depending only on the
background metric go, such that

2
0 (Ao’w)2 dvg + —/ |V0w|g dvg < Ch. (82)
M 3

Moreover, for any a € R,p > 0, there are constants Ca(c, g), C3(p, g), such that

/ e d’UO S CQ, (83)
M

/M|v0w|g|w|Pdvo <c, (8.4)
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Proof. To prove (8.1) recall
1

Aow + |Vow|? + %nge%’ = s Ro, (8.5)
which implies, by R4, > 0,
Aogw + [Vowl|3 < %RO, (8.6)
in particular,
Aow < %Ro. (8.7)

Let G(-,-) denote the Green’s function of the operator Ay on (M, go), then we may
write according to Green’s formula,

—w(z) + /M w dvg = /M G(z,y)(Aow)(y) dug(y).

Since M is compact and closed, we may add a constant to G to get G positive.
Then, if [,, wdvy = 0 as we assumed, we obtain

w(z) > —/M G(z,y)ROT(y) dvg(y) =: Cp.

To prove (8.2), we first integrate (8.6) over M to obtain

1 -
|V0w|3 d’UQ S —/ RQ d’UQ = Cl, (88)
M 6 J
hence, by Poincaré’s inequality,
/ w? dvg < C, (8.9)
M

since [;, wdvy = 0. Now (8.2) follows from the weak form of the Euler-Lagrange

equation (*)s in terms of analytic expressions in w. More precisely, for all ¢ €
W2,2 (M),

2 1
[ (36800 + (35 - DIBaplVowl + 2800(Vo, Towlo
M
+ 2|VQU)|(2J<VQQD, VQ’LU>Q]) d’UQ (810)
1
= / (—2Ug(p + QRiCQ(VQQD, VQU)) + 5(6 — 2)R0<V0(p, Vo’w)) dvg,
M

where Ud: = v1[Wol + 72Q0 — 13A0R0,v2 = 1,73 = 5;(36 — 2), and 71 < 0
appropriately chosen, so that k; = 0.
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Notice that the right-hand side is of lower order and bounded according to
(8.8) and (8.9). Testing with ¢: = w in (8.10) we get

/ (g&(Aow)Q + 3(35 — 2)Agw|Vow]2 + (36 — 2)v0w|g) doo<C (811
M

for some constant C. (We will repeatedly use the notation C for generic constants,
whose values might change from line to line in the following.)

Case 1.If 6 € [%, 1], e, 306—2€[0,1], we use %xy > —%x2 — 42 to obtain from,
(8.11) for x: = Agw,y: = |Vowl|3,

[ - o owfan = [ (50 5535 -2) @ow

3 3
< / (56(A0w)2 + 5(35 — 2)A0’U)|V0’w|% + (35 — 2)V0w|3) d’UQ
M

<C,
ie.,
/ (Agw)? dvg < C. (8.12)
M

Notice also that by (8.6),
1
[ 1outbdon < 5 [ RolVawfdu~ [ (Bow)Vould dug
M 6 Jm M

1 1
< —/ Rgdv0+—/ |A0w|2dv0+2e/ |Vowl|d dvo,
6 Jum €Jum M
hence, by (8.12),
/ |VO’U}|3 d’UO S 07
M

which finishes the proof of (8.2) in Case 1.

Case 2. If § € (0,2), i.e., (36 — 2) € (—2,0), then by (8.6),

3 3 1
(35~ 2)| 3 80w+ [Voul3]| = (35 - 2)| 330w+ [Voul) - 51Voul

(36 —-2) 3 235 ,
2 Ro+ 2= \vowl2.
& 6 5 fo+ —5—[Voul
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Inserting this into (8.11) we obtain

§5/ (Aow)2dvo+l/ |V0w|?j(2—36)dvo
2 Ju 2Jm

S / §5(A0’LU)2 d’Uo + / <(35 - 2) |:§A0w + |VQU)|%:| |V0w|3 + (2 — 35) §]’%0) d’UO
a2 o 2 6 2

< C,
(8.11)

ie.,

3 3
—5/ (Ao’w)2 d’Uo +/ |V0w|g d’Uo - —5/ |V0w|g d’Uo S C. (813)
2 M M 2 M

On the other hand, multiplying (8.11) by 32(2 — 36)~* > 0 leads to the
estimate

3 90
——5/ Vowl! dve < C + —/ (Aow)|[Vow]2 dvo
2 Jm 4 Jum
90 1 1
S C + — —/ (Aow)2 d’Uo + —/ |V0w|§ d’UO
Substituting this into (8.13) we get

(Aqw)? dvo + <1 - 95> |V0w|6l dvg < C,
M

3
§5 3

M

or

5/ (Ao’w)2 d’UQ + (§ - 35) / |V0w|é d’UO S 07
M 3 M

which proves (8.2), since § € (0,%) in this case. (8.3) follows from Adam’s in-
equality, Lemmas 6.1 and 6.2 in the same way as Corollary 1.7 was deduced from
Corollary 1.6. Notice that (8.2) guarantees that the constant on the right-hand
side of (8.3) does not depend on w.

Testing (8.10) with ¢: = wP and integrating by parts leads to (8.4), for
details, see [23]. O

With Lemma 8.4 we have established the existence of smooth solutions w of
(*)s with Ry, > 0 for all § > 0. The following two results summarize the necessary
a-priori estimates independent of §, as § — 0.

Proposition 8.6 Under the assumptions of Theorem 8.1 there is a constant C; =
Cy(g) independent of §, such that for the solutions ws € C°(M) of (*)s

[|ws|lwzs < C1 V> 0.
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Proposition 8.7 For all s < 5 there is a constant Cy = Ca(g, s) independent of
&, such that
||’LU5||W2,s <(Cy V§>0.

Before proving these a-priori estimates let us review some regularity theory
for fully non-linear elliptic equations. The techniques used in [17], [18], [42], [60]
motivate the approach we will present in these lectures.

The investigations in [17], [18] are concerned with the fully non-linear elliptic
equations of the form

F(V?2u,Vu,u,z) = p(r) inQ C R",
u(x) =¢(z) ondQ,

where F is assumed to be uniformly elliptic, see Chapter 7. In [17] the Monge-
Ampere equation (F = det(u;;)) is studied, whereas [18] includes the case F =
ok (u;;). Omitting their results regarding boundary estimates, we will focus on
interior estimates for Fr, = o (uj).

Definition 8.8 I'}: = {A € M(n x n) with 0,(A) > 0 and A is in the same
connected component as the identity }.

1"2‘ is a convex cone with the following properties.
Proposition 8.9 (i) I‘Z‘ C I‘Z‘il C...C I‘f,

(ii) For (u;j) € Fz,af (uij) is a concave function, i.e. for A = (u;;) € I} and
1 1 1
B = (vij) €} one has of (tA+ (1 —t)B) > to} (A) + (1 — t)ofF (B),

1
(iii) Let (uz;) € T} with Fi(uij) = o (uij) = ¢ for some given smooth function
@ with
0 <infp < ¢ <supp < oo,
a2 Q

then u € CO(Q) = u € CHN) = u e C*(N) = ue C?**(Q),= uc C°),
with the interior estimates

[ullcr(Br) S llullcoBsr)

ullc2(Br) S lullor (Bar)s
l[ullc2er) S lullo2(Bar)s
)

<

||u||C°°(BR ~ ||U||c2,a(BzR),

where < denotes the inequality up to a constant factor depending on the data,
in particular on .

() ue CHH(Q) = u e C*(Q) if Fy is uniformly elliptic and concave, see [42],
[60].
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To motivate our method to establish a-priori bounds in W23, we will first
establish an a-priori estimate for solutions w of the equation o2(A,,) = f > 0 on
M*.

Theorem 8.10 Let w € C*°(M*), (M*, go) closed, compact, satisfy oa(Ay,) = f,
for some f >0 on M*, with R,, > 0. Then

IV5wllLee < Clgo,min (), [[wllLes, |[Vouwl| o[ ]l cs).

The outline of the proof of Theorem 8.10 is as follows. Recall from Lemma
7.2 that the linearization of o9 is essentially given by the tensor S = (S;;), for
which we derive an identity involving the Bach tensor B = (B;;) in Lemma 8.11.
To prepare a variant of Pogorelov’s trick we analyze the expression SV,;V;V for
V. = %|Vw|2 in Lemma 8.13, before we apply the maximum principle.

Lemma 8.11 Calculating in the metric g, = e Vg,

y 1
SUV,;V;R = 3A05(A) + 3 <|VE|2 - E|VR|2>

+6TrE® + R|E|? (8.14)

— 6W9K By By — 6EY By,
where B;; denotes the Bach tensor, which is the first variation of fM|W|2, given
by

1
B;; = Vklekijl + ngkaijl-
Notice that the only property relevant for us is the behavior of B = (B;;)

under conformal change of the metric:

B =B, =e¢ *"By.
Proof of Lemma 8.11. Apply Bianchi indentity, by a formulation of Derdzinski
[39] we have

1 1 1

Bij = — —AEZ'J' + _viij - _ARgij
92 6 124 ) (8.15)

— EMWiji + EFEj — Z|E|29ij + 51tk

where Ef = gko‘Em-.
Thus

1 g
5A|E|2 = |VE|* + EYAE;

1 ..
) |VE|* + SBYViVR + 2TrE3

1 . .
+ gR|E|2 — oW B, By — 2BY Ey;,
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where we used the fact that TrE = E%g;; = 0.
Consequently,

1 1
Aoy(A) = A (—=|E*>+ —R?
o) = & (=3B + 5172
= —|VE]? + i|VR|2 + Lrar-lpivv.r
B 12 12 3 B
1 " g
—2TrE® — gR|E|2 + 2WHI B, Fyy + 3BYE,;.
Note that s RAR — $EYV,;V,;R = $S%V,;V;R, by definition of S = (S;;), see
Chapter 7, which proves (8.14). O

We now begin the proof of Theorem 8.1
Notice that for oo = 02(A4) = f > 0 with R > 0 we can argue as follows:

1
Voy = S RVR - |E[V([E]), ie,

VR 1 , |E|
- ) =—= ZUV|E
< Voo, R> 5| VR + = (VIE|, VE)
1|E)? , 1 , 1 )
<_-=L ~IV(E)]? - —=
< 5z IVRIT+ 5 IVIEDF = 5IVE|
1 VR (1 1 1 1
< Z|VEP? —|E* - =R*4+ —R?| — —|VR}?
=3 IVEM+ (2' B TSy ! VE

1 1 VR
5 (1982 - 51vRE) - o

where we used Kato’s inequality, |V(|E|)| < [VE|.
Thus

IN

IVR[? VR
At a point p € M with R(p) = maxy R one has VR = 0 and S“V,;V;R < 0, since
S;; is positive definite according to Lemma 7.2 (c). Since E is traceless,

1 1
3 (987 - 5IVRE) 20

6

6TrE® + R|E|* > EP® + R|E)?
|E|" > \/gl | |E|
> |E|*(R — 23| E])
e R2P-120E2 ., 240y (8.17)
=B ——F =B =
R+ 2V3|E)| R+ 2V3|E|
120’2
> |E|? 0
2 |E[" == >0,

because o2 > 0 implies 5 R? > |E|?, ie., 2V/3|E| < R.
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Furthermore,
[WEE| < e 2"|Wylo|E]* < |EJ, (8.18)

under the assumptions that ||w||r= and |[Wp|o are controlled.
Similarly,

|BE| < e™"|Bolo| E| < | El, (8.19)

where again < denotes an inequality up to a multiplicative constant.
Combining (8.16) and (8.17) we obtain

y VR|? VR
S”ViVjRZSAo—g+6 O'2| 2| —Voy——
R R
(8.20)
2120’2
+|EP=2 + WEE + BE,

and at a maximum point p € M of R(-) we have
ij 2 1207 2
02> (SYViV;R)(p) 2 3802(p) + |E["—5=(p) = C1] E[*(p) — C2|E|(p)-

But it is not clear, if the right-hand side dominates some term like cR? — cR. The
estimate (8.20), however, is still useful to prove the following uniqueness result.

Corollary 8.12 ([90]) If 02(A,,) = const. =: ¢ > 0, for the metric g, = e*“g.
on S4, then R,, = const., and g, = ¢*(g.) for some conformal transformation
¢: St — St

Proof. On (5%, g.) one has (W;;jk1) 4., = 0 for g, € [ge], and therefore also B, = 0,
and (8.20) simplifies to

iy |VR[? 12¢
SY9V,;V,;R > G+ |E|2§
VR
> 6e—n.
= bcC R

By (7.12) in Lemma 7.4, we obtain

0 :/ S9N,V ;Rdvg, > 60/
S4 S4

ie., R =R,, = const., which by Obata’s Theorem implies g., = ¢*(gc). o

[VR[?

d’l)gw ’

To make use of (8.20) for the proof of Theorem 8.10 we use Pogorelov’s trick

76] applying the maximum principle to a function of the type (Aw)e?(V®®) for
pplying p p YP
some suitably chosen function ¢.
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Lemma 8.13 On (M*,g,) let V: = 3|Vg w|? =: 1|Vuw|?.
Then, in terms of the metric g,

R3

g 1 1
SUN, V.,V =—-TrE3+ —R|E|?
J T IrE A+ g RIEN+ o

1
- §<Vw, Voa) + lower order terms (8.21)
of order(|Vw|?|V2w|?, |[V2w|?, |Vw|®, etc.).

Proof. With respect to the metric g,, we compute the covariant derivatives of V'
first

1

VZVJV = (Vlvkw)(vjvkw) + <ViVijw)ka,
ViV;Viw = ViV, Vijw = Vi ViVw + R Vi,

Recall (7.6),
1 1, L
ViVjw = _iAij + §Aij — V,wVjw + §|VU}| (gw)ij. (8.22)
So,
1
V,V,;V =V, ViwV,;Viw — gvaiijw + lo.t. of order (|V2w| - [Vw|?).
Thus

3 3 1 ..
SYNVV;V = S”Vivkwvjvkw—55”V;€w(V;€Aij)+ Lo.t.of order (|VZw|-|Vwl|?).

(8.23)
Notice that by (8.22) and (7.1)
3 1 .
S”Vivkwvjvkw = —S”AikAjk
(8.22) 4
+ lo.t. of order (|Vw|?|Vw|?, |Vw|*)
| » ) (8.24)
— __T E3 i E2 _R3
o 1B Rl 5

+ Lo.t. of order (|V?w|?|Vw|?|Vw|*).

Moreover

SNV Ay = (Vw, Vo (A)), (8.25)
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since by (7.1),
7\ Qij i 1 ij 1
(VkA J)S b = | Vi EY + E(VkR)g J —FE;; + ZRgij
. 1
= —EY(VyE;;) + ERka

1 1
— __E2 - p2
Vk( 2| | +24R)

= VkUQ.
Summarizing (8.23) — (8.25) completes the proof. a

Proof of Theorem 8.10. We calculate in terms of the metric g,, = e*“go. First
notice by o2 = 02(A,,) = f >0, that S > 222 > 0 by Lemma 7.2 (c). In addition,
for |Vw| < ¢, |w| < ¢, one gets

|E]? < 12R* + O(f), ie.,
[Ric|?* < R? + C, or in terms of w,
V2| < |Aw| < [VPwl.

We apply the maximum principle to the function h: = R+ 24V. At a maximum
point p € M of h we have, by Lemmas 8.11 and 8.13,

0> S%(p)V;V,h(p) = S (p)V:V;R(p) + 245" (p)V;V,;V (p)

= 380200) +3 (IVER ) - 5 VR0

+ SRO)BR() + 57 ()

— 12(Vuw(p), Voa(p))
+ lo.t. of order (|Vw|?|Vw|?).

Now use (8.16) to estimate the term in brackets to get (by |Vw| < ¢),

02 S7()V.V5h(0) 2 53 ) + S RO)IEF ()

= c(llflle=) = e(llfller)

%'(p)—cRQ—c.

At p we have Vh(p) = 0, thus
IVR|(p) = 24|VV|(p) < [V*w(p)||[Vuw(p)l,

and o2(p) > minys f(-) > 0, which implies

[N

R(p) 2 (min ()" >0,
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0
) S 1P S 1)
Consequently, there exist constants ¢, ¢z, ¢s depending on (f, |Vw|, |w|), such that
0> 8Y(p)ViV;h(p) > c1h®(p) — c2h®(p) — cs.
Thus h is bounded, hence |V?w| is bounded. O

We now return to the a-priori estimate of solution of equation (x)s. The
main point is to modify the proof of Theorem 8.10 by applying an integral form
of Pogorelov estimate.

Proposition 8.14 There is o > 0, and C = C(g), such that for all § < dp,w €
C>°(M) solving (x)s with Ry, >0 and [,, 0(Ay,)dgw > 0, the following estimate
holds

/ |Vaw|3 dvg +/ |Vow|g? dvg < C. (8.26)
M M
In particular, there is o > 0, such that
|lwllce < C(g).
The crucial step of the proof is in the following Lemma:

Lemma 8.15 (Main Lemma) There are constants 69 > 0,C = C(go), such that
in terms of gu = €>*go,

§ [ (AR)? R\’
16/ R d”+/M<€> w

§(1—|—c§)/ Vw/Sdv+c [ R?*dv+e.
M M

(8.27)

Instead of the pointwise maximum principle as in the proof of Theorem 8.10
we use integral estimates. Denote

I:/ SijViVdev
M

II: = / SN V;V dv
M
for V: = 1|Vw|?, where here and in the following, dv = dv,, and all covariant
derivatives are taken with respect to the metric g,, unless otherwise noted.
We remark that due to the fact that V;S;; = 0, we have both I =11 = 0.
We also remark that in contrast to the proof of Theorem 8.10 we now only
have |Vw| € L*(M) and w > ¢ for w satisfies (x)s.
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Lemma 8.16 There is a constant C = C(go), such that

12/ < 5(AR) +6Tr E3+ R3 OR2—0> dv, (8.28)
vw\2 R

for any w € C*°(M) solving (x)s.

Lemma 8.17 There is a constant C = C(go), such that

11 2/ — —TrE3+ L ps_ R|Vw|4
M 288
(8.29)

— COR? — C5|Vw|® — OR? — c) dv
for all w € C*° (M) solving (*)s.

Assuming (8.28), (8.29) for a moment, we will finish the proof of (8.27) in
Lemma 8.15. In fact

2
o=1+24112§5 (AF) du+1/ R3 dv
2 M R 6 M
—6/ R|Vw|4dv—/ (CSR? + C6|Vw|® + CR* + O) dv
M M

Divide by 36 and apply Hoélder’s and Young’s inequality to get
§ [ (AR)? R\’ R .
— d — ] dv< — d
1), R v+/M 5 v_/M |Vw|* dv
() C
—/ R*dv +—/ |Vw|® dv + — /(R2+1)d
6 Ju 36
3 3 2
< / (5) dv (/ |Vw|6dv> +o
M\ 0 M
3
§l/ R dv+2/|Vw|6dv—|—...,
3 ) \ 6 3

where the dots denote the remaining terms on the right-hand side. Absorbing the
first term on the right into the left-hand side finishes the proof of Lemma 8.15. O
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Proof of (8.28): Integrate (8.14) in Lemma 8.11 and use (8.18), (8.19) to get (in
terms of the metric g,,)

I= 3/ ( (|VE|2 - i|VR|2) +6TrE?
M 12

+ R|E|? — 6WEE — 6BE) dv

1
> 3/ <|VE|2— —|VR|2> dv+/ 6TrE? dv
M 12 M

+/ (CR2+C)dv+/ R|E|* dv,
M M

(8.30)

where we have used that 0 < [,, o2dv =3 [, (If—; — |E|2) dv, whence [, |E|* dv <

Jur R2 dv.
To estimate [,, R|E|*dv from below, recall (x)s

SAR = 404 + 871 |W?,

where 1 < 0, since [, 02 dv > 0, compare to Chapter 6.
Multiplication of (%)s by R and integration leads to

1
5/ RARdv:/ —R3dv—2/ R|E|2dv+871/ R|W|?dv, i.e.,
M M 6 M M
1 b
/ R|E|2dv:—/ R3dv+471/ R|W|2dv+—/ |VR|? dv (8.31)
1
> —/ R?’dv—C/ (R* + 1) dv.
12 i M
Finally, to handle the first term on the right of (8.30) we claim that
1 1 (AR)?
2 2
S — > = L dv— .
/M (|VE| CIVR ) dv > 2/M5 =L c, (8.32)

which together with (8.31) inserted into (8.30) proves (8.28).
To prove (8.32) we differentiate (x)s and get

1
SVAR = SRVE - 4|E\V(|E|) — 81 V(W |?),
multiply this by V—RR and integrate. O

The proof of (8.29)is a modification of (8.21) in Lemma 8.13, and we will
skip the details here [23].

We will now apply Lemma 8.15 to prove Proposition 8.14.
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Sketch of the proof of Proposition 8.14.

Bascially we are going to apply interpolation and boot-strapping methods to
estimate the norms w. To do so, we first recall (7.3)

R =e"?"Ry — 6Aw + 6|Vwl|?.

Also
|[Vw| = |Vowle™ ™, or |[Vow| = |Vw|e™,
V3ul? 5 [Vl 4 [T,
dvg = e~ du, (8.33)

1
1
</ |f|12dvo> 5/ |V0f|gdvo+/ | f1? dvo,
M M M

the latter resulting from the Sobolev embedding W13(M) — L'2(M).

Step a. We claim that

1
T
(/ |Vw|12dv> 5/ |Vw|®dv + 1. (8.34)
M M

Proof. Taking f: = [Vowl|e 3" in (8.33) one gets

/|f|12dv0=/ |V0w|126_8wd00:/ |Vw|*? do,
M M M

whence by (8.33)

4
(/ |Vw|12dv> 5/ |V0(|V0w|e_§w)|3dvo+/ |V0w|36_2wdv0
M M M

< / (IVew|’e " + |Vow|®e ") dvg + C
M
5/ |V2w|3dv+/ IVl dv+ 1.
M M
Now, by (7.6) and (7.1)
V2ul® STAP + [Vul® + C,
R2

Al? = |E)? + —.
|A| ||+36
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Thus

1

1
( |Vw|12dv> 5/ (JAP + |[Vw[ + 1) dv
M M
5/ (B> + R® + |Vw|® + 1) dv
M

< / (S|VE? + 8§|VR> + R® + |[Vw|® + 1) dv (8.35)
(x)s J M

55/ |VR|2dv+/ (R® +|Vw|® 4+ 1) dv
M M

< /(|Vw|6+1)dv.
(8.27) J M

Notice that we used (*)s to express |E|? in terms of |[VR|?. To be more precise,
multiplying (x)s by F and integrating one gets

2 1

3 3
/ |E|? dv < (/ R3dv> </ E3dv) +€/ E3dv+g+§ |VR||VE|dv,

M M M M € 2 u
for some small € > 0, hence
|E|?dv < / R dv +/ |VE|? dv +/ |VR|? dv + C.
M M M M

Note also that we used

5/ |VR|? dv :5/ (~AR)R dv
M M

2
§5/ @le—é/ R3 dv
M R M

< /(|Vw|6+1)dv
(8.27) /M

in the last step of (8.35). O

Step b. Claim
/ |V2w|?|Vw|? dv < / (6]Vw|® + R? 4+ 1) dv. (8.36)
M M
Proof. Recall (7.3) which implies

R 1
5= —Aw + |Vw|? + 61~2oe—2w. (8.37)
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The key observation is

/ |Vw|® dv < 1/ R|Vw|4dv+0/ (6R® + 5|Vw|® + R? + 1) dv.
M 6 M M

Assuming (8.38) for the moment we can conclude
/ Aw|Vw[* dv < 05/ R®dv + C/ (6]Vw|® + R* + 1) dv,
M M M

thus (by multiplication of the square of (8.37) with |Vw|?),

2
/(Aw)2|w|2 g/ <(§) |Vw|2—|Vw|6+2Aw|Vw|4> dv
M M

+0/ (R* +1)dv
M

< 5/ |Vw|6dv+0/(R2+1)dv.
(8.39) M M

By Bochner’s formula we finally obtain
|V2w]?(Vw)? < 5/ |Vwl[® dv + 0/ (R? +1) do.
M M M

To see (8.38) recall from Lemma 7.2 (c) that Ric > 222, so that

b0

2/ |Vw|? Ric(Vw, Vw) dv z/ |Vw|* dv
M M R

> —65/ |V2w|?|Vw|? dv
M

(*)s

(8.38)

(8.39)

>5[ R¥dv—6 |Vw|6dv—/ (R* + 1) dv.
M M

M

On the other hand,

2/ |Vwl|? Ric(Vw, Vw) dv = /(R|Vw|4—|Vw|6)dv
M M

| =

1
+—/ Roe 2*|Vw|* dv
6 Jm

+2 / |Vwl|? Ay (Vw, V) dv,
M

where the last two terms are bounded by virtue of (8.2) in Proposition 8.5.
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Step c. To estimate [,,|Vw|® dv we proceed as follows:
/ |Vw|®dv = / (Vw, Vw)|[Vwl|* dv
M M
= —/ wAw|Vw|* dv —/ wVwV(|Vw|*) dv
M M

< / ][ V20| Vo do
M

S(/ |V2w|2|Vw|2dv) (/ |Vw|6w2dv>

M M

S (/ |V2w|2|Vw|2dv> (/ |Vw|12dv> (/ |Vw|4|w|%dv)
M M M

2 2
< (/ |V2w|2|Vw|2dv) (1+ |Vw|6dv) .
(8.4),(8.34) M M

3
8

Thus,
/|Vw|6dv 5/ V20|Vl dv + 1
M M

< 6 |Vw|6dv+/ (R* +1)dv,
(8.36) M M

which implies
/|Vw|6dv 5/ R*dv+1
M M
%
5(/ R%) +1
M
3
S (/ |Vw|6dv) +1,
(8.27) \JM

Le., [,,IVw|®dv < C, and by (8.34), [,,|Vw|'*dv < C, and [, |V?w|*dv < C. O

Corollary 8.18 There is a constant C = C(go), such that

;[ an
mo B2
Proof. We know already that

2
5/ (AR) dvﬁ/R?’dv—FlSC.
v R M

dv < C. (8.40)
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Thus it suffices to show minas R(-) > ¢ > 0, which will follow from the maximum
principle applied to

SAR = 8y |[W|* + %32 —2|E)?
< SmIWP? + LR
Hence at the minimum point p € M of R we have AR(p) > 0 and therefore
SR(0) 2 —Sl W) 2 S| min| W ().
6 e 1 p)=23m L
So if |[W|? o e 4|W|2 # 0 on M, then we are done, since then
R? > 48]y | min|W[*(-) =: co.
If W] = 0 somewhere, choose a section ) € I'(Sym(T*M*®@T*M*?)), which denotes

the bundle of symmetric (0,2)-tensors on M?, e.g. n = any Riemannian metric on

M*. Then |n|* = e=**|n|2 , and we look at the equation

0AR = 409 + 871|17|27 (x%)s

and apply the maximum principle as above.
Notice that the only relevant fact about |W|? we used was the behavior under
conformal change, see (5.9). So instead of I[w] in the definition of F[w] or Fs[w]

one uses
I'[w]: :4/ w|77|2dv—/ |n|2dvlog][ et du.
M M M

We conclude with
Proposition 8.19 There is a constant o < 1 such that for each s € [0,5) there
is a constant C' = C(s,.go), such that for all 0 < § < oy the following holds:

Any solution ws € C®(M) of (¥x)s with Ry, >0, [, wdvo =0,
Sy ow(Ayg,,) dvg, > 0 satisfies

/ |Vawl|® dvy < C.
M

We will skip the details of the proof here. [23] The idea of the proof is to
apply the same arguments as above to the terms

I: :/ SN,V RPT dv =0
M
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and
I1: :/ SN (RPV,; V) dv = 0,
M

for p < 2.

As an immediate consequence we deduce from Sobolev’s embedding theorem

Corollary 8.20 There is a constant 6o < 1, such that for each o € (0,1) there
is a constant Cy, such that the following holds: for all § € (0,dp], any solution
ws € C°(M) of (xx)s with Ry, >0, [,, wdvg =0, [,, 02(Ay, ) dvg, >0 satisfies

[lw||crie < Chq.
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8§ 9 Smoothing via the Yamabe flow

Theorem 9.1 Let g = e®“gy be a solution of (¥*)s with positive scalar curva-
ture, normalized so that fwdvo = 0. Assume also fUQ(Ao)dUQ > 0. Then for ¢
sufficiently small, there exists v € C*° (M), such that o3(Ap) > 0 for h = e?'g.

The key step is to look at the evolution of the quantity /R under the Yamabe
flow, where

k: = o9+ 271|n)%, (9.1)

In| > 0, on M, and |n|,, = e 2¥|n|. Notice that by (x*)s, SAR = 4k. We will as-
sume an a-priori bound in LP, p > 4, for the curvature of the initial data. Through-
out Chapter 9 we assume that the hypotheses of Theorem 9.1 hold.

Proposition 9.2 Consider
oh 1
oh —_1lpp
{81& 3R ’ (9.2)

Then there exists To = To(go), such that (9.2) has a unique smooth solution h €
C*>([0,Tp), M).

Proof. Consider the normalized Yamabe flow

a(;lt* _ —ﬁ(R—T)h*,
r(t) = [, Rdv/ [,, dv, (9.3)
h*(0,-) = hg,

on (M™, hg). Then (9.3) admits a unique smooth solution for all time (see [58],
[94]). When n = 4 (9.2) and (9.3) differ only by a rescaling in time and space.
(9.3) guarantees that the volume is normalized, hence we are only required to find
a time interval [0, To(go)), on which vol(M, k) is under control.

Some basic facts about the Yamabe flow are summarized in

Lemma 9.3 ([94]) Under (9.2) one has

0 2
0 1
—R=AR+ -R? 9.5
ot T3 (9:5)
0 1 1
ERU‘ = gviij + E(AR)gij. (9.6)
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Assuming the validity of (9.4) — (9.6), we now finish the proof of Proposition
9.2 as follows:

Since by (¥*)s Ry = Rp,) > C(go) > 0 we infer from (9.5) that at a
minimum point p; € M

OR 1 1
E(pt) = AR(p:) + §R2(pt) > §R2(pt> >0,

hence R remains positive under the flow.
The volume is decreasing, since by (9.4)

In addition,

whence . .
2 2
4 / dv 2—1 / R%*dv (9.7)
dt \Jm 3 \Jm
On the other hand, by (9.4) and (9.5),

d dR d
— | R*dv= / 2R—dv+ | R*— (dv)

:/ 2R AR+ 1R? dv+/ R (<2R) av (9.8)
M 3 M 3
= —2/ |VR|? dv < 0.
M
(9.7) and (9.8) imply

1B llz>
3

vol(M, h(0, )% — : t} i < vol(M, h(t,-)) < vol(M, h(0,-)),

and ||Rgy|| 2 is bounded according to Proposition 8.14.

Proposition 9.4 Fiz s € (4,5). Then there is Ty = T1(g0) < To, such that for
t < Ty the solution h = €2Yg of (9.2) satisfies

(a) || Ricp ||zs < 2[|Ricg [|Ls,
(b) || Ricp ||z~ < Cot™%, where Ca = Ca(go),

(c) [lvllze= < C(go)-
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Proof. The proof relies on general estimates for the Yamabe flow (see [93]) as a
parabolic evolution equation summarized in

Proposition 9.5 (Moser iteration for parabolic equations, see [93]).
Assume that with respect to the metric h(t),0 <t < T the following Sobolev
inequality holds:

n—2
(/ |<p|%dv) SC’S{/ |V<p|2dv—|—/ gazdv]
M M M

for all o € W12(M™). Suppose b is a nonnegative function on [0,T] x M™, such
that

0
— < .
5 (dv) < bdv

Let g > n, and u > 0 be a function satisfying

%SAU—FZ)U,

sup |[bl|pas2 < B.
0<t<T

Then for all po > 1, there exists a constant C = C(n,q,po,Cs) such that for
0<t<T,
[lu(t, |z~ < Ce“ 20 [[u(0, )| Lro.

Moreover, for given p > po > 1, one has for all t € [0,T],
d n
— [ uPdv —l—/ |V (uP/?)|? dv < Cpi= / uP dv,
dt Jr M M
where C = C(n, q,po, Cs).
Remark 9.6 When applying Proposition 9.5 to prove Proposition 9.4, we only

require that s > 5 = 2 for n = 4. Also, in our application, we can control the
Sobolev constant Cs by the Yamabe constant Y (M, go) which we assume to be
positive of (M, go)[23].

O
The following result contains the key inequality for the proof of Theorem 9.1.

Proposition 9.7 For k as defined in (9.1), denote
k
L= ~Z2.0).
@ max( 7 )
Ip

B < Ap + C1|Ricle + Cy|Ric| (9.9)

for some constant C1 = C1(go).

Then fort <Ty
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Proof. This statement is proved by straight-forward but lengthy computations,
we refer to [23]. O

Now we are going to sketch the proof of Theorem 9.1.
First we will modify ¢ to “ remove ” the last term in (9.9). For this purpose,

we define ¢; (t): = exp (Si20102t%2) —1, hence ¢4 (0) = 0, and since s > 2, one

easily checks that

0 _2
(1) = 1Ca(1+ (D)t
Then u: = ¢ — 1 satisfies
Ou  _d¢p 9
ot ot ot
. : dip1
< Ay + Ci|Riclp + C|Ric| — =
(9.9) ot
7 . . . dip1
= Au + C1|Riclu + Cy|Ric|¢r + Cy|Ric| — e
0
(Prop. (9.4)(b)) ot
= Au + C1|Ric|u.

Applying Proposition 9.5 for b = ¢;|Ric|,po = 2,9 = 2s,s > 4, we conclude for
t <1,

llulle = lle — @1l < CtH]@(0,-) — @1(0)]| 2
C
= (0, Iz
On the other hand, by (xx)s,

oa(A) + 27 n|?
R
0 AgR,
()5 ||4 R,

< C(go)oz.
(8.40)

(0, )2 =

L2

1
Thus ||u]|pe = |l — p1]|lre < 0‘22 for all ¢ < Ty. That is, by definition of ¢ in
Proposition 9.7,
Co3
t )

1
g0+ 271[n)%) > —pu (t) —

hence

1

o2 +2n[nl* > R <—<P1(t) - 05%) > Ct s (—tl’g - 5%t*1) :
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since R < Ct™* by Proposition 9.4 (b), and ¢ (t) < Ct'~% by the simple estimate
e?—1< |$|€|I| for t < T3.
Consequently,

() Z —2’yll77|2 — Cgtl_g — Cgéét_l_g.

Recall that |n|? = e~4("T®)|y|2 > C(gp) > 0, by Proposition 9.4 (c). Hence there
is a constant Cy = Cy(go) > 0 so that o2(A;) > Cy — Cstl=% — 0363t~ % for all
t<Ti.

Let to: = min{T},%o}, where fy is chosen such that
a-4 _ 1
Cgto - 104,
then at t = ¢g

3 12 1
02(Ar) = SC1 = Cadbtg > 5C1.
if § < ¢ is sufficiently small. This means that the metric h = h(tg, ) € C°(M)

satisfies
02(Aty) = 02(An(ty,) > 0.
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§ 10 Deforming o, to a constant function

In this section we will outline the result in [24]. The goal is to deform oy = f,
where f € C>*°(M), f > 0, into o2 = ¢, where ¢ > 0 is a constant on a compact
4-manifold. To achieve this, we will use the method of continuity together with a
degree-theoretic argument.

To apply the method of continuity, the main step is to obtain a-priori esti-
mates for solutions w of the equation o2(A,, ) = f for a given positive function f.
First we observe that on (5%, g.), due to the non-compactness of the differmorphism
group on S*, we do not have an a-prior sup-norm bound of the conformal factor
for w with o2(A,, ) = 6. That is, if we consider the family of metrics g, = e?“g,
on S* defined by e?“g. = ¢*g. for some differmorphism ¢ of S* (actually we can
take ¢ to be a rotation and dilation on S%), then R, =12, E,, =0 and

11
212
To see that there is no a-prior sup-norm bound of such family of w, we may use

the stereographic projection map S* — {N} to R*, where N is the north pole and
observe that in Euclidean coordinates on R*, w corresponds to the sequence

1 2\
= = 10f —M8M8M8M
w (LN g )\2 + |1’ _ (E0|2

o2(Ag,) (4-3)>=6 onS*

with A > 0,29 € R*. Thus the supremum norm of w) tends to infinity as A — 0.
The following theorem indicates that (S4,g.) is the only exceptional case
among all compact 4-manifolds.

Theorem 10.1 On (M*, go), suppose that R,, > 0, g, = €**go, and

for some smooth function f. If (M*,go) is not conformally equivalent to (S*, g.),
then there is a constant C' = C(||f||c, go, (min f)~1), such that

max(e”) + [Vou| () < C. (10.1)

Once the estimate (10.1) is established, we can apply Theorem 8.10 to es-
tablish w € C11(M), and then since (02)? is concave, we can apply the results
of Evans [42] and Krylov [60] to establish that w € C%%(M), hence w € C*°(M).
That is, we have the following corollary.

Corollary A.
There is a constant C, such that ||w||ce < C, if f € C°°(M).

We then apply a degree theoretic argument to deform o5 to a constant. We
will skip this part of the argument in this note and refer the readers to the article
[24].
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Theorem 10.2 Assume that o5(A,) = f > 0, then there is a metric g, = Vg
such that
UQ(Agw) =1.

Outline of the proof of Theorem 10.1
We will proceed in five steps:

Step 1. Given a sequence of functions w; € C*°(M), such that (10.1) fails to hold
we use a blow-up argument to construct a new sequence converging to a solution
of 02 = 1 or 02 = 0 on (R, |dz|?). The main technical difficulty is the absence
of a Harnack inequality for solutions of oo = f > 0. ® Hence even if the suitably
dilated sequence may be shown to be bounded from above, there is a lack of a
lower bound.

Step 2. Classify the solutions of o5 = 0 on R* according to

Theorem 10.3 Suppose g, = e*V|dz|? is a conformal metric on R* with w €
CUL(R*) satisfying
0-2(Agw) = O7ng 2 07

then w = const.

Step 3. Classify the solutions of oy = constant > 0 on R* according to

Theorem 10.4 Suppose g, = e2*|dz|?> =: u?|dz|? is a conformal metric on R*
with

02(44,) =6 (= Ry, ==£12),
then u(x) = (alz|?> + 2?21 bix; +c)~1 for some constants a,b, c. In particular, g,

is the pull-back of the round metric g. on S* to R*.

Step 4. The previous two steps together with the following important Lemma by
Gursky will be used to establish Theorem 10.1.

Lemma 10.5 [54] Let (M*,g) with Y (M*,g) > 0. Then [,, 02(Ag)dvy < 1672
and equality holds if and only if (M*,g) is conformally equivalent to (S*,g.).

We remark that this is a restatement of Lemma 6.12 in Section 6. As on
(M*, g) we have

1 1
Qg = _EARg + 502(Ag)-

5(*) After this note was written, a form of Harnack inequality was established for a class of
fully non-linear elliptic equations defined on R™ which includes the o} equations. The reader is
referred to the recent articles of [52] and [62].
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Hence

1
kg = / Qgdvg = 5/ o2(Ag)dvg.
M M
Thus fM 02(Ay)dv, < 1672 if and only if k, < 872

Remarks.

1. Step 3 above works also for o2(A,) = const. on R™ for n = 4,5, and for n > 6
under the additional assumption that [,, dvy < oo. For n = 4,09 > 0 and
R > 0 imply that [ dvy < co. We remark that for n > 5 there is a metric
with oo > 0, R > 0 with f dvg unbounded (obtained by a perturbation of a
metric on S"71 x S1). see the article [25].

2. The classification result of Step 3 should be compared to the result of
Caffarelli-Gidas-Spruck [16] for

n+2
—Au =c,un—2 on R"

= U = ;
O\ |z — 22

On (S™, g.) the above result is Obata [71] theorem, which states that states
that if u > 0 satisfies

n—2

n+2
—Au+ Ryu =cu»—2 on S"

for Ry = n(n — 1), then uﬁgC = ¢*g. for a conformal transformation
¢: 8" — S".

Such a classification result has been established by J. Viaclovsky [90] for
general oy, (see also Corollary 8.12 for k = 2 on S*):

Theorem 10.6 (Viaclovsky [90]) If 0x(Ay) = const. on S™ for g = uﬁ|d1¢|2,
then u = (a|z|? + biz; + c)_% for some constants a, b, c.

Step 1. We will use an unusual blow-up sequence wy, since we do not have a
Harnack inequality to derive a lower bound on wy once we have an upper bound.

Assuming that the statement (10.1) is not true, we find a sequence of metrics
gr = e*“kgo, and smooth functions fi, such that o2(A,,) = fr with 0 < Cp <
fr <C;t and || fx]|c2 < Ch, such that

mj\z/a[o((ew’c + |[Vowg|) — o0 as k — oo. (10.2)

Assume that py € M are the corresponding maximum points. Choosing nor-
mal coordinates @ at pr we may identify a neighbourhood of p; with the unit
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ball B1(0) C R* with ®,(px) = 0 € R%. Define dilations
T.: R* — R*,
x— T.(x): =ex,
and consider wy, . = T} wy, + loge, hence
Vowge + €% = e(Vowy + ) o T.
Now choose for each k,e = e such that the right-hand side equals 1 at z = 0, i.e.
Vo(wi,e,) +een) _, =1, (10.3)

then wy, ., is defined on B (0).
€k
Notice that 0 € R* corresponds to a maximal point py € M for each k, with
value normalized to 1 by (10.3), i.e. with

Vo(wg,e,) + € <1on B (0). (10.4)

€k
Since the €, are chosen, we change notation by setting wy: = wy ., from now on.
Denote the pull back gi: = e***T go, then o9(Ay:) = fi o Tt with

96 =T go — |dz|

k

in the C?P-topology.

Case 1.

lim ¢“+(©) =0

k—oo ’
i.e. wi(0) — —oo, then the shifted functions wy: = wy — wg(0) with the corre-
sponding metrics gi: = e?®*gq, satisfy

Wi (0) =0,
|d’LDk| <1lon BL(O) C R4,
i N (10.5)

limg_, o0 |dwg (0)| = 1,

02(Ag;) = etk f o T., on B (0) C RL

€k

Thus maxB9(0)|1I1k| < o, so the w;, are uniformly bounded in the C'-topology on
compact subsets of R%. To obtain the necessary C''-bounds we appeal to a local
version of Theorem 8.10 on R*:

Theorem 10.7 Suppose g = e**|dz|?> =: ¥ gy on R* satisfies oo(Ay) = f >0
and Ry > 0 on B,(0), then

IVawlLe(B,,.) < CUl[w]|Loe(B,): [Vowl L (,), | fllc2(8,), 0)- (10.6)
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(10.6) implies in our situation

sup | V2w | < C,. (10.7)
B, (0)
Case 2.
limsup e+ =, > 0,
k—oo
then

—cz  <wg(0) < 0,

(10.4) (10.8)
|dwk| < 1on Bi(0).

€k

Again as before we obtain

sup | V2w | < C,.

B, (0)
In contrast to Case 1 we even get uniform C?%#-bounds by the theory of Evans
[42] and Krylov [60], since the wy, satisfy the uniformly elliptic equations

1
02(Agk) = froTy > FO
Recall that for the ellipticity one has to check that (by Lemma 7.2 (c))
_ doa(Ag,) =28;; > 602(Ay,) gij
Awy)ij Ry,

which is uniformly positive definite.

Hence in Case 2 we are able to conclude that the sequence {wy} is uniformly
bounded in the C?#-topology, hence in C*(R*) for all k.

Case 1 can be excluded by means of Theorem 10.3, which will be proven in
Step 2. In fact, so far we know by (10.7) that @) — @ in C’llo’f (R*) with

02(Ag,) = 0 and w € CH1(RY), (10.9)

Rj,, > 0, where (10.9) is meant to hold in the weak sense, i.e. a.e. on R%, or in
integrated form. Hence @ = const., in particular Vw(0) = 0 contradicting (10.5).

Step 2. Proof of Theorem 10.3. Fix B,: = B,(0), choose a cut-off function
n =1on B,n =0 on RY\By, with [Vn| < 071, |V?| < 072, and set w: =
f wdz.
Ba,
Multiply the expression (7.10) for oa(A,, )e*”, which holds a.e. on R?*, by the
function (w — w)n* and integrate on R%. Using the assumption of Theorem 10.3
one obtains

2

/ |Vw|4n4d:cs< / IVw|4774dI> ,
R4 A,



90
where A,: = Ba, — B,. Since [o,|[Vw[* dz < |Jw|[$1, < oo, we have

lim |Vw|*n* dz = 0,
0—00 Ju,

hence lim,y—. fBQ|Vw|4 dr = 0, i.e. [Vw| = 0 on compact subsets of R* which
implies that w = const. O

Notice that this proof works also in the case, when o9 = ¢ << 1, which will
be used in the degree-theoretic argument later.

Step 3. Proof of Theorem 10.4. We recall the geometric proof of Obata’s
Uniqueness Theorem on S™: If Ry = const. on S, then |E| = 0 and g = ¢*(g.)
for some conformal transformation ¢: S™ — S™. For simplicity we review Obata’s
proof for n = 4. Then Ey; = —2u™'(Vau)i; + 3u~ " (Agu)gij, where g = ugo, and
calculating in the g metric (dv: = dvy),

|E|?u dv :/ g(E, E)udv
54 54
= -2 E,Viu)d
(TrE=0) /54 9(E, Vgu) dv

=2/ g(0F, du) dv
S4

1
= 2/ g (—dR7 du) dv = 0.
(8E=%dR) g4 4 (R=const.)

On R?, and assuming R4, = const., we use a cut-off function to imitate Obata’s
proof:

/ g(E, E)un? dv :—2/ g(E,V?]u)nde
R4 R4 :
:/ 9(5E7dU)772dv+2/ 9(E, du)V 4 (i) dv
R4 R4

< 9 /A V1, |V ul [V, ()] do

(RgE:onst.)

%
hS (/ |E|§u772 dv) (/ IV yul?|V n?u~! dv)
A, A,

Hence it suffices to prove

1
2

/ |VgU|2|Vgn|2u_1 dU:/ |Voul?|Von|*u™" dx
Ay A,

< C'independ of p.

(10.10)
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Since then (as before) E = 0 follows by taking ¢ — oo. To prove (10.10) one may
look at the situation for general n, and (10.10) amounts to showing that

- —/ |VOU|2

is bounded independent of p. For n = 3 this can easily be done by multiplying
the differential equation —Agu = c;,»uz_tg (= c3u®) by u™" T to get Is(p) < C. If
there is a volume bound then one can easily check that u=! < c|x|? for all n, and
it remains to show that

/ |Voul?dz < C'  independent of .
AQ

In general, a volume bound is too strong an assumption. For n = 4 in our situation
we proceed with a similar strategy replacing R, by o2(A4,) and E by some tensor
L with similar properties.

Lemma 10.8 Suppose (M*,g) is locally conformally flat (e.g. for g = e*¥|dx|?),
then consider the tensor

1 1
L: = Z|El?g+ =RE — E2.
4| |g+6

Then
Tr,L =0
"9 X (10.11)
Proof. Follows from a straightforward computation. m]

Proposition 10.9 If o3(A4) > 0,R > 0, then
(i) g(L,E) > 0 with equality iff E =0,
(i) |LI* < §g(L, E).

Proof.
(i) is a consequence of the relation TrE3 < %|E |2, which was already used

n (8.17).
(ii) One calculates

1 1
IL|* = |E®” - |E|4 + o= R*E]” — ZRTTE?,
36 3
and |E?|? < Z|E|*, which is sharp, since E might have diagonal form (E;;) =
-3\
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O

Now we can proceed to sketch a proof of Theorem 10.4 along the lines of
Obata’s proof outlined above.

L, E)un*d = -2 L, Viu)ntd
/RAkg(, Jum Y onn) /R49(7 su)n” dvg

:2/ g(5L,du)774dvg—|-2/ g(L,du)Vg(n4)dvg
R4 R4

< 8 [ LLIVlV i) do,

(o2=const.)
(10.11)

8 101
< —= | R2g2(L,E)|Vqul[Vgnl(n)* dv
(#0) \/g Ré g g g

1 1
1 2 2
hS —2/ R|Voul*u™"'dz / g(L, E)un*dv, | .
0% JjA A

e e

Thus it suffices to prove that there is a constant C independent of p, such that

/ RIVoul*u™tdx < Co?, (10.12)

4]

since then arguments analogous to Obata’s proof show that g(L, E) = 0, which by
Proposition 10.9 (i) implies E = 0.

In order to show (10.12) one multiplies the expression (7.10) for oa(A,)e®
by e~*, which leads to (10.12) for n = 4. Also for n = 5 this can be worked out,
but this method seems to fail for n > 6. O
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