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This is the set of Nachdiplom lectures which I have given during April-July
2001 at Zurich. In the lectures, I have focused the study on some non-linear par-
tial differential equations related to curvature invariants in conformal geometry.
A model of such a differential equation on compact surface is the the Gaussian
curvature equation under conformal change of metrics. On manifolds of dimension
four, an analogue of Gaussian curvature is the study of the Pffafian integrand in
the Gauss-Bonnet formula. To be more precise, on a Riemannian manifold (M, g)
of dimension four, denote the Weyl-Schouten tensor A as

Aij = Rij −
R

6
gij

where Rij is the Ricci tensor and R is the scalar curvature of the Riemannian
metric g; denote the second elementary symmetric function of A as

σ2(A) =
∑

i<j

λiλj =
1

2
[(TrA)2 − |A|2],

where λi (1 ≤ i ≤ 4) are the eigenvalues of A; then one has the Gauss Bonnet
formula

8π2(χM) =

∫

(
1

4
|W |2 + σ2(A))dv,

where W denotes the Weyl tensor. Under conformal change of metrics, since
|W |2dv is pointwisely conformally invariant,

∫

σ2(A)dv is conformally invariant.
The main focus of this lecture notes is to study the partial differential equation
describing the curvature polynomial σ2(A) under conformal change of metrics.

The lecture is organized as follows: In chapters 1 and 2, we discussed the
equation of prescribing Gaussian curvature on compact surface and provided the
background and the main analytic tool (Moser-Trudinger inequalities) in the study.
In chapter 3, we described the connection between Moser-Trudinger inequality
to that of the Polyakov formula for the functional determinant of the Laplacian
operator on compact surfaces. In chapters 4 to 6, we discussed general conformal
invariants, the connection of conformal invariants to conformal covariant operators
on manifolds of dimension three and higher, with emphasize on a special 4-th
operator (called the Paneitz operator) on manifold of dimension 4. Finally in
chapters 7-10, we studied the connection of the Paneitz operator to the curvature
polynomial σ2(A) described above. We also reported the work of Chang-Gursky-
Yang [23] on the existence on manifolds (M 4, g) of solutions with σ2(A) > 0 under
the assumptions that

∫

σ(A) > 0 and g be of positive Yamabe class.
The lectures were given at the beginning stage when the study of the fully

non-linear PDE like that of σ2(A) were first developed. Since then, there have
been much progress both in the existence and regularity results in the study of
such equations. The readers are, in particular, referred to the article by Gursky-
Viaclovski [56], where a simpler proof, from a somewhat different perspective, of
the main result in [23] discussed in this note was given. There have also been
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important development in the existence results of general conformal invariants by
works of Graham-Zworski, [50] Fefferman-Graham [44]. There is also a more up to
date survey article [20] for recent developements in this research field.

This notes were organized and taken by Heiko von der Mosel during the lec-
tures. Without his many inputs, and the very careful reading of the materials, the
notes may never be in published form. The author appreciate very much the correc-
tions suggested later by Meizun Zhu, Fengbo Hang, Paul Yang and proof readings
by Sophie Chen and Edward Fan. Finally and not the least, the author appreciate
the many collegial discussions among participants at ETH during the lectures; she
wishes to thank in particular, Michael Struwe, for making the arrangement for a
very pleasant and rewarding visit.

Alice Chang
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§ 1 Gaussian curvature equation

Let(M2, g0) be a compact closed two-dimensional surface with a given metric g0

and Gaussian curvature Kg0 . We are interested in the behavior of the Gaussian
curvature under conformal change of the metric. That is, we consider the metric

ḡ : = ρg0 (1.1)

for some ρ ∈ C∞(M), ρ > 0. Notice that ḡ is conformal to g0, i.e while the length
of a vector changes; the angle between any two vectors is preserved under the
change of metrics from g0 to ḡ on M . From now on we write

ḡ = gw : = e2wg0 (1.2)

for some function w ∈ C∞(M).

Proposition 1.1 Let Kgw be the Gaussian curvature of (M 2, gw). Then

∆0w +Kgwe
2w = Kg0 . (1.3)

Equation (1.3) is called the prescribed Gaussian curvature equation, where
∆0 = ∆g0 denotes the Laplace-Beltrami operator with respect to the background
metric g0. Sometimes we also denote ∆0 as ∆ when the background metric is
specified.

Proof of Proposition 1.1. Recall the definition of the Riemann curvature tensor
(cf [3], [86]). For that let p ∈ Mn, and take an orthonormal basis {ei} of the tangent
space TpM of M at p. Then for two vector fields X,Y ∈ TpM one has

R(X,Y ) : = ∇X∇Y −∇Y ∇X −∇[X,Y ],

R(ei, ej) = ∇ei∇ej −∇ej∇ei ,

where the two-form R defines the curvature of the Riemannian connection ∇.
The Christoffel symbols of g are given by

Γk
ij : =

1

2
gkl

(

∂gil

∂xj
+
∂gjl

∂xi
− ∂gij

∂xl

)

,

and they satisfy
∇eiej = Γk

ijek.

Let Rl
kij : = g(R(ei, ej)ek, el), then the Ricci tensor is defined as

Rij : = Rk
ikj ,

and the scalar curvature is obtained by contraction again:

R : = Rijg
ij .
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For ḡ = ρg0, ρ > 0 one computes directly (using ḡil = ρ(g0)il, ḡ
kl = ρ−1gkl

0 ), that
the Christoffel symbols Γk

ij of ḡ satisfy

Γ̄k
ij = Γk

ij +
1

2

(

δk
i

∂ log ρ

∂xj
+ δk

j

∂ log ρ

∂xi
− gklgij

∂ log ρ

∂xl

)

.

When n = 2 we write ρ = e2w and get after a lengthy calculation

R̄1212 = e−2w((Rg0 )1212 − 2∆0w),

which is equivalent to (1.3), since Kg0 = 1
2 (Rg0)1212 and Kgw = 1

2 R̄1212. 2

Remark 1.2 Integrating both sides of (1.3) over M gives in case M is orientable

∫

M

Kg0 dv0 =

∫

M

Kgwe
2w dv0

=

∫

M

Kgw dvgw

= 2πχ(M)

= 2π(2 − 2ge),

(1.4)

where dv0 = dvg0 , χ(M) is the Euler characteristic and ge the genus of M . Here
we used the Gauss-Bonnet Theorem. Hence

∫

Kg dvg is conformally invariant, and
its sign is determined by the sign of χ(M).

One of the central problems is: Given a function K ∈ C∞(M) on a compact
closed two-dimensional manifold M with fixed background metric g0, when does
there exist a metric ḡ conformal to g0, such that

Kḡ = K?

In other words, does (1.3) admit a solution w, such that Kgw = K? This is usually
called the problem of “prescribing Gaussian curvature”. In the case when the
compact surface is the standard 2-sphere, the problem is commonly attributed to
L. Nirenberg and is called the “Nirenberg” problem.

Kazdan and Warner [59] gave some necessary and sufficient conditions for
the existence of solutions for (1.3) in some cases.

Theorem 1.3 Let χ(M) = 0. Then (1.3) has a solution w iff either (i) K ≡ 0 or
(ii) K changes sign with

∫

M
Ke2f dv0 < 0, where f is a solution of ∆0f = Kg0 .

Proof. By (1.4) and the assumption χ(M) = 0, we have

0 =

∫

M

Kg0 dv0 =

∫

M

Kgw dvgw , (1.5)
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hence ∆0f = Kg0 is solvable on M . Moreover, f is unique up to a constant. If w
solves (1.3), then one easily checks that u : = w − f is a solution of

∆0u+Ke2(u+f) = 0, (1.6)

which implies by integration
∫

M

Ke2f dv0 = −
∫

M

(∆0u)e
−2u dv0

=

∫

M

∇0u · ∇0(e
−2u) dv0

= −2

∫

M

|∇0u|2e−2u dv0 ≤ 0.

(1.7)

Equality occurs iff |∇0u| ≡ 0, which implies that u ≡ const., i.e. ∆0u ≡ 0, hence
by (1.6) K ≡ 0. If K 6≡ 0, on the other hand, we have

∫

Ke2f dv0 < 0, and we
infer from (1.5) that K changes sign. This proves necessity.

If K ≡ 0, then w := f with ∆0f = Kg0 solves (1.3). If K 6≡ 0,K changes
sign and

∫

M Ke2f dv0 < 0, then we claim that we can find a solution u of equation
(1.6), which also solves (1.3) setting w := u+ f as seen above.

To prove this claim consider the set

C : = {u ∈W 1,2(M) :

∫

M

Ke2(u+f) dv0 = 0 and

∫

M

udv0 = 0},

which is not empty, since K changes sign by assumption.
If we find a minimizing function u0 ∈ C of the energy functional

E(u) : =
1

2

∫

M

|∇0u|2 dv0,

i.e. with
E(u0) = inf

u∈C
E(u), (1.8)

then there exist some Lagrange multipliers α, β ∈ R, such that

∆0u0 + α+ βKe2(u0+f) = 0 on M. (1.9)

Integrating this equation over M we immediately obtain α = 0 by the first integral
constraint in the definition of C.

By the same argument we obtain for β

β

∫

M

Ke2f dv0 = −
∫

e−2u0∆0u0 dv0

=

∫

∇0(e
−2u0) · ∇0u0 dv0

= −2

∫

|∇0u0|2e−2u0 dv0 < 0,
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which by our assumption
∫

M
Ke2f dv0 < 0 means that β > 0. Thus the shift

v0 : = u0 + 1
2 logβ satisfies

∆0v0 +Ke2(v0+f) = 0 on M (1.10)

as a consequence of (1.9) with α = 0.
To justify the above arguments involving the Euler-Lagrange equation point-

wise on M , we need to show that any minimizer of E(·) in C is sufficiently smooth
to carry out the differentiation. In fact, it will be shown below (see Corollary 1.7),
that for all v ∈W 1,2(M) with finite energy E(v) <∞ one obtains

ev ∈ Lp(M) for all p > 1. (1.11)

This implies that ∆0v0 ∈ Lp(M) for all p > 1 by (1.10), in particular v0 ∈ C∞(M)
by standard elliptic estimates.

It remains to show that a minimizer u0 ∈ C satisfying (1.8) actually exists.
Taking a minimal sequence {ui}i∈N ⊂ C, E(ui) → infu∈C E(u) as i → ∞, we
readily get weak convergence ui ⇀ u0 ∈W 1,2(M) with

E(u0) ≤ lim inf
i→∞

E(ui) = inf
u∈C

E(u). (1.12)

Hence

0 =

∫

M

ui dv0 →
∫

M

u0 dv0 for i→ ∞,

and we will see later (Corollary 1.8) that also

0 =

∫

M

Ke2(ui+f) dv0 →
∫

M

Ke2(u0+f) dv0 as i→ ∞, (1.13)

which shows u0 ∈ C. Thus by (1.12)

inf
u∈C

E(u) ≤ E(u0) ≤ inf
u∈C

E(u) ⇒ E(u0) = inf
u∈C

E(u),

which concludes the proof of Theorem 1.3. 2

Now we are going to provide the analytical tools necessary to prove (1.11) and
(1.13).

Recall Sobolev’s embedding theorem, which states that for a domain Ω ⊂ Rn

one has Wα,q
0 (Ω) ↪→ Lp(Ω) for 1

p = 1
q − α

n , qα < n.

If α = 1, n = 2, q < 2 we obtain W 1,q
0 (Ω) ↪→ Lp(Ω). In general one cannot

take the limits q → 2, p→ ∞, i.e.

W 1,2
0 (Ω) 6↪→ L∞(Ω),

as one can see for the function u(x) : = log(1 + log 1
|x|) on B1(0) ⊂ R2.

Instead N. Trudinger proved exponential L2-integrability in the following
sense.
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Proposition 1.4 [87] Let Ω ⊆ R2 be a bounded domain and u ∈ W 1,2
0 (Ω) with

∫

Ω|∇u|2 dx ≤ 1. Then there exist universal constants β > 0, C1 > 0, such that
∫

Ω

eβu2

dx ≤ C1|Ω|, (1.14)

and we write W 1,2
0 (Ω) ↪→ eL2

(Ω).

Remark 1.5 Under the assumption
∫

Ω|∇u|2 dx ≤ 1 the inequality (1.14) is equiv-
alent to the following:

There is a universal constant C2 > 0, such that

||u||Lp(Ω) ≤ C2
√
p|Ω| 1p for all p ≥ 2. (1.15)

Let us prove this remark first.
”⇒” For all k ∈ N one has

1

k!

∫

Ω

(βu2)k dx ≤ C1|Ω|,

hence
(∫

Ω

u2k dx

)
1
2k

≤
(

k!

βk
C1|Ω|

)
1
2k

= (k!)
1
2k

1√
β
C

1
2k
1 |Ω| 1

2k

≤ C̃2

√
2k|Ω| 1

2k ,

since (k!)
1
k ≤ k. This proves the claim for p : = 2k, k ∈ N. For odd p a simple use

of Hölder’s inequality gives

(∫

Ω

|u|p dx
)

1
p

≤
(∫

Ω

u2p dx

)
1
2p

|Ω| 1
2p ≤ C̃2

√

2p|Ω| 1
2p · |Ω| 1

2p

=: C2
√
p|Ω| 1p .

“⇐”
∫

Ω

eβu2

dx =

∫

Ω

∞
∑

k=0

1

k!
(β|u|2)k dx

=

∞
∑

k=0

βk

k!
||u||2k

L2k(Ω)

≤
∞
∑

k=0

βk

k!

[

C2

√
2k|Ω| 1

2k

]2k

=

∞
∑

k=0

1

k!
(2βC2

2k)
k|Ω| ≤ C1|Ω|,
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if one chooses β so small that 2βC2
2 < e−1, which according to Stirling’s formula

implies that the infinite series
∑∞

k=0
1
k! (2βC

2
2k)

k is finite.

Proof of Proposition 1.4. Using the previous remark, it suffices to show (1.15).
By symmetric rearrangement1 and scaling we may take Ω: = B1(0) ⊂ R2. Fur-
thermore, we may assume u ∈ C∞.

We can represent u as

u(x) = − 1

2π

∫

B1(0)

∆u(y) log|x− y| dy,

which after integration by parts leads to the estimate

|u(x)| ≤ C

∫

B1(0)

|∇u(y)||x− y|−1 dy

≤ C

(

∫

B1(0)

|∇u(y)|2|x− y|−a dy

)
1
p
(

∫

B1(0)

|x− y|−a

)
1
2
(

∫

B1(0)

|∇u(y)|2 dy
)

1
2− 1

p

,

using Hölder’s inequality for a
p + a

2 = 1.

Now
∫

B1(0)
|x− y|−a dy is finite, since for x, y ∈ B1(0) one has B1(0) ⊂ B2(x)

and then
∫

B1(0)

|x− y|−a dy ≤
∫

B2(x)

|x− y|−a dy = C

[

r2−a

2 − a

]r=2

r=0

≤ C(p+ 2). (1.16)

Consequently,
∫

B1(0)

|u|p dx ≤ C

[ ∫

B1(0)

∫

B1(0)

|∇u(y)|2|x− y|−a dy dx

]

||∇u||p−2
L2(B1(0))

(p+ 2)
p
2

≤ ||∇u||pL2(B1(0))(p+ 2)
p
2 +1,

where we used Fubini’s Theorem and (1.16) to obtain the last inequality. By as-
sumption ||∇u||L2(B1(0)) ≤ 1, i.e. we have

||u||Lp(B1(0)) ≤ C2
√
p

for some universal constant C2 > 0. 2

Corollary 1.6 Let (M2, g) be compact and closed. Then there exist constants
β = β(g) > 0 and C = C(g) > 0, such that for all u ∈W 1,2(M) with

∫

M

u dvg = 0,

∫

M

|∇0u|2 dvg ≤ 1

1
R

Ω
eβu2

dx ≤
R

B1(0)
eβ(u∗)2 dx and

R

B1(0)
|∇u∗|2 dx ≤

R

Ω
|∇u|2 dx, if u∗ is the symmetric

rearrangement of u, see [78].
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one has
∫

M

eβu2

dvg ≤ C vol(M, g). (1.17)

Proof. Take a partition of unity (Ui, φi) of M , such that each Ui is diffeomorphic
to the unit ball B1(0) ⊂ R2 with 0 ≤ φi ≤ 1, φi ∈ C∞

0 (Ui),
∑

i φi ≡ 1 on M , and
set ui : = φiu. Then ∇ui = (∇u)φi + (∇φi)u, and by Proposition 1.4 we have

||ui||Lp(Ui) ≤ C̃2
√
p||∇ui||L2(Ui)(vol(Ui))

1
p for p > 2.

Hence

||u||Lp(M) ≤
∑

i

||ui||Lp(Ui) ≤ C̃2
√
p(vol(M, g))

1
p

∑

i

||∇ui||L2(Ui)

≤ ˜̃C2
√
p(vol(M, g))

1
p (||∇u||L2(M) + ||u||L2(M))

≤ C(g)
√
p(vol(M, g))

1
p ||∇u||L2(M),

where we used Poincaré’s Inequality, which is valid, since
∫

M u dvg = 0. Notice
that C = C(g) depends on the metric g via the partition of unity, in particular
the terms involving ∇φi. 2

Corollary 1.7 For a compact and closed manifold (M 2, g) there are constants
η > 0 and c = c(g), such that for each p ≥ 2

∫

M

ep(w−w) dvg ≤ c exp

[

η
p2

4
||∇w||2L2(M)

]

(1.18)

for all w ∈ W 1,2(M), where

w : =

∫

M

w dvg =
1

vol(M, g)

∫

M

w dvg .

Proof. By Young’s inequality we get for ||∇w||L2(M) 6= 0

p(w − w) ≤ β
(w − w)2

||∇w||2L2(M)

+
1

β

p2

4
||∇w||2L2(M),

where β > 0 is the constant of Corollary 1.6. Taking the exponential of this inequal-
ity and integrating one obtains for u : = w−w

||∇w||L2(M)
(⇒ u = 0 and ||∇u||L2(M) ≤ 1)

∫

M

ep(w−w) dvg ≤
∫

M

eβu2 · e
1
β

p2

4 ||∇w||2
L2(M) dvg

≤ exp

[

1

β

p2

4
||∇w||2L2(M)

]

· c(g) vol(M, g),

which concludes the proof if one sets η : = β−1 and c : = c(g) vol(M, g). 2
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Corollary 1.8 If ui ⇀ u in W 1,2(M) as i→ ∞, and
∫

M
|∇u|2 dvg ≤ c,

∫

M
|∇ui|2 dvg ≤

c with
∫

M ui dvg = 0 for all i ∈ N, then for each f ∈ L∞(M)

∫

M

fepui dvg →
∫

M

fepu dvg as i→ ∞. (1.19)

Proof. Using the simple estimate |ex − 1| ≤ |x|e|x| we can write

∫

M

|epui − epu| dvg =

∫

M

epu(ep(ui−u) − 1) dvg

≤
∫

M

epup|ui − u|ep|ui−u| dvg

≤ C

(∫

M

e4pu dvg

)
1
4
(∫

M

|ui − u|2dvg

)
1
2
(∫

M

e4p|ui−u| dvg

)
1
4

,

using Hölder’s inequality. The right-hand side tends to zero as i → ∞, since the
middle term does by Rellich’s theorem, and the two integrals involving exponential
terms stay bounded according to (1.18). 2

Remark. The case χ(M) < 0 has also been considered by Kazdan and
Warner([59]), but is not completely settled. There are necessary conditions and
also sufficient conditions, but a complete characterization of the solvability of the
Gaussian curvature equation (1.3) as in Theorem 1.3 remains an open problem for
χ(M) < 0. Let us now turn to the case χ(M) > 0.
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§ 2 Moser-Trudinger inequality (on the sphere)

When χ(M) > 0, then either χ(M) = 2, in which case M is diffeomorphic to the
sphere S2, or χ(M) = 1, i.e. M ∼= RP 2, the real projective space.

Consider (M, g) := (S2, gc) with the canonical metric gc and Gaussian cur-
vature Kgc ≡ 1. The Gaussian curvature equation (1.3) then reads as

∆w +Ke2w = 1 on (S2, gc), (2.1)

where we denote ∆ = ∆gc as before. Here, K ∈ C∞(S2) is a given function.

Theorem 2.1 [59] Let w ∈W 1,2(S2) be a solution of (2.1). Then

∫

S2

〈∇K,∇ϕ〉e2w dvgc = 0, (2.2)

where ϕ is any of the first eigenfunctions of ∆ on the sphere, i.e.

∆ϕ+ 2ϕ = 0 on S2. (2.3)

( ϕ = ϕ̃|S2
for ϕ̃ : R3 → R, ϕ̃(x) =

∑3
i=1 cix

i, for some real constants ci, i = 1,
2, 3.)

Remark 2.2 By the Gauss-Bonnet Theorem

∫

S2

Ke2w dvgc = 4π, hence K > 0

somewhere on S2. But this information is not sufficient for the existence of solu-
tions for (2.1). In fact, for K = Kε := 1 + εϕ, ε ↓ 0, the Kazdan-Warner condition
(2.2) is violated for every ε > 0, which means that there are functions K arbitrarily
close to 1, for which (2.1) is not solvable.

Proof of Theorem 2.1. One has ∇k∇lϕ̃ = ϕ̃gkl for ϕ̃(x) = xi on S2, hence (2.3)
implies

2∇k∇lϕ = ∆ϕgkl for ϕ = ϕ̃|S2
. (2.4)
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Integrating by parts repeatedly, and inserting (2.1) and (2.3) we compute

∫

S2

〈∇K,∇ϕ〉e2w dvgc = −
∫

S2

K∆ϕe2w dvgc − 2

∫

S2

K〈∇ϕ,∇w〉e2w dvgc

=
(2.1)

−
∫

S2

∆ϕ(1 − ∆w) dvgc − 2

∫

S2

〈∇ϕ,∇w〉(1 − ∆w) dvgc

=
(2.3)

2

∫

S2

ϕ(1 − ∆w) dvgc + 2

∫

S2

ϕ∆w dvgc + 2

∫

S2

〈∇ϕ,∇w〉∆w dvgc

=
(2.3)

−
∫

S2

∆ϕdvgc + 2

∫

S2

∇iϕ∇iw∆w dvgc

= −2

∫

S2

∇l(∇iϕ∇iw)∇lw dvgc

= −2

∫

S2

∇l∇iϕ∇iw∇lw dvgc − 2

∫

S2

∇iϕ∇l∇iw∇lw dvgc

=
(2.4)

−
∫

S2

gli∇iw∇lw(∆ϕ) dvgc −
∫

S2

∇iϕ∇i(∇lw∇lw) dvgc

= −
∫

S2

|∇w|2∆ϕdvgc +

∫

S2

∆ϕ|∇w|2 dvgc

= 0

2

A sufficient condition for the solvability of (2.1) was given by Moser in [64],
see also [65].

Theorem 2.3 [Moser] If K(−ξ) = K(ξ) for all ξ ∈ S2, and if maxS2 K > 0, then
(2.1) has a solution w ∈ C∞(S2) with

w(−ξ) = w(ξ) for all ξ ∈ S2.

Sketch of the proof.
We consider a variational approach using the functional

JK [w] := log

∫

S2

Ke2w dvgc −
1

4π

∫

S2

|∇w|2dvgc − 2

∫

S2

w dvgc , (2.5)

whose critial points, i.e. w ∈W 1,2(S2) satisfy the equation2

−∆w + 1 =
Ke2w

∫

S2

Ke2w dvgc

on S2. (2.6)

2We have seen before that W 1,2-solutions of (2.6) are in fact of class C∞(S2), compare with
the proof of Theorem 1.3.
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Then the shifted function

w̃ := w − 1

2
log

∫

S2

Ke2w dvgc

solves (2.1).
Consequently, the proof boils down to showing the existence of a critical point

for the functional JK [·]. For that we need some sharpened versions of Proposition
1.4, Corollary 1.6 and Corollary 1.7. We are going to state these results without
proof.

Theorem 2.4 [Moser-Trudinger inequality] Let Ω ⊂ Rn be a bounded domain,
u ∈W 1,n

0 (Ω) with
∫

Ω |∇u|n dx ≤ 1. Then there is a constant C = C(n), such that

∫

Ω

eα|u|p dx ≤ C|Ω|, (2.7)

where p = n
n−1 , α ≤ αn := nw

1
n−1

n−1 , wk := k-dimensional surface measure of Sk.

Remark 2.5 For n = 2 one has p = 2, α2 = 2w1 = 4π. Moser has shown that the
constant αn in the theorem is sharp in contrast to the constant β in Proposition
1.4. In fact, he constructed a sequence uk ∈ W 1,n

0 (B1(0)) with
∫

B1(0)
|∇uk|n dx ≤ 1

such that
∫

B1(0)

eα|uk|p dx → ∞ as k → ∞,

if α > αn.

We have seen in Corollary 1.6 that for general compact closed (M, g) the
constant on the right-hand side of (1.17) depends on the metric g. Working on
(S2, gc) allows us to control the constants.

Theorem 2.6 [Moser] There is a universal constant C1 > 0, such that for all
w ∈W 1,2(S2) with

∫

S2 |∇w|2 dvgc ≤ 1 and
∫

S2 w dvgc = 0

∫

S2

e4πw2

dvgc ≤ C1. (2.8)

In the same way as we deduced Corollary 1.7 from Corollary 1.6 one can show

Corollary 2.7 For C2 := logC1 + log 1
4π

log

∫

S2

e2w dvgc ≤
[

1

4π

∫

S2

|∇w|2 dvgc + 2

∫

S2

wdvgc

]

+ C2 (2.9)

for all w ∈ W 1,2(S2).
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Remark 2.8 For w as in Theorem 2.6 with w 6≡ 0 one easily gets

4π =

∫

S2

dvgc <

∫

S2

e4πw2

dvgc ≤ C1,

hence C2 > 0. For domain in plane(i.e. n = 2 in Theorem 2.4), Carleson and Chang
[19] has proved the existence of an extremal function for the Moser-Trudinger
inequality for theorem 2.4, and the best constant C2 in the statement of Theorem
2.4 is > 1+ e. This result was extended by T.L.Soong [84] proving the existence of
extremal functions for (2.8) in Theorem 2.6, see also the results on the structural
behavior of such extremal functions in M. Flucher’s work, [45]. These investigations
are also related to work of A. Beurling on the boundary behavior of analytic
functions on the disk, [8]. With different arguments we will need to prove later that
C2 = 0 is the best constant in (2.9), which is the content of Onofri’s inequality,
Theorem 2.11. For even functions on S2, Moser improved his result, Theorem 2.6:

Theorem 2.9 [Moser] If w ∈ W 1,2(S2) with
∫

S2

w dvgc = 0,
∫

S2 |∇w|2 dvgc ≤ 1

and w(ξ) = w(−ξ) for almost all ξ ∈ S2, then

∫

S2

e8πw2

dvgc ≤ C3. (2.10)

Again we infer

Corollary 2.10 For C4 := logC3 + log 1
4π , a = 1

2 ,

log

∫

S2

e2w dvgc ≤
[

a · 1

4π

∫

S2

|∇w|2 dvgc + 2

∫

S2

w dvgc

]

+ C4. (2.11)

Let us point out that only a < 1 is crucial for later applications.

Now we finally turn to the proof of Theorem 2.3:
Proof of Theorem 2.3. Since K > 0 somewhere, and K is even,

C := {w ∈W 1,2(S2) :

∫

S2

Ke2w dvgc > 0, w even a.e. } 6= ∅. (2.12)

Consider the variational problem

JK [·] → maxJK [w] on C,

and recall that if there is some w0 ∈ C such that

sup
w∈C

JK [w] = JK [w0],

then (2.1) has a solution.
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First we observe that JK [·] is bounded from above. Indeed, by Corollary 2.10,
(2.11)

log

∫

S2

Ke2w dvgc ≤ log max
S2

K +
a

4π

∫

S2

|∇w|2 dvgc + 2

∫

S2

w dvgc + C4,

which leads to

JK [w] ≤ log max
S2

K + (a− 1)
1

4π

∫

S2

|∇w|2 dvgc + C4 <∞,

since a = 1
2 < 1. Taking a maximizing sequence {wl}l∈N ⊂ C with

lim
l→∞

JK [wl] = sup
w∈C

JK [w] =: L

we obtain
(

1 − a

4π

)∫

S2

|∇wl|2 dvgc ≤ log max
S2

K + C4 − JK [wl]

≤ log max
S2

K + C4 + ε− L

for some ε > 0. This implies by the Poincaré inequality that the wl are uniformly
bounded in W 1,2(S2), hence wl ⇀ w0 in W 1,2(S2) for some subsequence. Since
all wl are even a.e. clearly w0 is even a.e.by Rellich’s Theorem. Moreover we know
that by the definition of JK [·] in (2.5)

∣

∣

∣

∣

∣

∣

log

∫

S2

Ke2wl dvgc

∣

∣

∣

∣

∣

∣

≤ L+ C||wl||W 1,2 ≤ C̃ <∞,

hence
∫

S2

Ke2(wl−wl) dvgc ≥ min{4πe−c̃, 1} =: c0 > 0. (2.13)

This implies by Corollary 1.8 that also
∫

S2

Ke2w0 dvgc ≥ c0 > 0. (2.14)

In fact, for ul := wl−wl, where wl :=
∫

S2

wl dvgc , and f := K ∈ L∞(S2), one infers

from (1.19)
∫

S2

Ke2(wl−wl) dvgc →
∫

S2

Ke2(w0−w0) dvgc ,

which implies by (2.12), that for any ε > 0, there is l0 ∈ N such that for all l ≥ l0

(c0 − ε)e2(w0−wl) ≤
∫

S2

Ke2w0 dvgc .
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But wl → w0 in L2(S2) by Rellich’s Theorem, hence (2.14) is true. 2

Remarks.
1. We have omitted the proofs of Theorems 2.4, 2.6, 2.9, due to the limited

space. Theorem 2.4 is based on a calculus inequality applied to radially symmetric
functions u = u(|x|), to which the problem can be reduced, whereas the proof of
Theorem 2.6 is more sophisticated. One reduces the problem to u = u(x3) working
in spherical coordinates. A similar but more complicated reduction is done in the
proof of Theorem 2.9.

It should be pointed out that these methods do not carry over to energies
with higher order derivatives of u, since the heavily used relation

∫

Rn

|∇u∗|n dx ≤
∫

Ω

|∇u|n dx

for the symmetric rearrangement u∗ of u, is not valid for higher order energies.
2. For a geometric interpretation3 of the constants αn in Theorem 2.4, we

look at the following isoperimetric problem for level sets. Let u ∈ C∞(Ω) be a
Morse function.

Lt(u) := length ({x ∈ Ω : |u(x)| = t}), At(u) := area {x ∈ Ω : |u(x)| ≥ t},

then the classical isoperimetric inequality states that

L2
t

At
≥ 4π.

Defining α2(u) := lim inf
t→∞

L2
t (u)

At(u) for u ∈W 1,2
0 (Ω) one obtains

inf
u∈W 1,2

0 (Ω)
α2(u) = 4π,

and the infimum is attained for u ∈ C∞(Ω) with circular level curves.
If u ∈W 1,2(Ω),Ω ⊂ R2 with

∫

Ω
u dx = 0, then

L2
t (u)

At(u)
≥
{

2π, if ∂Ω ∈ C2,

2 mini θi, if ∂Ω is piecewise smooth with interior boundary angle θi.

If w ∈W 1,2(S2) with
∫

S2 w dvgc = 0, w even, then α2(w) ≥ 8π.
Indeed, the isoperimetric inequality on S2 for a closed curve with length L

and enclosed area A says
L2 ≥ A(4π −A),

which implies

α2(v) = lim
t→∞

L2
t (v)

At(v)
≥ lim

t→∞
(4π −At(v)) = 4π (2.15)

3[32]
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for all v ∈W 1,2(S2) with
∫

S2
v dvgc = 0.

This explains the term 4π in the exponential in (2.8) of Theorem 2.6. In
particular, for w even, the level curves of w split in two equal parts of length
Lt,1 = Lt,2 = Lt/2. The same holds true for the enclosed areas

At,1 = At,2 = At/2,

which implies

α2(w) = lim
t→∞

L2
t (w)

At(w)
= lim

t→∞

4L2
t,1(w)

2At,1(w)
≥

(2.15)
2 · 4π,

compare to Theorem 2.9, where 8π occurs in the exponential in (2.10).
Notice that it is not clear if this geometric interpretation extends to the

general case n ≥ 3 because of the more complicated geometries of level sets.
We now give a sharpened version of Corollary 2.7, the Onofri inequality.

Theorem 2.11 [Onofri] Let w ∈W 1,2(S2). Then

log

∫

S2

e2w dvgc ≤ 1

4π

∫

S2

|∇w|2 dvgc + 2

∫

S2

w dvgc , (2.16)

with equality iff
∆w + e2w = 1, (2.17)

i.e.
Kgw ≡ Kgc ≡ 1, (2.18)

iff w = 1
2 log |Jφ|, where φ : S2 → S2 is a conformal transformation of S2. In

other words, equality in (2.16) holds iff

e2wgc = φ∗(gc). (2.19)

Remark 2.12 An analytic proof for the equivalence of (2.17) and (2.19) was given
by Struwe and Uhlenbeck. The equivalence of (2.18) and (2.19) is the content of the
classical Cartan-Hadamard Theorem. We will see later when deriving the Polyakov
formula, why the Onofri inequality (which sharpens Corollary 2.7, allowing C2 = 0
in (2.9)) is important.

Sketch of the proof of Theorem 2.11. The key idea is a result of Aubin.[5]

Lemma 2.13 [Aubin] Let S := {w ∈ W 1,2(S2) :
∫

S2 e
2wxj dvgc = 0, j = 1, 2, 3}.

Then for w ∈ S the following is true: For all ε > 0 there is a constant Cε such
that

log

∫

S2

e2w dvgc ≤
(

1

2
+ ε

)

1

4π

∫

S2

|∇w|2 dvgc + 2

∫

S2

w dvgc + Cε. (2.20)
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Notice that the symmetric class S is not too special, since for each w ∈ C1(S2)
there is a conformal transformation φ : S2 → S2, such that

Tφ(w) := w ◦ φ+
1

2
log |Jφ| is in S.

In fact Tφ gives a 1 − 1 correspondence.
Using (2.20) one can obtain compactness for maximizing sequences of JK [·] on

S, see (2.5). The Euler-Lagrange equation for this constrained variational problem
contains Lagrange multipliers, that can be shown to vanish using the Kazdan-
Warner condition, Theorem 2.1. Finally, the uniqueness of the solution to (2.17),
which then is the Euler-Lagrange equation for JK [·] on S, leads to w∗ ≡ 0 as the
minimizer. (2.16) follows from 0 = JK [0] = JK [w∗] ≤ JK [w] for all w ∈W 1,2(S2).
(see [72]) 2

Remarks.
1. For nonsymmetric K > 0 Chang and Yang [31], [32] have proved an index

formula for (2.1) under very mild nondegeneracy conditions on K, e.g. for Morse
functions K, based on the Moser-Trudinger inequality. For general K, K.C.Chang
and Liu [21] have extended these results.

2. Solutions of (2.17), or equivalently (2.19), are unique, which is proven by
stereographic projection

π : (Sn − northpole ) → R
n

ξ
π7−→ x(ξ)

with inverse ξ = π−1(x), ξi = 2xi

1+|x|2 , ξn+1 = |x|2−1
|x|2+1 .

For n = 2 the transformed equation becomes

−∆u = e2u on R
2, (2.21)

where

u(x) = log
2

1 + |x|2 + w(ξ(x)). (2.22)

Assuming
∫

R2 e
2u dx < ∞, W.X. Chen and C. Li [36] proved that (2.21) holds iff

u(x) = log 2λ
λ2+|x−x0|2 , for some λ > 0, x0 ∈ R2. Hence

∫

R2 e
2u(x)dx = 4π = |S2|.

Note that without the assumption
∫

R2 e
2u dx < ∞, there are actually other

analytic solutions to (2.21). In fact, one has a complete picture of the solutions of
this equation on R

2, see the classification of [38]. On R
n, n ≥ 3, Caffarelli, Gidas

and Spruck [16] developed a full theory regarding the equation −∆u = u
n+2
n−2 .

The idea of projecting equations on Sn to R
n will also be useful for higher order

problems leading to (−∆)n/2u = (n− 1)!enu instead of (2.21).
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§ 3 Polyakov formula on compact surfaces

Theorem 3.1 Suppose (M2, g0) is a compact surface, gw := e2wg0 is a metric
conformal to g0, with vol(M, gw) = vol(M, g0).

Then

F [w] := log
det(−∆gw )

det(−∆g0)
= − 1

12π

∫

M

(|∇0w|2 + 2Kg0w) dv0. (3.1)

On (S2, gc) we denote S[w] :=
∫

S2

|∇gcw|2 dvgc + 2
∫

S2

w dvgc .

As a consequence of Theorem 3.1 and Onofri’s inequality (Theorem 2.11) we
obtain

Corollary 3.2 On (S2, gc), one has

log
det(−∆gw )

det(−∆gc)
= −1

3
S[w] ≤ 0 (3.2)

for all w ∈ C∞(S2) with vol(M, gw) = 4π, hence F [w] ≤ F [0], i.e. F [·] is maximal
at the standard metric gc, which corresponds to w = 0.

Notice that log(det−∆gw) is defined via the regularized zeta function as in
Ray and Singer ([79]).

Corollary 3.3 On any compact surface (M 2, g0) with Kg0 ≡ const. ≤ 0 and with
vol(M, g0) = 1 one has: If w ∈ C∞(M) satisfies

∫

M
e2w dv0 = vol(M, gw) = 1,

then
F [w] ≤ 0

with equality only at the constant curvature metric g0.

Proof. First notice that by Jensen’s inequality

e2w ≤
∫

M

e2w dv0 =

∫

M

e2w dv0 = 1,

thus w ≤ 0, where w :=
∫

M

wdv0 =
∫

M w dv0. Kg0 ≤ 0 implies
∫

M 2Kg0w dv0 =

2Kg0

∫

M
w dv0 ≥ 0, hence F [w] ≤ 0. 2

Observe that the above argument leads to
∫

M

|∇0w|2 dv0 ≤ −12πF [w],

which means that spectral information given by F [w] bounds the energy of w. For
a related result in case of the sphere (Kg0 = Kgc ≡ 1) we refer to the end of this
section for a result by Osgood-Phillips-Sarnak.
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For the definition of the zeta functional determinant log(det−∆g), we con-
sider a compact Riemannian manifold (Mn, g), ∂M = ∅ with

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . (3.3)

denoting the eigenvalues of the Laplace-Beltrami operator

−∆g := − 1√
g

∂

∂xi

(

gij√g ∂

∂xj

)

,
√
g :=

√

det g, gij := (gij)
−1. (3.4)

The eigenfunctions {φj} form an orthonormal basis for L2(M) and satisfy

∆gφj + λjφj = 0 on M. (3.5)

We consider the zeta function

ζ(s) :=
∑

λk 6=0

λ−s
k , (3.6)

and observe that formal differentiation leads to

ζ ′(s) =
∑

λk 6=0

−(logλk)λ−s
k , i.e.

ζ ′(0) = −
∑

λk 6=0

logλk = − log

∞
∏

k=1

λk.

This formal computation motivates the definition of the log-determinant according
to Ray and Singer [79] as

log det(−∆g) := −ζ ′(0). (3.7)

We will now justify the existence of ζ ′(0). Denote N(λ) := #{j ∈ N : λj ≤ λ} as
the counting function and recall Weyl’s asymptotic formula:

Proposition 3.4 Let (Mn, g) be compact with ∂M = ∅. Then

N(λ) ∼ ωn vol(M, g)
λn/2

(2π)n
, as λ → ∞, (3.8)

i.e.,

lim
λ→∞

N(λ)

λn/2
=

ωn

(2π)n
vol(M, g), (3.9)

where ωn denotes the volume of the unit ball in Rn. In particular, for λ = λk

(λk)
n
2 ∼ k · (2π)n

wn vol(M, g)
, as k → ∞, (3.10)

i.e., λk grows like k
2
n as k tends to ∞.
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The asymptotic relation (3.10) implies that ζ(s) is well-defined for Re (s) >
n
2 . To justify the expression ζ ′(0) in (3.7) recall the Mellin transform

x−s =
1

Γ(s)

∫ ∞

0

e−xtts−1 dt, (3.11)

where Γ(s) denotes the value of the Gamma function at s:

Γ(s) :=

∫ ∞

0

e−tts−1 dt.

Note that Γ(s) has a simple pole at s = 0,

lim
s→0

Γ(s)s = 1. (3.12)

Using (3.11) we can rewrite ζ(s) in terms of the Gamma function for Re (s) > n
2 :

ζ(s) =
1

Γ(s)

∫ ∞

0

∞
∑

j=1

e−λjtts−1 dt

=
1

Γ(s)

∫ ∞

0

(Z(t) − 1)ts−1 dt,

where

Z(t) :=

∫

M

H(x, x, t) dvg(x) =

∞
∑

k=0

e−λkt = Tr(et∆g) (3.13)

is the trace of the heat kernel

H(x, y, t) :=

∞
∑

k=0

e−λktφk(x)φk(y). (3.14)

Proposition 3.5 [67], [66] H(x, y, t) is the unique fundamental solution of the
heat equation

{

∂u
∂t − ∆gu = 0

limt→0 u(x, t) = f(x)
(3.15)

on Mn (M compact, closed), i.e. for any given f ∈ C∞(M), the convolution
u := H ∗ f solves (3.15). Moreover H is continuous on M × M × (0,∞), and
H(·, ·, t) ∈ C2(M ×M), H(x, y, ·) ∈ C1((0,∞)). In addition4,

H(x, x, t) ∼
(

1

4π

)
n
2

∞
∑

k=0

Bk(x)t
k−n

2 , as t→ 0+, (3.16)

where Bk are local invariants of M of order k. Bk ≡ 0 for all odd k, (∂M = ∅).
4Definition: A(t) ∼ B(t) iff lim

t→0

A(t)−B(t)
tm = 0 for all m ≥ 0.
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Consequently, by (3.13) and (3.16)

Z(t) ∼
(

1

4π

)
n
2

∞
∑

k=0

akt
k−n

2 , as t→ 0+, (3.17)

where ak := ak(∆g) :=
∫

M Bk(x) dvg(x) are the heat coefficients of M .
For n = 2, (3.16) and (3.17) can be computed as

H(x, x, t) =
1

4πt
+
K(x)

12π
+
K2(x)t

60π
+O(t2), as t→ 0+, (3.18)

Z(t) =
vol(M, g)

4πt
+
χ(M)

6
+
πt

60

∫

M

K2 dvg +O(t2), as t→ 0+. (3.19)

In particular, a0 = vol(M, g), a2 = 1
3

∫

M
K dvg = 2π

3 χ(M).
Thus, wherever the zeta function converges, we have

ζ(s) =
1

Γ(s)

∫ 1

0

(Z(t) − 1)ts−1 dt+
1

Γ(s)

∫ ∞

1

(Z(t) − 1)ts−1 dt

=
1

Γ(s)

∫ 1

0

ts−1

[

vol(M, g)

4πt
+
χ(M)

6
+
πt

60

∫

M

K2 dvg + t2P (t) − 1

]

dt

+
1

Γ(s)

∫ ∞

1

( ∞
∑

k=1

e−λkt

)

ts−1 dt,

where P (t) is a bounded function in t. The second integral is holomorphic in s,
since Γ(s) does not vanish, and since

∑∞
k=1 e

−λkt ≤ Ce−λ1t for large t, by (3.10).
The first integral may be written as

1

Γ(s)

[

ts−1

s− 1
· vol(M, g)

4π
+
χ(M)

6s
ts +

πts+1

60(s+ 1)

∫

M

K2dvg − ts

s

]t=1

t=0

+B(s),

where B(s) = 1
Γ(s)

∫ 1

0 t
s+1P (t) dt is holomorphic for Res > −1. The above expres-

sion converges for all s ∈ C with Re(s) > 1, and has a meromorphic continuation
to all of C with a simple pole at s = 1.

To summarize these observations, ζ(s) is holomorphic for Re(s) > 1, has a
meromorphic continuation to C with a simple pole at s = 1 and with

ζ(0) =
χ(M)

6
− 1. (3.20)

(See e.g. Rosenberg [81], Chapter 5, for the corresponding result for general n ≥ 2.)
Hence ζ(s) is analytic at s = 0, which means that

ζ ′(0) := lim
s→0

ζ(s) − ζ(0)

s

exists, and (3.7) is justified.
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Remark 3.6 The notion of log-determinant of the Laplacian was introduced in
[79] to define analytic torsion T by

logT :=
1

2

n
∑

q=0

(−1)qqζ ′q(0),

where
−ζ ′q(0) := log det(−∆q),

∆q = Laplacian on q-forms. Cheeger [35] and W. Müller [68] proved independently
later that this notion of analytic torsion coincides with a topological quantity,
namely the Reidemeister torsion.

To prove Theorem 3.1 we need to look at a more general version of Proposition
3.5, as defined by Branson and Gilkey. ([13])

Proposition 3.7 (Branson-Gilkey) Let ϕ ∈ C∞(M), (Mn, g) closed and compact,
and set Hϕ(x, t) := ϕ(x)H(x, x, t),

Zϕ(t) := Tr(ϕe∆gt) =

∫

M

Hϕ(x, t) dvg(x)

with H(x, y, t) as in (3.14).
Then there are coefficients Bk(ϕ,∆g)(·), ak(ϕ,∆g), such that Bk(ϕ,∆g) ≡ 0

for k odd,

Hϕ(x, t) ∼
(

1

4π

)
n
2

∞
∑

k=0

Bk(ϕ,∆g)(x)t
k−n

2 , as t→ 0+, (3.21)

Zϕ(t) ∼
(

1

4π

)
n
2

∞
∑

k=0

ak(ϕ,∆g)t
k−n

2 , as t→ 0+ (3.22)

with Bk(ϕ,∆g)(x) = ϕ(x)Bk(x), Bk(x) as in (3.16), and

ak(ϕ,∆g) =

∫

M

ϕ(x)Bk(x) dvg(x). (3.23)

(In particular, ak = 0 for k odd.)

Notice that with this notation ak(1,∆g) = ak(∆g) = ak as defined in (3.17),
in particular

a0(ϕ,∆g) =

∫

M

ϕ(x) dvg(x), (3.24)

a2(ϕ,∆g) =
1

3

∫

M

ϕ(x)Kg(x) dvg(x) (3.25)

Proof of Theorem 3.1. The following Lemma is the crucial step in the proof of
Theorem 3.1.
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Lemma 3.8 (Key Lemma) Suppose (M 2, g0) is closed and compact. Then

d

dε |ε=0

ζ ′∆u+εϕ
(0) =

a2(ϕ,∆u)

2π
− 2

∫

M
ϕdvgu

∫

M dvgu

, (3.26)

where we have set ∆u := ∆gu , gu := e2ug0.

We defer the proof of this Lemma to the end of this chapter and apply (3.26)
to prove Theorem 3.1 first:

By (3.7) we obtain

− log
det(−∆gw)

det(−∆g0)
= ζ ′∆w

(0) − ζ ′∆0
(0) =

∫ 1

0

d

dt
(ζ ′∆tw

(0)) dt

=

∫ 1

0

a2(w,∆tw)

2π
dt− 2

∫ 1

0

∫

M
we2twdv0

∫

m e2twdv0
dt

=
(3.25)

1

6π

∫ 1

0

(∫

M

wKgtw dvgtw

)

dt− (log

∫

M e2wdv0
∫

M
dv0

)

=
(1.3)

1

6π

∫ 1

0

(∫

M

w(−∆0(tw) +Kg0) dv0

)

dt

=
1

6π

∫ 1

0

(

t

∫

M

|∇0w|2 dv0 +

∫

M

Kg0w dv0

)

dt

=
1

12π

∫

M

(|∇0w|2 + 2Kg0w) dv0.

(Notice that we used the identity d
dε |ε=0

ζ ′∆tw+εw
(0) = d

dtζ
′
∆tw

(0) to apply (3.26)).

Thus (3.1) is proved. 2

Proof of Lemma 3.8. Without justification of every step below we calculate
formally:

d

dε |ε=0

Tr(et∆u+εϕ) =
d

dε |ε=0

Tr(ete−2εϕ∆u)

= 2t · Tr(ϕ∆ue
t∆u) = −2t

d

dt
T̃ r(ϕet∆u),

(3.27)

where

T̃ r(ϕet∆u) = Tr(ϕet∆u) −
∫

M
ϕdvgu

∫

M
dvgu

,

and where we used that ∆gw = e−2w∆g for n = 2, as can easily be checked by
(3.4).
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Therefore, formally,

d

dε |ε=0

d

ds |s=0

ζ∆u+εϕ(s) =
d

ds |s=0

d

dε |ε=0

ζ∆u+εϕ(s)

=
(3.13)

d

ds |s=0

d

dε |ε=0

1

Γ(s)

∫ ∞

0

(Tr(et∆u+εϕ) − 1) ts−1 dt

=
d

ds |s=0

1

Γ(s)

∫ ∞

0

ts−1 d

dε |ε=0

Tr(et∆u+εϕ) dt

=
(3.27)

d

ds |s=0

1

Γ(s)

∫ ∞

0

ts−1

(

−2t
d

dt
T̃ r(ϕet∆u)

)

dt

=
d

ds |s=0

1

Γ(s)

{

[

−2tsT̃ r(ϕet∆u)
]t=∞

t=0

+ 2

∫ ∞

0

sts−1T̃ r(ϕet∆u) dt

}

= 2
d

ds |s=0

{

s

Γ(s)

∫ ∞

0

ts−1T̃ r(ϕet∆u) dt

}

= 2
d

ds |s=0

(

s

Γ(s)

{∫ 1

0

ts−1T̃ r(ϕet∆u) dt+

∫ ∞

1

ts−1T̃ r(ϕet∆u) dt

})

.

Notice that there are no boundary terms in the integration by parts, as the in-
tegrand is of exponential decay at infinity, and, by the asymptotic behavior near
zero (3.21), the integrand vanishes at zero, if Re(s) is sufficiently large.

The last integral is holomorphic in s. In addition, Γ(s) = 1
s − 1

s+1 + . . ., hence

s

Γ(s)
= s2 − s2

s+ 1
+ . . . , in particular

d

ds |s=0

(

s

Γ(s)

)

= 0. (3.28)

So the only term we need to consider is

d

dε |ε=0

d

ds |s=0

ζ∆u+εϕ(s) =
(3.22)

2
d

ds |s=0

(

s2

4π

∫ 1

0

∞
∑

k=0

ak(ϕ,∆u)t
k−2
2 +s−1 dt− s

∫

M

ϕdvgu

)

=
1

2π

d

ds |s=0

s2
[

a0(ϕ,∆u)

s− 1
ts−1

+
a2(ϕ,∆u)

s
ts + 2

∞
∑

k=4

ak(ϕ,∆u)

k + 2s− 2
t

k+2s−2
2

]t=1

t=0

− 2

∫

M

ϕdvgu

=
1

2π

d

ds |s=0

{

s2

s− 1
a0(ϕ,∆u) + sa2(ϕ,∆u) + 2s2

∞
∑

k=4

ak(ϕ,∆u)

k + 2s− 2

}

∫

M

ϕdvgu

=
a2(ϕ,∆u)

2π
−
∫

M

ϕdvgu ,

which proves (3.26). 2
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Theorem 3.9 (Osgood-Phillips-Sarnak [73], [74]) Isospectral metrics on a closed
compact surface (M2, g) are C∞-compact modulo the isometry class.

The basic idea in the proof is that on a compact closed surface (M 2, g0),
each heat coeffient a2i for each i ≥ 2 controls the Sobolev W i,2-norm modulo
some lower order W l,2-norm for l < i of the conformal factor w for the metric
gw = e2wg0. But when i = 1, a2 = 2π

3 χ(M) is only a (topological) constant. Thus
to control the W 1,2-norm of w, one needs to replace a2 by some other isospectral
information–which is provided by the log determinant functional F [w] as defined
in (3.1).
Sketch of the proof. Without loss of generality one can choose the background
metric g0 such that Kg0 ≡ −1, 0, or +1. For a sequence of isospectral metrics
gwk

, a0 = vol(M, gwk
) is fixed. Moreover, by (3.1)

F0 ≡ F [wk] = − 1

12π

∫

M

(|∇0wk|2 + 2Kg0wk) dv0.

If Kg0 = 0 or Kg0 = −1 we get a uniform W 1,2-bound on wk by the observation
after Corolaary 3.3 and Trudinger’s embedding theorem (Corollary 1.7 in §1).

For Kg0 = 1 one uses conformal transformations φ : S2 → S2 and Aubin’s
Lemma (Lemma 2.13) as in the proof of Onofri’s inequality, Theorem 2.11, to work
in the symmetric class S. Then one obtains a uniform bound on

∫

S2 |∇gc(Tφ(wk))|2 dvgc

in terms of F [Tφ(wk)] = F [wk] because of the isometric invariance of the spec-
trum. This together with the fact that the volume of the metric gTφ(wk) is always
a0 leads to a uniform bound on ||wk||1,2. The higher order coefficients a2i then
enable us to control the W i,2-norms of w as well, for all i ∈ N. 2
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§ 4 Conformal covariant operators – Paneitz op-

erator

Let (Mn, g0) be a compact n-dimensional manifold with ∂M = ∅. We consider
a formally selfadjoint geometric differential operator, i.e., an operator defined in
terms of geometric quantitives of (M, g0). We say that A is conformally covariant
of bidegree (a, b) iff

Agw (ϕ) = e−bwAg0(e
awϕ) for all ϕ ∈ C∞(M). (4.1)

Examples.

1. The Laplace-Beltrami operator for n = 2,

∆g :=
1
√

|g|
∂

∂xi

(

gij
√

|g| ∂
∂xj

)

,

satisfies
∆gw = e−2w∆g0 , i.e., (4.2)

∆g0 is conformally covariant of bidegree (a, b) = (0, 2). Recall that in this
case

∆0w +Kgwe
2w = Kg0 , (4.3)

which is the Gaussian curvature equation.

2. The conformal Laplacian for n ≥ 3,

Lg := −∆g +
n− 2

4(n− 1)
Rg,

satisfies

Lgw (ϕ) = e−
n+2
2 wLg0

(

e
n−2

2 wϕ
)

for all ϕ ∈ C∞(M), (4.4)

hence Lg is conformally covariant of bidegree
(

n−2
2 , n+2

2

)

.

Notice that b − a = 2 in Examples 1 and 2. The usual notation gu :=

u
4

n−2 g0 := e2wg0 leads to

Lgu(ϕ) = u−
n+2
n−2Lg0(uϕ) for all ϕ ∈ C∞(M) (4.5)

instead of (4.4). In particular, for ϕ ≡ 1,

Lgu(1) = u−
n+2
n−2Lg0(u), (4.6)

and more explicitly,

−∆0u+ cnRg0u = cnu
n+2
n−2Rgu , (4.7)
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where cn := n−2
4(n−1) , which is the scalar curvature equation or Yamabe equa-

tion.

Here we will present a formal argument to derive (4.3) from (4.4) which we
learnt from Tom Branson. The argument runs as follows: with a formal limit
n ↘ 2 after analytic continuation one finds that (4.3) appears as a special
case of (4.4): Taking ϕ ≡ 1 in (4.4) we get

(

−∆0 +
n− 2

4(n− 1)
Rg0

)

(

e
n−2

2 w
)

=
(4.4)

e
n+2
2 w

(

−∆gw +
n− 2

4(n− 1)
Rgw

)

(1)

= e
n+2
2 w n− 2

4(n− 1)
Rgw .

Adding 0 = ∆0(1) on the left-hand side leads to

−∆0

(

e
n−2

2 w − 1
)

+ cnRg0e
n−2

2 w = e
n+2
2 wcnRgw .

Dividing both sides by n−2
2 and taking the formal limit n↘ 2 we arrive at

− ∆0

(

2

n− 2

(

e
n−2

2 w − 1
)

)

+
1

2(n− 1)
Rg0e

n−2
2 w = e

n+2
2 w 1

2(n− 1)
Rgw ,

⇒− ∆0w +
Rg0

2
= e2wRgw

2
,

which is (4.3), since Rg0 = 2Kg0 , Rgw = 2Kgw , and

“ lim
n→2

2

n− 2

(

e
n−2

2 w − 1
)

= lim
a→0

eaw − e0·w

a− 0
=

d

da
eaw|a=0 = w ”.

3. The first higher order example of conformally covariant operators for n = 4
is the Paneitz operator [75] given by

P4 := (−∆g)
2 − divg

(

2

3
Rggij − 2Rij

)

d, (4.8)

where d is the differential (acting on functions). If we denote by δ the negative
divergence, we can rewrite (4.8) as

(P4)g = (−∆g)
2 + δ

(

2

3
Rggij − 2Rij

)

d. (4.9)

This leads to

〈(P4)gϕ, ψ〉L2(dvg) =

∫

M

(∆g · ∆gϕ)ψ dvg +

∫

M

2

3
Rg〈∇gϕ,∇gψ〉g dvg

−2

∫

M

Ric(∇gϕ,∇gψ) dvg .
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The Paneitz operator P4 has the following basic properties

(P4)gw = e−4w(P4)g0 , i.e., (4.10)

(P4)g is conformally covariant with degree (0, 4).

Moreover,

(P4)g0w + 2Qg0 = 2Qgwe
4w, (4.11)

where

12Qg := R2
g − 3|Ricg |2g − ∆gRg , (4.12)

with |·|g being the Hilbert-Schmidt norm, with respect to the metric g, i.e.,

|Ricg |2g :=

n
∑

i,j=1

|(Rij)g |2g .

Rewriting (4.11) as −(P4)g0w + 2Qgwe
4w = 2Qg0 we discover the similarity

to (4.3), and we can interpret ∆g as −(P2)g .

In general, it is tedious to check formulas (4.10) and (4.11).

We will here consider two simple examples of the Paneitz operator.

3a. On R
4 (or Ω ⊂ R

4) with the flat metric g = |dx|2 we have R = 0, Rij = 0
and the Paneitz operator reduces to

(P4)g = (−∆g)
2. (4.13)

3b. If (M4, gc) is an Einstein manifold, i.e., with (Rij)gc = 1
4Rgc(gc)ij , Rgc ≡

const. for the canonical metric gc, we get

(P4)gc = (−∆gc)
2 − 1

6
Rgc∆gc

= (−∆gc)

(

−∆gc +
1

6
Rgc

)

= (−∆gc) ◦ Lgc ,

(4.14)

where Lgc is the conformal Laplacian discussed as Example 2. (4.14) holds
true, since δd = − ∗ d ∗ d = −∆.

3c. As a special example we take (S4, gc) with Rgc ≡ 12, then (4.14) reads as

(P4)gc = (−∆gc) ◦ (−∆gc + 2). (4.15)
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4. In the same paper [75], Paneitz also introdued the conformal Paneitz-operators
(Pn

4 )g . Setting

Jg :=
Rg

2(n− 1)
,

Ag := (Aij)g := (Rij)g − Jggij ,

(Cij)g :=
1

n− 2
(Aij)g ,

(Tg)ij = (n− 2)Jggij − 4Cggij ,

and

(Qn
4 )g :=

n

2
J2

g − 2|Ag|2 − ∆gJg ,

one gets the operator

(Pn
4 )g = (−∆g)

2 + δTgd+
n− 4

2
(Qn

4 )g , (4.16)

and the claim is

(Pn
4 )g is conformally covariant of bidegree

(

n− 4

2
,
n+ 4

2

)

. (4.17)

If one accepts (4.17) one can derive (4.11) from (4.17) in the same way
(taking the formal limit n↘ 4) as we deduced (4.3) from (4.4).

Remarks

1. Although the operator P n
4 was introduced by Paneitz, the specific ex-

pression of the Qn
4 was introduced by T. Branson [9]. More significantly,

in the special case when n = 4, Branson has pointed out that Q4
4 is part

of the integrand in the Gauss-Bonnet formula. As we will see in the theo-
rem below, the existence of P n

k for k ≥ 4 was established in [49], In ([10],
[11]) Branson has also introduced the corresponding Qn

k -curvatures. We
now call these curvatures Q curvatures.

2. Notice in the definition of (Qn
4 )g , that (Q4

4)g = 2Qg, compare to (4.12)
in Example 3.

3. The tensor A is called the Weyl-Schouten tensor, we will discuss some
eigenvalues problems of the tensor in later chapters of this lecture notes.

Theorem 4.1 [49]

Let k be a positive even integer. Suppose n is odd, or k ≤ n.

Then there is a conformally covariant differential operator Pk on scalar func-
tions of bidegree

(

n−k
2 , n+k

2

)

with:
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(i) the leading symbol of Pk is (−∆)k/2, and on (Rn, |dx|2) we have Pk ≡
(−∆)k/2,

(ii) Pk = P 0
k + n−k

2 Qk, where Qk is a local scalar invariant, and P 0
k =

δSk−2d. Here, Sk−2 is a differential operator on 1-forms,

(iii) Pk is self-adjoint.

Remarks.

1. This theorem does not assert uniqueness of the operator Pk . For exam-
ple, one can add |W |2 for n = 4 : (P4)g + |W |2g has the same properties
of the theorem as (P4)g , where W is the Weyl-tensor, which satisfies a
pointwise conformal invariant property: |W |2gw

= e−4w|W |2g0
.

2. The condition k ≤ n is necessary if n is even.

3. The work of [49] is based on the work of Fefferman-Graham, [43], where
they regard (Mn, g) as the conformal infinity of (Xn+1, g+) for some
asymptotically conformally compact Einstein manifold Xn+1 satisfy-
ing Ricg+ = −ng+. There is a correspondence between the conformal
invariants of (Mn, g) and the metric invariants of (Xn+1, g+).

4. Powers of conformally covariant operators are in general not confor-
mally covariant any more, which can be seen by looking at powers of
the conformal Laplacian.

Corollary 4.2 If n is even, then there exists a curvature metric invariant (Qn)g

with
∫

M

(Qn)gw dvgw =

∫

M

(Qn)g0 dv0, (4.18)

i.e.,
∫

M
(Qn)g dvg is a conformally invariant quantity.

Note that (Qn)g = Qg for n = 4, see (4.12). For n = 2, the total curva-
ture

∫

M2 Kg dvg satisfies the invariance property (4.18), it is in fact a topological
invariant according to the Gauss-Bonnet-Theorem.
Proof of Corollary 4.2 Since (Pn)g0w + (Qn)g0 = (Qn)gwe

nw obtained by an-
alytic continuation from the conformal invariance relation for Pn, similar to the
case n = 2, 4, we can apply part (ii) of Theorem 4.1 [49] for k = n. P 0

n is of the
form δSn−2d, which vanishes after integration. So

∫

M

(Qn)g0 dv0 =

∫

M

(Qn)gwe
nw dv0 =

∫

M

(Qn)gw dvgw .

2
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§ 5 Functional Determinat on 4-manifolds

Let (Mn, g) be a compact n-dimensional manifold without boundary and suppose
that A is a self-adjoint, geometric differential operator with positive leading symbol
of order 2l. In addition, assume that A scales like its leading symbol, i.e., if ḡ := c2g
for some c > 0, then Ā = (A)ḡ = c−2l(A)g = c−2lA.

Take, e.g., A as the conformal Laplacian, that is

A := L = −∆g + cnRg ,

compare with Example 2 of Chapter 4.
Then we have the heat kernel expansion with asymptotic behavior

Tr(ϕe−tA) ∼
∞
∑

k=0

t
k−n
2l ak(ϕ,A), as t→ 0+ (5.1)

where

ak(ϕ,A) :=

∫

M

ϕ(x)Bk(x,A) dvg(x)

for ϕ ∈ C∞(M), where Bk is a local invariant (in metric g) of order k, compare
with Proposition 3.7. Denoting the eigenvalues of A by λj , j = 0, 1, 2, . . . , then
only finitely many of the λj ’s are negative, since M is compact, and the asymptotic
behavior for j tending to ∞ is given by Weyl’s formula

λj ∼ c(g,A)j
2l
n ,

(compare with (3.10) for A = ∆g, l = 1.)
In analogy to (3.6) the zeta function ζA for the operator A is defined as

ζA(s) :=
∑

λj 6=0

|λj |−s for Re (s) >
n

2l
. (5.2)

ζA has a meromorphic continuation onto all of C with simple poles, and is analytic
at s = 0, which may be proved in a fashion similar to the argumentation used in
Chapter 3.

The determinant of A is defined as

detA := (−1)#{j:λj<0} exp(−ζ ′A(0)), (5.3)

hence |detA| = exp(−ζ ′A(0)), generalizing (3.7).
Notice that this definition of the determinant is not scaling invariant, that

is, for ḡ = c2g, for c > 0, one gets Ā = c−2lA, λ̄j = c−2lλj and

ζĀ(s) =
∑

λ̄j 6=0

|λ̄j |−s = c2lsζA(s).
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Hence, although ζĀ(0) = ζA(0), while

d

ds |s=0

ζĀ(s) = (log c2l)ζA(0) + ζ ′A(0)

⇒ e−ζ′

Ā
(0) = e−(log c2l)ζA(0)−ζ′

A(0)

= c−2lζA(0) exp(−ζ ′A(0)), that is

det Ā = c−2lζA(0) detA.

This observation motivates the following definition:

P (Ag) := (Vol(M, g))
2lζA(0)

n detA. (5.4)

Then

P (Āḡ) = (Vol(M, ḡ))
2lζĀ(0)

n det Ā

= (Vol(M, g))
2lζA(0)

n c2lζA(0) det Ā

= (Vol(M, g))
2lζA(0)

n detA

= P (Ag),

since vol(M, ḡ) = cn Vol(M, g) for ḡ = c2g, c > 0. Thus P (Ag) is a scale invariant
quantity.

The following conformal index theorem is due to Branson and Orsted [14].

Theorem 5.1 (Branson-Orsted) Assume that A is as above and conformally co-
variant (or a positive integral power of conformally covariant operators). For sim-
plicity assume that

N(A) := #{j : λj = 0} = 0.

Then for ak(Ag) := ak(1, Ag)

d

dε |ε=0

ak(Agw+εf
) = (n− k)ak(f,Agw ), (5.5)

d

dε |ε=0

ζ ′Agw+εf
(0) = 2lan(f,Agw ). (5.6)

Notice that (5.5) for k = n implies that an(Agw ) is conformally invariant. We

can compute ζ ′Agw
(0)−ζ ′Ag

(0) = − log
|detAgw |
|detAg| = − log

det Agw

detAg
, using the fact that

the number of negative eigenvalues appearing in the definition (5.3) is conformally
invariant for conformally covariant operators.

In terms of the scale invariant quantity PA(g), the last quotient may be
rewritten as

− log
P (Agw )

P (Ag)
= −2lζA(0)

n
log

Vol(M, gw)

Vol(M, g)
− log

detAgw

detAg
.
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By (5.6) we arrive at

ζ ′Agw
(0) − ζ ′Ag

(0) =

∫ 1

0

d

dt
ζ ′Agtw

(0) dt

= 2l

∫ 1

0

an(w,Agtw ) dt,

(5.7)

by the simple identity d
dε |ε=0

ζ ′Agtw+εw
(0) = d

dtζ
′
Agtw

(0).

Remark 5.2 When n is odd, an ≡ 0 for compact closed n-manifolds. Hence
log detAgw is a constant, compare to (3.6).

We now focus on the case n = 4. AssumingN(A) = N(Ag) = 0 as in Theorem
5.1, then we have

Lemma 5.3 Let A be as in Theorem 5.1 on (M 4, g0),M compact and closed, with
l = 1. Then there are constants γ1, γ2, γ3 depending on A but not on g0, such that

B4(Ag) = γ1|Wg |2g + γ2Qg − γ3∆gRg , (5.8)

|Wgw |2gw
= e−4w|Wg0 |2g0

, (5.9)

Rgw = e−2w(Rg − 6∆0w − 6|∇0w|2g0
), (5.10)

∆gwRgw = δgwdgwRgw

= e−4w(∆0Rg0 + b1(w) + b2(w) + b3(w))
(5.11)

with

b1(w) = −6∆2
0w − 2∆0wRg0 − 2〈∇0w,∇0Rg0〉g0 ,

b2(w) = −6∆0(|∇0w|2g0
) + 12(∆0w)2 + 12〈∇0w,∇0∆0w〉g0 ,

b3(w) = 12∆0w|∇0w|2g0
+ 12〈∇0w,∇0(|∇0w|2g0

)〉g0 ,

where each bi(w) is homogeneous of degree i in w.

Remarks.

1. Recall (4.12), i.e., 12Qg := R2
g − 3|Ricg|2g − ∆gRg. In general, there are

only four possible metric invariants of order 4, namely R2
g , |Ricg |2g, |Wg |2g and

∆gRg , a linear combination of which furnishes Bk(Ag). Apart from |Wg |2g
these are not pointwise conformal invariants, only the integral of them is.
Moreover, the conformal covariance of A, i.e. b − a = 2, enforces the ratio
R2

g : |Ricg|2g to be 1 : −3, which allows us to express Bk(Ag) in terms of
|Wg |2g,∆gRg and Qg.
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2. The negative divergence introduced for the Paneitz operator (Example 3 in
Chapter 4) satisfies the covariance relation

δgwα = e−4wδge
2wα, (5.12)

for any 1-form α, and

dgwf = dgf (5.13)

for any function f .

Sketch of the proof of Lemma 5.3. The fact that (5.8) holds true is
made plausible in the first remark above and (5.10) is a direct consequence of the
conformal covariance of A. For the conformal Laplacian, A = L, one obtains (recall
(4.4) in Chapter 4) for n = 4,

Lgw(ϕ) = e−3wLg0(e
wϕ) for all ϕ ∈ C∞(M),

and setting ϕ ≡ 1

−∆gw(1) +
Rgw

6
= e−3w(−∆0(e

w) +
Rg0

6
ew),

which implies (5.10) (for A = L), since ∆0ew

ew = ∆0w + |∇0w|2g0
.

The identity (5.11) follows from a straightforward computation using (5.12)
and (5.10).

2

Recalling (4.11) one deduces from (5.8) – (5.11) that

B4(Agw ) = e−4w(B4(Ag0) +
1

2
γ2(P4)g0w − γ3(b1(w) + b2(w) + b3(w)), (5.14)

where (P4)g0 denotes the Paneitz operator with respect to the background metric
g0.

Under the assumption that A does not have zero eigenvalues, i.e. N(A) = 0,
we can go back to (5.7) to compute the log determinant (for l = 1):

− log
detAgw

detAg0

= ζ ′Agw
(0) − ζ ′Ag0

(0)

= 2

∫ 1

0

[∫

M

wB4(Agtw ) dvgtw

]

dt

=
(5.14)

2

∫ 1

0

[∫

M

w(B4(Ag0 ) +
1

2
γ2t(P4)g0w − γ3(tb1(w) + t2b2(w) + t3b3(w)))e−4tw dvgtw

]

dt

= 2

∫

M

w

(

B4(Ag0 ) +
1

4
γ2(P4)g0w − γ3

(

1

2
b1(w) +

1

3
b2(w) +

1

4
b3(w)

))

dv0,

(5.15)
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where we used dvgtw = e4tw dv0 and the homogeneity of the bi, i = 1, 2, 3. In terms
of the scale-invariant expression P (A),

− logP (Agw ) + logP (Ag0) = − log
detAgw

detAg0

− 1

2
ζA(0) log

Vol(M, gw)

Vol(M, g0)
,

where

ζA(0) =

∫

M

B4(Ag0 ) dv0 =
(5.8)

∫

M

(γ1|Wg0 |2g0
+ γ2Qg0 − γ3∆0Rg0)dv0

= γ1

∫

M

|Wg0 |2g0
dv0 + γ2

∫

M

Qg0 dv0.

(5.16)

Thus we have

Theorem 5.4 (Branson-Orsted)[14] Let A be as in Lemma 5.3, then

FA[w] := −2 log
P (Agw )

P (Ag0 )
= γ1I[w] + γ2II[w] + γ3III[w],

where

I[w] : = 4

∫

M

w|Wg0 |2g0
dv0 −

∫

M

|Wg0 |2g0
dv0 log

∫

M

e4w dv0,

II[w] : =

∫

M

(w(P4)g0w + 4wQg0) dv0 −
∫

M

Qg0 dv0 log

∫

M

e4w dv0,

III[w] : = −4

∫

M

(

w∆0Rg0 +
1

2
wb1(w) +

1

3
wb2(w) +

1

4
wb3(w)

)

dv0

=
1

3

(∫

M

R2
gw
dvgw −

∫

M

R2
g0
dv0

)

Remarks.

1. The last equality in the expression III can be obtained by an integration
by parts. Notice that by (5.10), R2

gw
dvgw = R2

gw
e4w dv0 = (Rg0 − 6∆0w −

6|∇gw|2g0
)2 dv0.

2. For A = L = −∆ +R/6 the ratios between the γi are as follows, see [14],

(4π)2180(γ1, γ2, γ3) =

(

1,−4,−2

3

)

.

For the square of the Dirac operator A = ∇2 (∇ is a conformally covariant
operator of bidegree

(

5
2 ,

3
2

)

) one has

(4π)2360(γ1, γ2, γ3) =

(

−7, 88,
28

6

)

.

Notice that γ2γ3 > 0 in both examples.

In Branson’s notation [10] our (γ1, γ2, γ3) correspond to (β1, β2, β3/6).
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Let us now recall some facts about the Yamabe metric. Given (Mn, g0) com-
pact without boundary, one defines

Y (Mn, g0) := inf
gw∈[g0]

∫

M Rgw dvgw

(∫

M dvgw

)
n−2

n

,

which is called the Yamabe constant, a conformally invariant quantity. Here [g0]
denotes the class of all metrics that are conformal to the background metric g0.
One central result regarding the Yamabe constant is due to Yamabe [92], Trudinger
[88], Aubin [4] and Schoen [82]:

Theorem 5.5 (i) sign(Y (Mn, g0)) = sign(λ1(Lg0)), where λ1 denotes the first
eigenvalue of the conformal Laplacian Lg0 .

(ii) Y (Mn, g0) ≤ Y (Sn, gc) with equality iff (Mn, g0) is conformal equivalent to
(Sn, gc).

(iii) Y (Mn, g0) is attained by some metric gw ∈ [g0] with Rgw ≡ const.. This
metric is referred to as the Yamabe metric and often denoted by gY .

Proof. Since we are going to need only the first part, we will restrict our attention
to proving (i).

Let g0 be the background metric. For any u ∈ C∞(M), u > 0, set ḡu :=

u
4

n−2 g0, then

Rḡu =
1

Cn
u−

n+2
n−2Lg0u,

where Lg0u = −∆0u+CnRg0u is the conformal Lapalcian, Cn = n−2
4(n−1) . It follows

that
∫

M

Rḡudvḡu =
1

Cn

∫

M

uLg0udv0 =
1

Cn

∫

M

(|∇0u|2 + CnRg0u
2)dv0.

Let φ1 be the first eigenfunction of Lg0 with ||φ1||L2(M,g0) = 1. Then φ1 ∈ C∞(M)
and it does not change sign. We may assume that φ1 > 0. Note that

∫

M
Rḡφ1

dvḡφ1

(
∫

M dvḡφ1
)

n−2
n

=
λ1

Cn||φ1||2
L

2n
n−2 (M,g0)

.

Thus if λ1 < 0, then Y (Mn, g0) < 0.
If λ1 = 0, then the above formula shows that Y (Mn, g0) ≤ 0; while we also

have
∫

M Rḡudvḡu = 1
Cn

∫

M uLg0udv0 ≥ 0 for all u ≥ 0. Thus Y (Mn, g0) ≥ 0.
Hence Y (Mn, g0) = 0.

If λ1 > 0, then for any u ∈ C∞(M), u > 0,
∫

M uLg0udv0 ≥ λ1||u||2L2(M,g0).
On the other hand we also have

∫

M

uLg0udv0 ≥ ||u||2H1(M,g0)
− C(g0)||u||2L2(M,g0)

.
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Thus we have

∫

M

uLg0udv0 ≥ Cg0 ||u||2H1(M,g0) ≥ Cg0 ||u||2
L

2n
n−2 (M,g0)

by the Sobolev imbedding inequality. Hence

∫

M Rḡudvḡu

(
∫

M dvḡu)
n−2

n

≥ C(g0) > 0.

That is Y (Mn, g0) ≥ C(g0) > 0.

For (ii) and (iii) we refer to [4], [82]. 2

Notice that if Y (Mn, g0) ≥ 0, then taking the Yamabe metric gY (⇒ RgY ≡
const. ≥ 0 according to part (iii) of the previous theorem), we are led to the
estimate (taking Vol(M, gw) = Vol(M, gY ) = 1 for simplicity),

∫

M

R2
gw
dvgw ≥

(∫

M

Rgw dvgw

)2

≥
(∫

M

RgY dvgY

)2

=

∫

M

R2
gY
dvgY .

Thus III [w] ≥ 0 for all w in Theorem 5.4, and it is zero only when Rgw = RgY . We
take this as indication that it is very non-trivial to achieve the infimum of III[w].

Before discussing extremal problems for the zeta functional determinant F [·]
in Theorem 5.4 on general manifolds, we turn our attention to studying extremal
metrics on S4 with respect to the conformal Laplacian:

Theorem 5.6 (Branson-Chang-Yang) [12] On (S4, gc) detLgw is minimized for

gw = e2wgc, with the volume constraint Vol(S4, gw) = Vol(S4, gc) = 8π2

3 = |S4|, iff
gw = φ∗(gc) for some conformal transformation φ : S4 → S4, i.e. gw and gc are
isometric.

The theorem above should be viewed as a 4-dimensional analogue of the
Onofri inequality in Theorem 3.1 and Corollary 3.2.

Remarks.

1. For the Dirac operator ∇2 one gets det ∇2
gw

is maximized iff gw is isometric
to gc.

2. On (S4, gc) one has |Wgc |2gc
≡ 0, hence I[w] ≡ 0, II[w] ≥ 0 with equality iff

gw = φ∗(gc) and III[w] ≥ 0 as pointed out before, since gc = gY , here, with
Rgc ≡ 12, and equlity iff gw = φ∗(gc).
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3. We may view the fact that II[w] ≥ 0 as a special case of Beckner’s inequality
[7], stated for general operators Pn on (Sn, gc), given by

(Pn)gc :=







Π
n−2

2

k=0 (−∆gc + k(n− k − 1)), for n even
(

−∆gc +
(

n−1
2

)2
)

1
2

Π
n−3

2

k=0 (−∆gc + k(n− k − 1)), for n odd.

Branson [9] pointed out that these operators Pn may be obtained by confor-
mally pulling back the operator (−∆)n/2 on Rn via stereographic projection
π : Sn − {N} → Rn; where N denotes the north pole of the sphere Sn. For
instance, for n = 2 one obtains the Laplacian ∆gc on S2 by conformally
pulling back −∆ on R2, whereas for n = 4 one gets the Paneitz operator

(P4)gc = (−∆gc)

(

−∆gc +
1

6
Rgc

)

= (−∆gc)(−∆gc + 2),

compare with Example 3b of Chapter 4.

Beckner’s inequality states

log

∫

Sn

enw dvgc ≤ n

∫

Sn

w dvgc +
n

2(n− 1)!

∫

Sn

wPn(w) dvgc

with equality iff gw = φ∗(gc).

For n = 2 this reduces to Onofri’s inequality (Theorem 2.11), while for n = 4
Beckner’s inequality implies II[w] ≥ 0, since on (S4, gc), Qgc ≡ 3 according
to (4.12) with Rgc ≡ 12.

4. For more general results we give the following overview:

standard is a for the among metrics proved
metric gc operator with fixed by

on

S2 global max
global min

det(−∆)

det ∇2
area
area

Onofri [72]

S4 global min
global max

detL
det ∇2







volume
&conformal

class
Branson Chang Yang [12]

S6 global max
global min

detL

det ∇2







volume
&conformal

class
Branson [11]

S3 local max
local max

det(−∆)
det(−∆)

volume & conformal
class

volume

K. Richardson [80]
K. Okikiolu [70]

S2n+1, n ≥ 3 saddle point det(−∆)
volume & conformal

class
K. Okikiolu [70]

S4n+1

S4n+3
local min
local max

detL
detL

}

volume K. Okikiolu [70]
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Here L denotes the conformal Laplace operator. The results by Okikiolu, [70]
especially the result that on the 3-sphere S3. det(−∆gc) is a local maximum
of the functional det(−∆g) among all metrics g (not only the ones conformal
to gc) defined on S3, are truly remarkable. An important tool in her work is
the computation of the canonical trace of odd operators in odd dimensions.
In a separate paper [69], she has also given an alternative proof of Polyakov’s
formula, Theorem 3.1, using the calculus of pseudo-differential operators.
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§ 6 Extremal metrics for the log-determinant

functional

We study the extremal metric for the functional FA[w] given in Theorem 5.4 by
Branson and Orsted. As a basic tool we will need the following generalization of
Moser’s inequality, Adam’s inequality.

Lemma 6.1 (Adam [1]) Let Ω ⊂ Rn be a bounded domain, and suppose k < n.
Then there are constants c = c(k, n), β0 = β0(k, n), such that for all w ∈ Ck

0 (Ω)
with ||∇kw||p ≤ 1, p = n

k , we have
∫

Ω

exp(β|w(x)|p′

) dx ≤ c|Ω| (6.1)

for all β ≤ β0, and p′ : = p/(p− 1).

This inequality is sharp in the following sense: If β > β0, then for any N ∈ N

there exists uN ∈ C∞
0 (Ω) with ||∇kuN ||p ≤ 1, such that

∫

Ω

exp(β|uN (x)|p′

) dx > N |Ω|.

Notice that we denote

||∇ku|| : = ||∆k/2u|| for k even,

||∇ku|| : = ||∇∆
k−1
2 u|| for k odd.

If n = 4, k = 2, whence p = p′ = 2, then β0 = β0(2, 4) = 32π2. On a compact
4-manifold, Lemma 6.1 takes the following form (cf. [12], [46] for general Mn):

Lemma 6.2 On (M4, g0) compact, closed, there exists a constant c0 = c0(g0) such
that for all w ∈ C2(M) with ||∆0w||2 ≤ 1

∫

M

exp(32π2|w − w̄|2) dv0 ≤ c0. (6.2)

Corollary 6.3 On (M4, g0) as above one has

log

∫

M

e4(w−w̄) dv0 ≤ log c0 +
1

8π2
||∆0w||22. (6.3)

(6.3) follows from (6.2) in the same way as Corollary 1.7 was deduced from
Corollary 1.6 in the first chapter.

Define for a metric g on M

kg : =

∫

M

Qg dvg , (6.4)
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which is a conformally invariant constant, i.e., kg = kg0 =
∫

M
Q0 dv0 for g = gw =

e2wg0. Due to the Chern-Gauss-Bonnet formula

4π2χ(M4) =
1

8

∫

M

|W |2 dv +

∫

M

Qdv. (6.5)

Suppose in the following that γ2 < 0 in the representation of FA[w] given in
Theorem 5.4 (otherwise consider (−FA) instead).

Lemma 6.4 Assume that γ2 < 0, and γ2γ3 > 0. Let c1, c2 ∈ R be given constants
with c2 > 0 and suppose that

kg0 < 8π2 − γ1

γ2

∫

M

|W0|20 dv0. (6.6)

Then for all w ∈ Sc1,c2(A), where

Sc1,c2(A) : = {w ∈ C∞(M) : (sign γ2)FA[w] ≤ c1, vol(M, gw) = c2 vol(M, g0)},
one has the uniform estimate

||w||W 2,2 ≤ C(c1, c2, A, g0). (6.7)

Remark. If we assume for simplicity that A = L, as we did in the proof of
Lemma 5.3, we have

(4π)2180(γ1, γ2, γ3) =

(

1,−4,−2

3

)

,

according to the second remark following Theorem 5.4. Hence the condition on kg0

in Lemma 6.4 reads as

kg0 < 8π2 +
1

4

∫

M

|W0|20 dv0.

Proof of Lemma 6.4. We will show that, under the assumptions γ2γ3 > 0 and
(6.6), the terms II [w] and III [w] in the representation for FA[w] add up to some
multiple of the W 2,2-norm of w. All the terms involving the background metric g0

will carry a sub – or superscript “0”, whereas g = gw = e2wg0 will not be indicated
explicitly, i.e., e.g., ∇g0 = ∇0, but ∇g = ∇.

II[w] =

∫

M

(w,P40w)0 dv0 + 4

∫

M

Q0(w − w̄) dv0

−
∫

M

Q0 dv0 log

∫

M

e4(w−w̄) dv0

=
(4.9)

∫

M

(∆0w)2 dv0 +
2

3

∫

M

R0|∇0w|20 dv0

− 2

∫

M

Ric0(∇0w,∇0w) dv0 + 4

∫

Q0(w − w̄)dv0

−
∫

M

Q0 dv0 log

∫

M

e4(w−w̄) dv0.

(6.8)
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For III[w] one computes

III[w] =
1

3

(∫

M

R2 dv −
∫

M

R2
0 dv0

)

=
1

3

∫

M

[36(∆0w + |∇0w|20)2 − 12R0(∆0w + |∇0w|20)] dv0

= 12

∫

M

(∆0w + |∇0w|20)2 dv0 − 4

∫

M

R0(∆0w + |∇0w|20) dv0,

(6.9)

where we used (5.10), compare with Remark 1 after Theorem 5.4. The assumption
on kg0 may be rewritten as

−γ2

∫

M

Q0 dv0 − γ1

∫

M

|W0|20 dv0 < −γ28π
2, (6.10)

since γ2 < 0. This implies by (6.3)

[

− γ2

∫

M

Q0 dv0 − γ1

∫

M

|W0|20 dv0
]

log

∫

M

e4(w−w̄) dv0

< −γ28π
2

(

1

8π2

∫

M

(∆0w)2 dv0 + c0

)

= −γ2

∫

M

(∆0w)2 dv0 − 8π2γ2c0.

(6.11)

Because of the strict inequality in (6.10) we may rewrite the left-hand side of (6.11)
as

[

− γ2

∫

M

Q0 dv0 − γ1

∫

M

|W0|20 dv0
]

log

∫

M

e4(w−w̄) dv0

≤ (−γ2 − ε)

∫

M

(∆0w)2 dv0 + C

(6.12)

for some ε > 0.
Inserting (6.8), (6.9) and (6.12) into the expression for FA[w] we can estimate

FA[w] ≤ (γ2 + 12γ3 − γ2 − ε)

∫

M

(∆0w)2 dv0

+ 24γ3

∫

M

(∆0w)|∇0w|20 dv0 + 12γ3

∫

M

|∇0w|4 dv0

+ lower order terms in w.

Since ε > 0, γ2 < 0, γ2γ3 > 0, we obtain by Young’s inequality and the Sobolev
embedding W 1,4 ↪→W 2,2, that first

∫

M

|∇0w|40 dv0 ≤ C(c1, c2, FA[w]),
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and then
∫

M

(∆0w)2 dv0 ≤ C(c1, c2, FA[w]).

2

Lemma 6.4 now implies

Theorem 6.5 ([33]) If γ2 < 0, γ2γ3 > 0, and if

kg0 < 8π2 − γ1

γ2

∫

M

|W0|20 dv0,

then there exists an extremal metric g = gw = e2wg0 with w ∈W 2,2(M),

FA[w] = sup
Sc1,c2 (A)

FA[·],

satisfying (in terms of the metric g)

γ1|W |2 + γ2Q− γ3∆R = γ1

∫

M

|W |2 dv + γ2

∫

M

Qdv ≡ const. (6.13)

Furthermore, w ∈ C∞(M) according to [25].

Notice that this result applies to the conformal Laplacian A : = L, where
(γ1, γ2, γ3) ∼ (1,−4,−2/3), if kg0 < 8π2 + (1/4)

∫

M |W0|20 dv0.
Regarding regularity even more is true:

Theorem 6.6 (Uhlenbeck-Viaclovsky [89]) Any critical point of FA[·] of class
W 2,2(M) is C∞-smooth.

Our next goal is to derive an application of Theorem 6.5 given by Gursky,
see Theorem 6.7. Denote

σ2 : =
1

2

(

1

12
R2 − |E|2

)

(6.14)

(in terms of some metric g on M), where E is the Einstein tensor on M , and recall
the identity

Ric = E +
R

4
g, (6.15)

to conclude by (4.12), and the fact that TrE ≡ 0,

12Q = −∆R+R2 − 3|Ric|2

=
(6.15)

−∆R+
1

4
R2 − 3|E|2

= −∆R+ 3

(

1

12
R2 − |E|2

)

= −∆R+ 6σ2.

(6.16)
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(The notation σ2 is motivated by more general considerations regarding elementary
symmetric functions σk of the eigenvalues of geometric tensors, see Chapter 7.)

Two alternative formulations of Theorem 6.5 turn out quite useful later on:
Theorem 6.5’ If γ2, γ3 < 0, and if

kg0 =

∫

M

Q0 dv0 < 8π2 − γ1

γ2

∫

M

|W0|20 dv0,

or equivalently, if

kd : = γ1

∫

M

|W0|20 dv0 + γ2

∫

M

Q0 dv0 > γ28π
2,

then there is wd ∈ C∞(M) such that

FA[wd] = sup
Sc1,c2 (A)

FA[·],

and in terms of the metric g = gwd
= e2wdg0,

γ1|W |2 + γ2Q− γ3∆R ≡ kd

vol(M, gwd
)
. (6.17)

As it is sometimes more convenient to take γ2 and γ3 to be positive numbers
instead of negative numbers; we may take infFA instead of supFA and restate
Theorem 6.5’ as :
Theorem 6.5” If γ2, γ3 > 0, kd < γ28π

2, then there exists wd ∈ C∞(M) with

FA[wd] = inf
Sc1,c2 (A)

FA[·],

such that in terms of the metric g = gwd
= e2wdg0, (6.17) holds, or equivalently,

γ1|W |2 + γ2

(

− 1

12
∆R +

1

2
σ2

)

− γ3∆R =
kd

vol(M, gwd
)

⇔ −
(

1

12
γ2 + γ3

)

∆R = −γ1|W |2 − 1

2
γ2σ2 +

kd

vol(M, gwd
)

⇔ ∆R = λ+ α|W |2 + βσ2, (6.18)

where

λ : = − kd

vol(M, gwd
)

(

1

12
γ2 + γ3

)−1

≤ 0,

α : = γ1

(

1

12
γ2 + γ3

)−1

≤ 0, and where

β : =
1

2
γ2

(

1

12
γ2 + γ3

)−1

.
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Theorem 6.7 (Gursky [54]) If Y (M 4, g0) > 0, and if kg0 ≥ 0, then the Paneitz
operator (P4)g0 = P0 is positive, with λ1(P0) = 0 and ker(P0) = {R}.

Remarks.

1. Both Y (M4, g) and kg are conformally invariant quantities, hence the as-
sumptions above are natural, since P4 is conformally covariant of bidegree
(0, 4), see (4.10). This implies that ker(P ) is a conformally invariant set.

2. The proof of Theorem 6.7 will be used to prove the main result in Chapter
7.

3. It is unclear, whether the assumptions Y (M 4, g0) > 0, kg0 ≥ 0 are also
necessary to obtain P0 to be positive. Notice that there are indeed Paneitz
operators with some negative eigenvalues. For instance, let Σ be the genus 2
hyperbolic surface andM : = Σ×Σ with λ1(∆Σ) � 1 and −6 ≡ R < 0. Then
P = (−∆)(−∆+(R/6)) = ∆2 +∆, which gives λ1(P ) = λ2

1(∆Σ)−λ1(∆Σ) <
0.

Before proving Theorem 6.7 we need to derive a few auxiliary results.

Lemma 6.8 Suppose that Y (M 4, g0) > 0, and assume that (6.18) holds with α ≤
0, 0 ≤ β ≤ 4, λ ≤ 0, then R : = Rgwd

> 0.

Proof. We are going to show that under these assumptions we actually obtain (in
terms of g = gwd

= e2wdg0)
LR ≥ 0, (6.19)

where L = Lgwd
is the conformal Laplacian on (M 4, gwd

) as discussed in Example

2 of Chapter 4. To see that (6.19) holds, recall that for ψ ∈ C2(M),

Lψ = −∆ψ +
R

6
ψ,

so if β ∈ [0, 4], then

LR = −∆R+
R2

6

=
(6.18)

−λ− α|W |2 − β

(

1

2

(

1

12
R2 − |E|2

))

+
R2

6

≥ 0.

Now Lemma 6.8 follows from (6.19) and the following general result. 2

Lemma 6.9 If on (Mn, g)

LR = −∆R+ cnR
2 ≥ 0 (6.20)

(all in terms of the metric g), cn = n−2
4(n−1) , then Y (Mn, g) > 0 implies R = Rg > 0

on Mn.
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Proof. Let µ1 be the first eigenvalue of L and ϕ the first eigenfunction, ϕ > 0.
Then we know from Theorem 5.5 (i), that Y (Mn, g) > 0 ⇔ µ1 > 0. Defining
f : = R/ϕ we compute (in terms of g)

cnR
2 ≥

(6.20)
∆R = ∆(fϕ)

= f∆ϕ+ ϕ∆f + 2〈∇f,∇ϕ〉
= f(cnR − µ1)ϕ+ ϕ∆f + 2〈∇f,∇ϕ〉
= cnR

2 −Rµ1 + ϕ∆f + 2〈∇f,∇ϕ〉,

i.e., Rµ1 ≥ ϕ∆f + 2〈∇f,∇ϕ〉, or

fµ1 −
2

ϕ
〈∇f,∇ϕ〉 ≥ ∆f.

Since µ1 > 0, we can apply the minimum principle for f to obtain f ≥ 0, hence
R ≥ 0. If f = 0 at some point, we would get f ≡ 0, i.e., R ≡ 0 by the strong
maximum principle, contradicting Y (Mn, g) > 0 (see Theorem 5.5), whence R > 0.

2

Lemma 6.10 Let (M4, g) be a smooth, compact closed 4 manifold. Then Y (M 4, g) ≥
0 implies kg ≤ 8π2 with equality iff (M4, g) is conformally equivalent to (S4, gc).

Remarks.

1. If γ2 < 0 and Y (M4, g) ≥ 0, γ1 > 0, then it follows from Lemma 6.10 that
the assumptions of Theorem 6.5’ are automatically satisfied unless (M 4, g)
is conformally equivalent to (S4, gc), in which case the existence result is
known anyway.

2. Gursky gave a proof of Lemma 6.10 in [54] without using the fact that
Y (M4, g) ≤ Y (S4, gc), which we have used in our proof below.

Proof of Lemma 6.10. Using (6.16) we may write (in terms of g)

kg =

∫

M

Qdv =

∫

M

1

4

(

1

12
R2 − |E|2

)

dv ≤ 1

48

∫

M

R2 dv.

Since kg is conformally invariant we may assume that g = gY , the Yamabe metric,
for which R ≡ RgY ≡ const. according to Theorem 5.5 (iii). Consequently,

∫

M

R2 dv = R2 vol(M, g)

=

(∫

M

Rdv

)2

/ vol(M, g)

= Y (M4, g)2 ≤ Y (S4, gc)
2.
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Thus we obtain

kg ≤ 1

48
Y (S4, gc)

2 = 8π2

with equality iff Y (M4, g) = Y (S4, gc), i.e., iff (M4, g) is conformally equivalent
to (S4, gc) by Theorem 5.5 (ii). 2

Lemma 6.11 Let Y (M4, g0) > 0 and kg0 ≥ 0. Then there exists w ∈ C∞(Ω),
such that in terms of g : = gw = e2wg0,

∆R = λ+ 2σ2 (6.21)

for some λ ≤ 0, where R = Rgw > 0.

Proof. Taking γ1 = 0, γ2 = 6, γ3 = 1 in Theorem 6 we obtain w ∈ C∞(M) with

∆R = λ+ 2σ2.

Notice that our assumption Y (M 4, g0) > 0 implies kg0 ≤ 8π2, and we may assume
kg0 < 8π2, since otherwise (M4, g0) is conformally equivalent to (S4, gc), on which
(6.21) holds trivially with |Egc |2gc

≡ 0, R2
gc

≡ 144 = −12λ ⇔ λ = −12. Note also
that the assumption kg0 ≥ 0 implies λ ≤ 0 by definition of λ in (6.18). Since β = 2
here, we can apply Lemma 6.8 to obtain R > 0. 2

Proof of Theorem 6.7. By Lemma 6.11 there is a metric g = e2wg0, such that
(in terms of g)

∆R = λ+ 2σ2

= λ− |E|2 +
1

12
R2

(6.22)

with λ ≤ 0 and R > 0. We can write (again in terms of g), for ϕ ∈ C2(M),

〈Pϕ, ϕ〉L2(dv) =

∫

M

(∆ϕ)2 dv +
2

3

∫

M

R|∇ϕ|2 dv − 2

∫

M

Ric(∇ϕ,∇ϕ) dv

=

∫

M

(∆ϕ)2 dv +
1

6

∫

M

R|∇ϕ|2 dv − 2

∫

M

E(∇ϕ,∇ϕ) dv.

Claim.

2

∫

M

E(∇ϕ,∇ϕ) dv ≤
∫

M

(∆ϕ)2 dv +
1

48

∫

M

R|∇ϕ|2 dv. (6.23)

Before proving the claim notice that then

〈Pϕ, ϕ〉L2(dv) ≥
7

48

∫

M

R|∇ϕ|2 dv,

which proves Theorem 6.7. 2

It remains to show (6.23). The following general fact (see [85], p.234) is useful:
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Lemma 6.12 Let M = (mij) be an (n×n)-matrix with vanishing trace and norm

|M |2 : =





n
∑

i,j=1

m2
ij





1
2

.

Then

max
v∈Sn−1

|Mv|2 ≤ n− 1

n
|M |2. (6.24)

To prove (6.23) we take n = 4, i.e.,

2

∫

M

E(∇ϕ,∇ϕ) dv ≤
(6.24)

2

√
3

2

∫

M

|E||∇ϕ|2 dv

≤ 2

∫

M

|E|2
R

|∇ϕ|2 dv +
3

8

∫

M

R|∇ϕ|2 dv

=
(6.22)

2

∫

M

|∇ϕ|2
R

(−∆R + λ) dv +
13

24

∫

M

R|∇ϕ|2 dv

≤ −2

∫

M

|∇ϕ|2
(

∆R

R

)

dv +
13

24

∫

M

R|∇ϕ|2 dv,

(6.25)

where we used λ ≤ 0, R > 0. To estimate the first term we integrate by parts:

∫

M

|∇ϕ|2
(

∆R

R

)

dv = −
∫

M

|∇ϕ|2∇
(

1

R

)

∇Rdv −
∫

M

∇(|∇ϕ|2)∇R
R

dv

≥
∫

M

|∇ϕ|2|∇R|2
R2

dv − 2

∫

M

|∇R|
R

|∇ϕ||∇2ϕ| dv

≥ −
∫

M

|∇2ϕ|2 dv.

Inserting this into (6.25) we arrive at

2

∫

M

E(∇ϕ,∇ϕ) dv ≤ 2

∫

M

|∇2ϕ|2 dv +
13

24

∫

M

R|∇ϕ|2 dv. (6.26)

Now apply Bochner’s formula to get
∫

M

|∇2ϕ|2 dv =

∫

M

(∆ϕ)2 dv −
∫

M

Ric(∇ϕ,∇ϕ) dv

=

∫

M

(∆ϕ)2 dv −
∫

M

E(∇ϕ,∇ϕ) dv − 1

4

∫

M

R|∇ϕ|2 dv.
(6.27)

Substituting (6.27) into (6.26) leads to

2

∫

M

E(∇ϕ,∇ϕ) dv ≤ 2

∫

M

(∆ϕ)2 dv − 2

∫

M

E(∇ϕ,∇ϕ) dv +
1

24

∫

M

R|∇ϕ|2 dv,
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which implies

2

∫

M

E(∇ϕ,∇ϕ) dv ≤
∫

M

(∆ϕ)2 dv +
1

48

∫

M

R|∇ϕ|2 dv.

2

For our investigations in Chapters 7 and 8 recall the functional

FA[w] = γ1I[w] + γ2II[w] + γ3III[w]

as given in Theorem 5.4. The critical points of FA[·] satisfy (6.17), i.e. in terms of
the corresponding metric g : = gwd

= e2wdg0,

−
(

1

12
γ2 + γ3

)

∆R = −γ1|W |2 − 1

2
γ2σ2 +

kd

vol(M, g)
,

where kd : = γ1

∫

M
|W0|20 dv0 + γ2

∫

M
Q0 dv0.

If one chooses γ2 = 1, γ3 = 1
24 (3δ−2), δ > 0, and finally γ1, such that kd = 0,

then the Euler-Lagrange equations for the functional

F δ[w] : = γ1I[w] + II[w] +
1

24
(3δ − 2)III[w]

read as (in terms of g)
δ∆R = 8γ1|W |2 + 4σ2, (∗)δ

or equivalently, (for σ2 = σ2(Ag) as in Chapter 7)

σ2(Ag) =
δ

4
∆R − 2γ1|W |2. (∗)′δ

Notice that if
∫

M σ2(Ag) dv ≥ 0, then γ1 ≤ 0 (since kd = 0), and γ2 = 1,

γ3 > 0, if δ > 2
3 , thus γ2γ3 > 0; while γ1 ≤ 0 implies that α ≤ 0 in (6.18), thus

we may apply Theorem 6.7, or more precisely Lemma 6.8 to the solution of the
equation (∗)δ . Also the equations (∗)δ , (∗)′δ may be viewed as a δ-regularization
of the equation

σ2(Ag) = −2γ1|W |2 ≥ 0

for γ1 ≤ 0. That is, a regularization (depending on the parameter δ) of an equation
prescribing σ2(Ag). The strategy later will be to let δ tend to zero.

Using the expressions for I[w], II[w], III[w], given in Theorem 5.4 together
with (5.10) and (4.9) one can expand F δ[w] in terms of derivatives of w with
respect to the background metric g0:

F δ [w] = F δ
0 [w] : =

∫

M

(3δ(∆0w)2 + 3(3δ − 2)∆0w|∇0w|2) dv0

+

∫

M

2(3δ − 2)|∇0w|4 dv0

+ lower order terms.

(6.28)
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Lemma 6.13 Let Lδ denote the linearization of (∗)δ, i.e., the bilinearization of
F δ[·] at a critical w ∈ W 2,2(M) with metric g = gw = e2wg0, Rg > 0. Then, in
terms of g, (dv = dvg)

〈ϕ,Lδϕ〉L2(dv) : =
d2

dt2 |t=0

F δ[w + tϕ]

=

∫

M

(3δ(∆ϕ)2 − 4E(∇ϕ,∇ϕ) + (1 − δ)R|∇ϕ|2) dv.
(6.29)

Proof. To simplify the computation, notice that the functional F δ[·] can be written
as

F δ[w + tϕ] = F δ[w] + F δ
w[tϕ],

where F δ
w[·] is given by (6.28) with the background metric g0 replaced by g = gw =

e2wg0. This implies that

d2

dt2 |t=0

F δ [w + tϕ] =
d2

dt2 |t=0

F δ
w[tϕ].

Without loss of generality we may normalize the volume

∫

M

e4w dv0 =

∫

M

dv = 1,

to obtain by a straight forward computation (in terms of g)

d2

dt2 |t=0

F δ
w[tϕ] = 16kd

(

∫

M

ϕ2 dv −
(∫

M

ϕdv

)2
)

+ 2γ2〈Pϕ, ϕ〉L2(dv)

+ 24γ3

(∫

M

(∆ϕ)2 dv − 1

3

∫

M

R|∇ϕ|2 dv
)

.

Under our hypotheses that kd = 0 (by choice of γ1 ≤ 0), γ2 = 1, γ3 = 1
24 (3δ − 2),

we get

d2

dt2 |t=0

F δ
w[tϕ] = 2(γ2 + 12γ3)

∫

M

(∆ϕ)2 dv +
4

3
(γ2 − 6γ3)

∫

M

R|∇ϕ|2 dv

− 4γ2

∫

M

Ric(∇ϕ,∇ϕ) dv

=

∫

M

(3δ(∆ϕ)2 − 4E(∇ϕ,∇ϕ) + (1 − δ)R|∇ϕ|2) dv.

2

We conclude this section with an estimate for the operator Lδ .
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Proposition 6.14 Let Lδ be as in the previous Lemma, then, at a solution w with
R = Rgw > 0, one has for all ϕ ∈W 2,2(M),

〈ϕ,Lδϕ〉L2(dv) ≥
3

4

∫

M

(δ2(∆ϕ)2 +
δ

16
R|∇ϕ|2) dv.

In particular, Lδ ≥ 0 and kerLδ = R for all δ ≥ 0.

The proof is similar to the one of Theorem 6.7, in particular like the proof of
(6.23), recovering Gursky’s result “P ≥ 0” for δ = 2/3.

In Chapter 8 we will use a continuity method to let δ → 0 in (∗)δ . Proposition
6.14 will serve us to prove the openness for the continuity argument.
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§ 7 Elementary symmetric functions

On (Mn, g) denote A : = Ric− R
2(n−1)g, the conformal Ricci tensor, compare with

Example 4 of Chapter 4. Then the full Riemannian curvature tensor Riem decom-
poses as

Riem = W +
1

n− 2
A∧©g,

where ∧© denotes the Kulkarni-Normizu product. Let h, k be two covectors and
x1, x2, x3, x4 vectors, then

(h∧©k)(x1, x2, x3, x4) : = h(x1, x3)k(x2, x4) + h(x2, x4)k(x1, x3) − h(x1, x4)k(x2, x3)

− h(x2, x3)k(x1, x4).

The conformal Ricci tensor A is natural in conformal geometry. In his thesis J.
Viaclovsky [90] considered the functional

Fk(g) : =

∫

M

σk(Ag) dvg ,

where σk(A) is the k-th elementary symmetric function of the eigenvalues of the
tensor A, e.g., if A is the conformal Ricci tensor,

k = 1: σ1(A) = TrA = R − Rn

2(n− 1)
=

n− 2

2(n− 1)
R,

k = 2: σ2(A) =
∑

i<j

λiλj =
1

2
[(TrA)2 − |A|2],

...

k = n : σn(A) = detA.

Theorem 7.1 [90] If k 6= n
2 and if M is locally conformally flat, then

σk(Ag) ≡ const.

for all metrics g ∈ [g0] that are critical for Fk[·].

In this section, we are going to study σ2(Ag) on M4. We remark that some
of the algebraic properites of σ2 on M4 listed below have analogous for σk on Mn,
see [48].

Denote

Aij = Rij −
R

2(n− 1)
gij = Rij −

R

6
gij ,

Sij = −Eij +
R

4
gij = −Rij +

R

2
gij ,

σ2 = σ2(A) =
1

2

(

1

12
R2 − |E|2

)

,

(7.1)
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and recall that Rij = Eij + R
4 gij .

Lemma 7.2 (a) R2 ≥ 24σ2(A) with equality iff E = 0.
In particular, if σ2(A) > 0, then either R > 0 or R < 0 on M 4.

(b) Let Sij : = gikgjlSkl, g : = e2wg0, then

σ2(Ag) =
1

2
SijAij =

1

2
〈S,A〉g .

(c) If R > 0 at p ∈M , then for all x ∈ TpM and S = Sij one obtains

S(x, x) ≥ 3σ2(A)

R
g(x, x),

Ric(x, x) ≥ 3σ2(A)

R
g(x, x).

Proof.

(a) is immediate.

(b) Recall that the inner product of two 2-tensors h, k in the metric g is given
by

〈h, k〉g = giαgjβhijkαβ

SijAij =

(

−Eij +
R

4
gij

)(

Eij +
R

12
gij

)

= −|E|2 +
R2

48
· 4 =

R2

12
− |E|2

= 2σ2(A),

where we have used the property that TrE = Eijgij = 0.

(c) Using Lemma 6.12 we estimate

|E(x, x)| ≤
√

3

2
|E||x|2g ∀x ∈ TpM.

Hence

S(x, x) = −E(x, x) +
R

4
|x|2g

≥
(

−
√

3

2
|E| + R

4

)

|x|2g

≥
(

−
√

3

4

(

c
|E|2
R

+
R

c

)

+
R

4

)

|x|2g

=

(

−3

2

|E|2
R

+
1

8
R

)

|x|2g =
3σ2(A)

R
|x|2g ,
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if we choose c : = 2
√

3.

Similarly,

Ric(x, x) = E(x, x) +
R

4
g(x, x) ≥ 3σ2

R
|x|2g =

3σ2(A)

R
g(x, x).

2

Corollary 7.3 (Corollary of (b) and (c) in Lemma 7.2) If σ2 = σ2(A) >
0, R > 0, then

R

2
gij ≥

(b)
Rij ≥

(c)

3σ2

R
gij .

In particular, Ric is positive definite (R = cσ1(A)).

We now list some basic facts concerning the tensors S,A, and σ2 etc. under
conformal change of metrics. Let g = gw = e2wg0, where g0 is the background
metric. Then

R = Rg = e−2w(R0 − 6∆0w − 6|∇0w|20). (7.2)

Notice the change of signs when using the g-metric instead of g0. In fact,

R0 = e2w(R + 6∆w − 6|∇w|2)
⇒ R = e−2wR0 − 6∆w + 6|∇w|2.

(7.3)

Moreover,

Ric = Ric0 −2∇2
0w − (∆0w)g0 + 2 dw ⊗0 dw − 2|∇0w|20g0, (7.4)

or in terms of g on the right-hand side:

Ric = Ric0 −2∇2w − (∆w)g − 2 dw ⊗ dw + 2|∇w|2g. (7.5)

Analogously,
A = A0 − 2∇2

0w + 2 dw ⊗0 dw − |∇0w|20g0, (7.6)

A = A0 − 2∇2w − 2 dw ⊗ dw + |∇w|2g. (7.7)

S = S0 + 2∇2
0w − 2(∆0w)g0 − 2 dw ⊗0 dw − |∇0w|20g0, (7.8)

S = S0 + 2∇2w − 2(∆w)g + 2 dw ⊗ dw + |∇w|2g. (7.9)

The behavior of σ2(Ag) under conformal change is determined by (A = Ag for
g = e2wg0)

σ2(A)e4w = σ2(A0) + 2
[

(∆0w)2 − |∇2
0w|20

+ 〈∇0w,∇0(|∇0w|20)〉0 + ∆0w|∇0w|20
]

− 2(Ric)0(∇0w,∇0w) − 2〈S0,∇2
0w〉0.

(7.10)
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The last two terms are frequently denoted as lower order terms. Notice that for
u ∈ C∞(M), one has

σ2(∇2
0u) =

1

2

[

(∆0u)
2 − |∇2

0u|20
]

,

which resembles the first two terms on the right-hand side of (7.10). σ2(∇2
0u) is a

typical example of a fully non-linear differential expression studied by Caffarelli,
Nirenberg and Spruck [17] [18].

A fully non-linear differential equation of second order

F(∇2u(x),∇u(x), u(x), x) = 0 in Ω ⊂ R
n

is called elliptic, iff there are constants 0 < θ1 ≤ θ2, such that

θ1|ξ|2 ≤
(

∂F
∂uij

)

ξiξj ≤ θ2|ξ|2

for all ξ ∈ R
n.

In case F(∇2w,∇w,w, x) = σ2(Agw ), one gets

∂F
∂wij

= −2Sij ,

and if σ2(Agw ) > 0, then (−F) is elliptic.

Lemma 7.4 (Divergence structure of σ2) For σ2(A) = σ2(Agw ) one has

(a) σ2(A)e4w = σ2(A0) −∇0(M(w)∇0w),

where
M(w) : = 2S0 + 2∇2

0w − 2(∆0w)g0 − 2∇0w ⊗∇0w, (7.11)

(b) M(w) = S + S0 + |∇0w|20g0,

(c)

∇S = 0. (7.12)

In particular, for M closed, compact,

∫

M

S∇2f dv = −
∫

M

(∇S)∇f dv = 0 ∀f ∈ C2(M).

Proof.

(a) follows from a straightforward computation from (7.10)

(b) follows from (7.8) and (7.11)
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(c) follows from the first Bianchi identity

Sij = −Rij +
R

2
gij ⇒ ∇jSij = −∇jRij +

1

2
∇iR = 0.

2

The main theorem in [23] and [24] is

Theorem 7.5 On (M4, g0) closed, compact, suppose

(i) Y (M, g0) > 0,

(ii)
∫

M
σ2(A0) dv0 > 0.

Then there is w ∈ C∞(M) with σ2(Agw ) ≡ c > 0.

Corollary 7.6 Under the assumption of Theorem 7.5 there is w ∈ C∞(M), with

Rgw > 0 and (Rgw/2) > (Ric)gw > 0

Remark 7.7 The condition (ii) in Theorem 7.5 implies a topological constraint,
which may be seen as follows. Assume that M 4 is orientable. According to the
Chern-Gauss-Bonnet Theorem, one has

8π2χ(M4) =
1

4

∫

M

|W |2 dv +

∫

M

σ2(A) dv. (7.13)

In addition, the Signature Formula reads as

12π2τ(M4) =
1

4

(∫

M

[|W+|2 − |W−|2]
)

dv (7.14)

where

W+ : = self-dual part of W,

W− : = anti-self-dual part of W,

τ : = signature of M4 (a topological invariant).

Adding (7.13) and (7.14) we arrive as

4π2(2χ(M4) ± 3τ(M4)) =
1

2

∫

M

|W±|2 dv +

∫

M

σ2(A) dv.

Thus (ii) in Theorem 7.5 implies the constraint

2χ(M4) ± 3τ(M4) > 0. (7.15)
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Examples. For simply connected 4-manifolds with positive scalar curvature, there
is well-known work of Donaldson [40] see also [47] that up to homeomorphism type,
the manifolds are

k(CP
2)#l(CP

2) or k(S2 × S2).

If we assume in addition that
∫

σ2(Ag)dvg > 0, then Condition (7.15) implies

0 < k < 4 + 5l, (7.16)

where χ = k + l+ 2, τ = k − l, e.g. for l = 0, k < 4. We remark that for manifolds
of this type Sha-Yang [83] have alreday shown the existence of a metric g̃ with
(Ric)g̃ > 0.

Remark 7.8 To prove Theorem 7.5 we will proceed in two steps. First we deform
the given background metric g0 in the conformal class to some metric gw with
σ2(Agw ) = f > 0 for some positive function f . Secondly, we will deform f to be
constant. To be more precise, we will first show

Theorem 7.9 Under the assumption of Theorem 7.5 there is f ∈ C∞(M), f > 0
and w ∈ C∞(M) such that σ2(Agw ) = f > 0.

The second step will be the proof of

Theorem 7.10 Suppose there is w ∈ C∞(M), such that

(i)’ Rgw > 0

(ii)’ σ2(Agw ) = f > 0 for some f ∈ C∞(M).

If (M4, g) is not conformally equivalent to (S4, gc), then there exists a con-
stant

C1 = C1

(

||f ||C1 ,
(

min
M

f(·)
)−1

, g

)

such that
||w||L∞ ≤ C1.

We have to exclude the case of conformal equivalence to (S4, gc), since, for
instance, on (S4, gc), if e2wgc = φ∗(gc), then one has in Euclidean coordinates,

wλ(x) = log
2λ

λ2 + |x− x0|2

and σ2(Agwλ
) ≡ 6 for all λ > 0, but

lim
λ→0

||wλ||L∞ = ∞.

Once Theorem 7.10 is shown we will be able to conclude that there is a constant
C2 = C2(||f ||C∞ , C1) with ||w||C∞ ≤ C2.

By means of degree theory we finally prove
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Corollary 7.11 If (M4, g0) is a closed compact 4-manifold satisfying (i), (ii) of
Theorem 7.5, then there is w ∈ C∞(M), such that

σ2(Agw ) ≡ 1.

We will prove Theorem 7.9 in Chapters 8 and 9; and Theorem 7.10 in Chapter
10.
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§ 8 A priori estimates for the regularized equa-

tion (∗)δ
In this chapter we will prove Theorem 7.9.

Theorem 8.1 [23] On (M4, g0) closed, compact, assume

(i) Y (M4, g0) > 0,

(ii)
∫

M σ2(A0) dv0 > 0,

then there is f ∈ C∞(M), f > 0, and w ∈ C∞(M), such that

σ2(Agw ) = f.

Remark. Conditions (i) and (ii) are invariant under conformal change of the
metric, so sometimes we will simply write Y (M) or

∫

M
σ2(A) dv without specifying

the metric.
Outline of the proof.
We will use a continuity method on the “regularized equation” (in terms of g =
e2wg0)

δ∆R = 8γ1|W |2 + 4σ2(A). (∗)δ

As we take the formal limit δ → 0 we end up with

f = −2γ1|W |2.

To make sure that f thus found is positive, we first observe that under the as-
sumption (ii) of Theorem 8.1, γ1 < 0. Thus f ≥ 0. later on we will modify f to
get f > 0 at points where the norm of the Weyl tensor |W | = 0.

There will be two main steps in the proof of Theorem 8.1
Step 1. For all δ > 0 there is w ∈ C∞(M) solving (∗)δ with R = Rgw > 0.
Step 2. We will show a-priori estimates for solutions of (∗)δ independent of δ as
δ → 0.

Before setting up Step 1 notice that solving (∗)δ amounts to analytically
solving

−6δ∆2w = 8((∆w)2 − |∇2w|2 + . . .) − 4f.

Step 1. Fix δ0 > 0, and consider the set

S : = {δ ∈ [δ0, 1] : (∗)δ admits a smooth solution w with Rgw > 0}.

Lemma 8.2 Under the hypotheses (i), (ii) of Theorem 8.1, one finds 1 ∈ S, i.e.
S 6= ∅.
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Proof. Apply Theorem 6 with the choice γ2 = 1, γ3 = 1
24 (3δ−2) = 1

24 , and γ1 ≤ 0,
such that kd = 0, compare with Chapter 6.

We find a solution w ∈ C∞(M) with

∆R = 8γ1|W |2 + 4

(

1

24
R2 − 1

2
|E|2

)

= 8γ1|W |2 +
1

6
R2 − 2|E|2

≤ 1

6
R2,

all in terms of the metric g = e2wg0.
The last inequality means LR ≥ 0, which implies by Lemma 6.8 and hypoth-

esis (ii) that R > 0 hence 1 ∈ S.
2

Lemma 8.3 S is open.

Proof. If δ1 ∈ S, g1 : = e2w1g,Rg1 > 0, then we know from Proposition 6.14,
that kerLδ1 = R, where Lδ1 is the linearization of (∗)δ1 . According to [2] one finds
for every δ sufficiently close to δ1 a smooth solution wδ ∈ C∞(M) of (∗)δ . Since
Rg1 > 0 we get Rgw > 0 for all w sufficiently close to w1 in the C2,α-norm, i.e.
Rgwδ

> 0 for all δ sufficiently close to δ1. 2

Lemma 8.4 S is closed.

Proof. Our aim is to show that for δk ∈ S with δk → δ̄ with δ̄ ≥ δ0 > 0, we find
that a subsequence of the wδk

converges to a solution wδ̄ of (∗)δ̄ in W 2,2(M4). The
result in [89] implies that wδ̄ ∈ C∞(M). Thus Lemma 8.4 follows directly from
the following a priori estimates, in particular from (8.2). 2

Proposition 8.5 Suppose w with g = gw = e2wg0 solves (∗)δ with R = Rgw > 0.
Assume that

∫

M w dv0 = 0, then there are constants C0, C1 depending only on the
background metric g0, such that

w ≥ C0 (8.1)

δ

∫

M

(∆0w)2 dv0 +
2

3

∫

M

|∇0w|40 dv0 ≤ C1. (8.2)

Moreover, for any α ∈ R, p ≥ 0, there are constants C2(α, g), C3(p, g), such that
∫

M

eαw dv0 ≤ C2, (8.3)

∫

M

|∇0w|40|w|p dv0 ≤ Cp. (8.4)
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Proof. To prove (8.1) recall

∆0w + |∇0w|20 +
1

6
Rgwe

2w =
1

6
R0, (8.5)

which implies, by Rgw > 0,

∆0w + |∇0w|20 ≤ 1

6
R0, (8.6)

in particular,

∆0w ≤ 1

6
R0. (8.7)

Let G(·, ·) denote the Green’s function of the operator ∆0 on (M, g0), then we may
write according to Green’s formula,

−w(x) +

∫

M

w dv0 =

∫

M

G(x, y)(∆0w)(y) dv0(y).

Since M is compact and closed, we may add a constant to G to get G positive.
Then, if

∫

M w dv0 = 0 as we assumed, we obtain

w(x) ≥ −
∫

M

G(x, y)
R0(y)

6
dv0(y) =: C0.

To prove (8.2), we first integrate (8.6) over M to obtain
∫

M

|∇0w|20 dv0 ≤ 1

6

∫

M

R0 dv0 =: C̃1, (8.8)

hence, by Poincaré’s inequality,
∫

M

w2 dv0 ≤ Ĉ1, (8.9)

since
∫

M
w dv0 = 0. Now (8.2) follows from the weak form of the Euler-Lagrange

equation (∗)δ in terms of analytic expressions in w. More precisely, for all ϕ ∈
W 2,2(M),

∫

M

(

2

3
δ∆0w∆0ϕ+

1

2
(3δ − 2)[∆0ϕ|∇0w|20 + 2∆0w〈∇0ϕ,∇0w〉0

+ 2|∇0w|20〈∇0ϕ,∇0w〉0]
)

dv0

=

∫

M

(

−2U δ
0ϕ+ 2 Ric0(∇0ϕ,∇0w) +

1

2
(δ − 2)R0〈∇0ϕ,∇0w〉

)

dv0,

(8.10)

where U δ
0 : = γ1|W0|20 + γ2Q0 − γ3∆0R0, γ2 = 1, γ3 = 1

24 (3δ − 2), and γ1 ≤ 0
appropriately chosen, so that kd = 0.
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Notice that the right-hand side is of lower order and bounded according to
(8.8) and (8.9). Testing with ϕ : = w in (8.10) we get

∫

M

(

3

2
δ(∆0w)2 +

3

2
(3δ − 2)∆0w|∇0w|20 + (3δ − 2)|∇0w|40

)

dv0 ≤ C (8.11)

for some constant C. (We will repeatedly use the notation C for generic constants,
whose values might change from line to line in the following.)

Case 1. If δ ∈
[

2
3 , 1
]

, i.e., 3δ−2 ∈ [0, 1], we use 3
2xy ≥ − 9

16x
2 −y2 to obtain from,

(8.11) for x : = ∆0w, y : = |∇0w|20,
∫

M

3

16
(6 − δ)(∆0w)2 dv0 =

∫

M

(

3

2
δ − 9

16
(3δ − 2)

)

(∆0w)2 dv0

≤
∫

M

(

3

2
δ(∆0w)2 +

3

2
(3δ − 2)∆0w|∇0w|20 + (3δ − 2)|∇0w|40

)

dv0

≤ C,

i.e.,

∫

M

(∆0w)2 dv0 ≤ C. (8.12)

Notice also that by (8.6),

∫

M

|∇0w|40 dv0 ≤ 1

6

∫

M

R0|∇0w|20 dv0 −
∫

M

(∆0w)|∇0w|20 dv0

≤ 1

6ε

∫

M

R2
0 dv0 +

1

ε

∫

M

|∆0w|2 dv0 + 2ε

∫

M

|∇0w|40 dv0,

hence, by (8.12),
∫

M

|∇0w|40 dv0 ≤ C,

which finishes the proof of (8.2) in Case 1.

Case 2. If δ ∈
(

0, 2
3

)

, i.e., (3δ − 2) ∈ (−2, 0), then by (8.6),

(3δ − 2)

[

3

2
∆0w + |∇0w|20

]

= (3δ − 2)

[

3

2
(∆0w + |∇0w|20) −

1

2
|∇0w|20

]

≥
(8.6)

(3δ − 2)

6
· 3

2
R0 +

2 − 3δ

2
|∇0w|20.
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Inserting this into (8.11) we obtain

3

2
δ

∫

M

(∆0w)2 dv0 +
1

2

∫

M

|∇0w|40(2 − 3δ) dv0

≤
∫

M

3

2
δ(∆0w)2 dv0 +

∫

M

(

(3δ − 2)

[

3

2
∆0w + |∇0w|20

]

|∇0w|20 +
(2 − 3δ)

6

3

2
R0

)

dv0

≤
(8.11)

C,

i.e.,

3

2
δ

∫

M

(∆0w)2 dv0 +

∫

M

|∇0w|40 dv0 −
3

2
δ

∫

M

|∇0w|40 dv0 ≤ C. (8.13)

On the other hand, multiplying (8.11) by 3δ
2 (2 − 3δ)−1 > 0 leads to the

estimate

−3

2
δ

∫

M

|∇0w|40 dv0 ≤ C +
9δ

4

∫

M

(∆0w)|∇0w|20 dv0

≤ C +
9δ

4

[

1

2

∫

M

(∆0w)2 dv0 +
1

2

∫

M

|∇0w|40 dv0
]

Substituting this into (8.13) we get

3

8
δ

∫

M

(∆0w)2 dv0 +

(

1 − 9

8
δ

)∫

M

|∇0w|40 dv0 ≤ C,

or

δ

∫

M

(∆0w)2 dv0 +

(

8

3
− 3δ

)
∫

M

|∇0w|40 dv0 ≤ C,

which proves (8.2), since δ ∈
(

0, 2
3

)

in this case. (8.3) follows from Adam’s in-
equality, Lemmas 6.1 and 6.2 in the same way as Corollary 1.7 was deduced from
Corollary 1.6. Notice that (8.2) guarantees that the constant on the right-hand
side of (8.3) does not depend on w.

Testing (8.10) with ϕ : = wp and integrating by parts leads to (8.4), for
details, see [23]. 2

With Lemma 8.4 we have established the existence of smooth solutions w of
(∗)δ with Rgw > 0 for all δ > 0. The following two results summarize the necessary
a-priori estimates independent of δ, as δ → 0.

Proposition 8.6 Under the assumptions of Theorem 8.1 there is a constant C1 =
C1(g) independent of δ, such that for the solutions wδ ∈ C∞(M) of (∗)δ

||wδ ||W 2,3 ≤ C1 ∀ δ > 0.



8. A PRIORI ESTIMATES 65

Proposition 8.7 For all s < 5 there is a constant C2 = C2(g, s) independent of
δ, such that

||wδ ||W 2,s ≤ C2 ∀ δ > 0.

Before proving these a-priori estimates let us review some regularity theory
for fully non-linear elliptic equations. The techniques used in [17], [18], [42], [60]
motivate the approach we will present in these lectures.

The investigations in [17], [18] are concerned with the fully non-linear elliptic
equations of the form

{

F(∇2u,∇u, u, x) = ϕ(x) in Ω ⊂ Rn,

u(x) = ψ(x) on ∂Ω,

where F is assumed to be uniformly elliptic, see Chapter 7. In [17] the Monge-
Ampère equation (F = det(uij)) is studied, whereas [18] includes the case F =
σk(uij). Omitting their results regarding boundary estimates, we will focus on
interior estimates for Fk = σk(uij).

Definition 8.8 Γ+
k : = {A ∈ M(n × n) with σk(A) > 0 and A is in the same

connected component as the identity }.

Γ+
k is a convex cone with the following properties.

Proposition 8.9 (i) Γ+
k ⊆ Γ+

k−1 ⊆ . . . ⊆ Γ+
1 ,

(ii) For (uij) ∈ Γ+
k , σ

1
k

k (uij) is a concave function, i.e. for A = (uij) ∈ Γ+
k and

B = (vij) ∈ Γ+
k one has σ

1
k

k (tA+ (1 − t)B) ≥ tσ
1
k

k (A) + (1 − t)σ
1
k

k (B),

(iii) Let (uij) ∈ Γ+
k with Fk(uij) = σ

1
k

k (uij) = ϕ for some given smooth function
ϕ with

0 < inf
Ω
ϕ ≤ ϕ ≤ sup

Ω
ϕ <∞,

then u ∈ C0(Ω) ⇒ u ∈ C1(Ω) ⇒ u ∈ C2(Ω) ⇒ u ∈ C2,α(Ω),⇒ u ∈ C∞(Ω),
with the interior estimates

||u||C1(BR) . ||u||C0(B2R),

||u||C2(BR) . ||u||C1(B2R),

||u||C2,α(BR) . ||u||C2(B2R),

||u||C∞(BR) . ||u||C2,α(B2R),

where . denotes the inequality up to a constant factor depending on the data,
in particular on ϕ.

(iv) u ∈ C1,1(Ω) ⇒ u ∈ C2,α(Ω) if F‖ is uniformly elliptic and concave, see [42],
[60].
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To motivate our method to establish a-priori bounds in W 2,3, we will first
establish an a-priori estimate for solutions w of the equation σ2(Agw ) = f > 0 on
M4.

Theorem 8.10 Let w ∈ C∞(M4), (M4, g0) closed, compact, satisfy σ2(Agw ) = f ,
for some f > 0 on M4, with Rgw > 0. Then

||∇2
0w||L∞ ≤ C(g0,min

M
f(·), ||w||L∞ , ||∇0w||L∞ ||f ||C3).

The outline of the proof of Theorem 8.10 is as follows. Recall from Lemma
7.2 that the linearization of σ2 is essentially given by the tensor S = (Sij), for
which we derive an identity involving the Bach tensor B = (Bij) in Lemma 8.11.
To prepare a variant of Pogorelov’s trick we analyze the expression S ij∇i∇jV for
V : = 1

2 |∇w|2 in Lemma 8.13, before we apply the maximum principle.

Lemma 8.11 Calculating in the metric gw = e−2wg,

Sij∇i∇jR = 3∆σ2(A) + 3

(

|∇E|2 − 1

12
|∇R|2

)

+ 6TrE3 +R|E|2

− 6W ijklEikEjl − 6EijBij ,

(8.14)

where Bij denotes the Bach tensor, which is the first variation of
∫

M
|W |2, given

by

Bij = ∇k∇lWkijl +
1

2
RklWkijl .

Notice that the only property relevant for us is the behavior of B = (Bij)
under conformal change of the metric:

B = Bgw = e−2wB0.

Proof of Lemma 8.11. Apply Bianchi indentity, by a formulation of Derdzinski
[39] we have

Bij = − 1

2
∆Eij +

1

6
∇i∇jR− 1

24
∆Rgij

−EklWikjl +Ek
i Ejk − 1

4
|E|2gij +

1

6
REij ,

(8.15)

where Ek
i : = gkαEαi.

Thus

1

2
∆|E|2 = |∇E|2 +Eij∆Eij

=
(8.15)

|∇E|2 +
1

3
Eij∇i∇jR+ 2TrE3

+
1

3
R|E|2 − 2W ikjlEijEkl − 2BijEij ,
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where we used the fact that TrE = Eijgij = 0.
Consequently,

∆σ2(A) = ∆

(

−1

2
|E|2 +

1

24
R2

)

= −|∇E|2 +
1

12
|∇R|2 +

1

12
R∆R− 1

3
Eij∇i∇jR

− 2TrE3 − 1

3
R|E|2 + 2W ikjlEijEkl + 3BijEij .

Note that 1
12R∆R − 1

3E
ij∇i∇jR = 1

3S
ij∇i∇jR, by definition of S = (Sij), see

Chapter 7, which proves (8.14). 2

We now begin the proof of Theorem 8.1
Notice that for σ2 = σ2(A) = f > 0 with R > 0 we can argue as follows:

∇σ2 =
1

12
R∇R− |E|∇(|E|), i.e.,

〈

−∇σ2,
∇R
R

〉

= − 1

12
|∇R|2 +

|E|
R

〈∇|E|,∇R〉

≤ 1

2

|E|2
R2

|∇R|2 +
1

2
|∇(|E|)|2 − 1

12
|∇R|2

≤ 1

2
|∇E|2 +

|∇R|2
R2

(

1

2
|E|2 − 1

24
R2 +

1

24
R2

)

− 1

12
|∇R|2

≤ 1

2

(

|∇E|2 − 1

12
|∇R|2

)

− σ2
|∇R|2
R2

,

where we used Kato’s inequality, |∇(|E|)| ≤ |∇E|.
Thus

1

2

(

|∇E|2 − 1

12
|∇R|2

)

≥ σ2
|∇R|2
R2

−∇σ2
∇R
R

. (8.16)

At a point p ∈ M with R(p) = maxM R one has ∇R = 0 and Sij∇i∇jR ≤ 0, since
Sij is positive definite according to Lemma 7.2 (c). Since E is traceless,

6TrE3 +R|E|2 ≥ − 6√
3
|E|3 +R|E|2

≥ |E|2(R− 2
√

3|E|)

= |E|2R
2 − 12|E|2

R+ 2
√

3|E|
= |E|2 24σ2

R+ 2
√

3|E|

≥ |E|2 12σ2

R
> 0,

(8.17)

because σ2 > 0 implies 1
12R

2 > |E|2, i.e., 2
√

3|E| < R.
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Furthermore,

|WEE| ≤ e−2w|W0|0|E|2 . |E|2, (8.18)

under the assumptions that ||w||L∞ and |W0|0 are controlled.

Similarly,

|BE| ≤ e−2w|B0|0|E| . |E|, (8.19)

where again . denotes an inequality up to a multiplicative constant.

Combining (8.16) and (8.17) we obtain

Sij∇i∇jR ≥ 3∆σ2 + 6

(

σ2
|∇R|2
R2

−∇σ2
∇R
R

)

+ |E|2 12σ2

R
+WEE +BE,

(8.20)

and at a maximum point p ∈ M of R(·) we have

0 ≥ (Sij∇i∇jR)(p) ≥ 3∆σ2(p) + |E|2 12σ2

R
(p) − C1|E|2(p) − C2|E|(p).

But it is not clear, if the right-hand side dominates some term like cR2 − cR. The
estimate (8.20), however, is still useful to prove the following uniqueness result.

Corollary 8.12 ([90]) If σ2(Agw ) ≡ const. =: c > 0, for the metric gw = e2wgc

on S4, then Rgw ≡ const., and gw = φ∗(gc) for some conformal transformation
φ : S4 → S4.

Proof. On (S4, gc) one has (Wijkl)gw ≡ 0 for gw ∈ [gc], and therefore also Bgw ≡ 0,
and (8.20) simplifies to

Sij∇i∇jR ≥ 6c
|∇R|2
R

+ |E|2 12c

R

≥ 6c
|∇R|2
R

.

By (7.12) in Lemma 7.4, we obtain

0 =

∫

S4

Sij∇i∇jRdvgw ≥ 6c

∫

S4

|∇R|2
R

dvgw ,

i.e., R = Rgw ≡ const., which by Obata’s Theorem implies gw = φ∗(gc). 2

To make use of (8.20) for the proof of Theorem 8.10 we use Pogorelov’s trick

[76] applying the maximum principle to a function of the type (∆w)eϕ(|∇w|2) for
some suitably chosen function ϕ.
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Lemma 8.13 On (M4, gw) let V : = 1
2 |∇gww|2gw

=: 1
2 |∇w|2.

Then, in terms of the metric gw,

Sij∇i∇jV = −1

4
TrE3 +

1

48
R|E|2 +

1

(24)2
R3

− 1

2
〈∇w,∇σ2〉 + lower order terms

of order(|∇w|2|∇2w|2, |∇2w|2, |∇w|6, etc.).

(8.21)

Proof. With respect to the metric gw we compute the covariant derivatives of V
first

∇jV = ∇j

(

1

2
|∇w|2

)

= ∇j(∇kw∇kw),

∇i∇jV = (∇i∇kw)(∇j∇kw) + 〈∇i∇j∇kw)∇kw,

∇i∇j∇kw = ∇i∇k∇jw = ∇k∇i∇jw +Rm
ikj∇mw.

Recall (7.6),

∇i∇jw = −1

2
Aij +

1

2
A0

ij −∇iw∇jw +
1

2
|∇w|2(gw)ij . (8.22)

So,

∇i∇jV = ∇i∇kw∇j∇kw − 1

2
∇kAij∇kw + l.o.t. of order (|∇2w| · |∇w|2).

Thus

Sij∇i∇jV = Sij∇i∇kw∇j∇kw−
1

2
Sij∇kw(∇kAij)+ l.o.t.of order (|∇2w|·|∇w|2).

(8.23)
Notice that by (8.22) and (7.1)

Sij∇i∇kw∇j∇kw =
(8.22)

1

4
SijAikAjk

+ l.o.t. of order (|∇2w|2|∇w|2, |∇w|4)

=
(7.1)

−1

4
TrE3 +

R

48
|E|2 +

1

576
R3

+ l.o.t. of order (|∇2w|2|∇w|2|∇w|4).

(8.24)

Moreover

Sij∇kw∇kAij = 〈∇w,∇σ2(A)〉, (8.25)
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since by (7.1),

(∇kA
ij)Sij =

(

∇kE
ij +

1

12
(∇kR)gij

)(

−Eij +
1

4
Rgij

)

= −Eij(∇kEij) +
1

12
R∇kR

= ∇k

(

−1

2
|E|2 +

1

24
R2

)

= ∇kσ2.

Summarizing (8.23) – (8.25) completes the proof. 2

Proof of Theorem 8.10. We calculate in terms of the metric gw = e2wg0. First
notice by σ2 = σ2(Agw ) = f > 0, that S ≥ 3σ2

R > 0 by Lemma 7.2 (c). In addition,
for |∇w| ≤ c, |w| ≤ c, one gets

|E|2 ≤ 12R2 + C(f), i.e.,

|Ric|2 . R2 + C, or in terms of w,

|∇2w| . |∆w| . |∇2w|.

We apply the maximum principle to the function h : = R + 24V . At a maximum
point p ∈M of h we have, by Lemmas 8.11 and 8.13,

0 ≥ Sij(p)∇i∇jh(p) = Sij(p)∇i∇jR(p) + 24Sij(p)∇i∇jV (p)

= 3∆σ2(p) + 3

(

|∇E|2(p) − 1

2
|∇R|2(p)

)

+
3

2
R(p)|E|2(p) +

1

24
R3(p)

− 12〈∇w(p),∇σ2(p)〉
+ l.o.t. of order (|∇2w|2|∇w|2).

Now use (8.16) to estimate the term in brackets to get (by |∇w| ≤ c),

0 ≥ Sij(p)∇i∇jh(p) &
1

24
R3(p) +

3

2
R(p)|E|2(p)

− c(||f ||C2) − c(||f ||C1)

∣

∣

∣

∣

∇R
R

∣

∣

∣

∣

(p) − cR2 − c.

At p we have ∇h(p) = 0, thus

|∇R|(p) = 24|∇V |(p) . |∇2w(p)||∇w(p)|,

and σ2(p) ≥ minM f(·) > 0, which implies

R(p) &
(

min
M

f(·)
)

1
2

> 0,
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so
∣

∣

∣

∣

∇R
R

∣

∣

∣

∣

(p) . |∇2w(p)||∇w(p)| . |∇2w(p)|.

Consequently, there exist constants c1, c2, c3 depending on (f, |∇w|, |w|), such that

0 ≥ Sij(p)∇i∇jh(p) > c1h
3(p) − c2h

2(p) − c3.

Thus h is bounded, hence |∇2w| is bounded. 2

We now return to the a-priori estimate of solution of equation (∗)δ. The
main point is to modify the proof of Theorem 8.10 by applying an integral form
of Pogorelov estimate.

Proposition 8.14 There is δ0 ≥ 0, and C = C(g), such that for all δ ≤ δ0, w ∈
C∞(M) solving (∗)δ with Rgw > 0 and

∫

M
σ(Agw ) dgw > 0, the following estimate

holds
∫

M

|∇2
0w|30 dv0 +

∫

M

|∇0w|120 dv0 ≤ C. (8.26)

In particular, there is α > 0, such that

||w||Cα ≤ C(g).

The crucial step of the proof is in the following Lemma:

Lemma 8.15 (Main Lemma) There are constants δ0 ≥ 0, C = C(g0), such that
in terms of gw = e2wg0,

δ

16

∫

M

(∆R)2

R
dv +

∫

M

(

R

6

)3

dv

≤ (1 + cδ)

∫

M

|∇w|6 dv + c

∫

M

R2 dv + c.

(8.27)

Instead of the pointwise maximum principle as in the proof of Theorem 8.10
we use integral estimates. Denote

I =

∫

M

Sij∇i∇jRdv

II : =

∫

M

Sij∇i∇jV dv

for V : = 1
2 |∇w|2, where here and in the following, dv = dvgw and all covariant

derivatives are taken with respect to the metric gw unless otherwise noted.
We remark that due to the fact that ∇iSij = 0, we have both I = II ≡ 0.
We also remark that in contrast to the proof of Theorem 8.10 we now only

have |∇w| ∈ L4(M) and w ≥ c for w satisfies (∗)δ .



72

Lemma 8.16 There is a constant C = C(g0), such that

I ≥
∫

M

(

3

2
δ
(∆R)2

R
+ 6TrE3 +

1

12
R3 − CR2 − C

)

dv, (8.28)

for any w ∈ C∞(M) solving (∗)δ.

Lemma 8.17 There is a constant C = C(g0), such that

II ≥
∫

M

(

− 1

4
TrE3 +

1

288
R3 − 1

4
R|∇w|4

− CδR3 − Cδ|∇w|6 − CR2 − C

)

dv

(8.29)

for all w ∈ C∞(M) solving (∗)δ.

Assuming (8.28), (8.29) for a moment, we will finish the proof of (8.27) in
Lemma 8.15. In fact

0 = I + 24II ≥ 3

2
δ

∫

M

(∆R)2

R
dv +

1

6

∫

M

R3 dv

− 6

∫

M

R|∇w|4 dv −
∫

M

(CδR3 + Cδ|∇w|6 + CR2 + C) dv.

Divide by 36 and apply Hölder’s and Young’s inequality to get

δ

24

∫

M

(∆R)2

R
dv +

∫

M

(

R

6

)3

dv ≤
∫

M

(

R

6

)

|∇w|4 dv

+
Cδ

36

∫

M

R3 dv +
Cδ

36

∫

M

|∇w|6 dv +
C

36

∫

M

(R2 + 1) dv

≤
(

∫

M

(

R

6

)3

dv

)
1
3 (∫

M

|∇w|6 dv
)

2
3

+ . . .

≤ 1

3

∫

M

(

R

6

)3

dv +
2

3

∫

M

|∇w|6 dv + . . . ,

where the dots denote the remaining terms on the right-hand side. Absorbing the
first term on the right into the left-hand side finishes the proof of Lemma 8.15. 2
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Proof of (8.28): Integrate (8.14) in Lemma 8.11 and use (8.18), (8.19) to get (in
terms of the metric gw)

I = 3

∫

M

((

|∇E|2 − 1

12
|∇R|2

)

+ 6TrE3

+R|E|2 − 6WEE − 6BE

)

dv

≥ 3

∫

M

(

|∇E|2 − 1

12
|∇R|2

)

dv +

∫

M

6TrE3 dv

+

∫

M

(CR2 + C) dv +

∫

M

R|E|2 dv,

(8.30)

where we have used that 0 <
∫

M σ2 dv = 1
2

∫

M

(

R2

12 − |E|2
)

dv, whence
∫

M |E|2 dv .
∫

M
R2 dv.

To estimate
∫

M
R|E|2 dv from below, recall (∗)δ

δ∆R = 4σ2 + 8γ1|W |2,

where γ1 < 0, since
∫

M
σ2 dv > 0, compare to Chapter 6.

Multiplication of (∗)δ by R and integration leads to

δ

∫

M

R∆Rdv =

∫

M

1

6
R3 dv − 2

∫

M

R|E|2 dv + 8γ1

∫

M

R|W |2 dv, i.e.,

∫

M

R|E|2 dv =
1

12

∫

M

R3 dv + 4γ1

∫

M

R|W |2 dv +
δ

2

∫

M

|∇R|2 dv

≥ 1

12

∫

M

R3 dv − C

∫

M

(R2 + 1) dv.

(8.31)

Finally, to handle the first term on the right of (8.30) we claim that

∫

M

(

|∇E|2 − 1

12
|∇R|2

)

dv ≥ 1

2

∫

M

δ
(∆R)2

R
dv − C, (8.32)

which together with (8.31) inserted into (8.30) proves (8.28).
To prove (8.32) we differentiate (∗)δ and get

δ∇∆R =
1

3
R∇R− 4|E|∇(|E|) − 8γ1∇(|W |2),

multiply this by ∇R
R and integrate. 2

The proof of (8.29)is a modification of (8.21) in Lemma 8.13, and we will
skip the details here [23].

We will now apply Lemma 8.15 to prove Proposition 8.14.
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Sketch of the proof of Proposition 8.14.

Bascially we are going to apply interpolation and boot-strapping methods to
estimate the norms w. To do so, we first recall (7.3)

R = e−2wR0 − 6∆w + 6|∇w|2.

Also

|∇w| = |∇0w|e−w, or |∇0w| = |∇w|ew,

|∇2
0w|2 . |∇2w|2e4w + e4w|∇w|4,
dv0 = e−4w dv,

(∫

M

|f |12 dv0
)

1
4

.

∫

M

|∇0f |30 dv0 +

∫

M

|f |3 dv0,

(8.33)

the latter resulting from the Sobolev embedding W 1,3(M) ↪→ L12(M).

Step a. We claim that

(∫

M

|∇w|12 dv
)

1
4

.

∫

M

|∇w|6 dv + 1. (8.34)

Proof. Taking f : = |∇0w|e−
2
3 w in (8.33) one gets

∫

M

|f |12 dv0 =

∫

M

|∇0w|12e−8w dv0 =

∫

M

|∇w|12 dv,

whence by (8.33)

(∫

M

|∇w|12 dv
)

1
4

.

∫

M

|∇0(|∇0w|e−
2
3 w)|3 dv0 +

∫

M

|∇0w|3e−2w dv0

.

∫

M

(

|∇2
0w|3e−2w + |∇0w|6e−2w

)

dv0 + C

.

∫

M

|∇2w|3 dv +

∫

M

|∇w|6 dv + 1.

Now, by (7.6) and (7.1)

|∇2w|3 . |A|3 + |∇w|6 + C,

|A|2 = |E|2 +
R2

36
.
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Thus

(∫

M

|∇w|12 dv
)

1
4

.

∫

M

(|A|3 + |∇w|6 + 1) dv

.

∫

M

(|E|3 +R3 + |∇w|6 + 1) dv

.
(∗)δ

∫

M

(δ|∇E|2 + δ|∇R|2 +R3 + |∇w|6 + 1) dv

. δ

∫

M

|∇R|2 dv +

∫

M

(R3 + |∇w|6 + 1) dv

.
(8.27)

∫

M

(|∇w|6 + 1) dv.

(8.35)

Notice that we used (∗)δ to express |E|3 in terms of |∇R|2. To be more precise,
multiplying (∗)δ by E and integrating one gets

∫

M

|E|3 dv .

(∫

M

R3 dv

)
2
3
(∫

M

E3 dv

)
1
3

+ ε

∫

M

E3 dv+
C

ε
+
δ

2

∫

M

|∇R||∇E| dv,

for some small ε > 0, hence

∫

M

|E|3 dv .

∫

M

R3 dv +

∫

M

|∇E|2 dv +

∫

M

|∇R|2 dv + C.

Note also that we used

δ

∫

M

|∇R|2 dv = δ

∫

M

(−∆R)Rdv

≤ δ

∫

M

(∆R)2

R
dv + δ

∫

M

R3 dv

.
(8.27)

∫

M

(|∇w|6 + 1) dv

in the last step of (8.35). 2

Step b. Claim

∫

M

|∇2w|2|∇w|2 dv .

∫

M

(δ|∇w|6 +R2 + 1) dv. (8.36)

Proof. Recall (7.3) which implies

R

6
= −∆w + |∇w|2 +

1

6
R0e

−2w. (8.37)



76

The key observation is

∫

M

|∇w|6 dv ≤ 1

6

∫

M

R|∇w|4 dv + C

∫

M

(δR3 + δ|∇w|6 +R2 + 1) dv. (8.38)

Assuming (8.38) for the moment we can conclude

∫

M

∆w|∇w|4 dv ≤ Cδ

∫

M

R3 dv + C

∫

M

(δ|∇w|6 +R2 + 1) dv, (8.39)

thus (by multiplication of the square of (8.37) with |∇w|2),
∫

M

(∆w)2|∇w|2 ≤
∫

M

(

(

R

6

)2

|∇w|2 − |∇w|6 + 2∆w|∇w|4
)

dv

+ C

∫

M

(R2 + 1) dv

≤
(8.39)

δ

∫

M

|∇w|6 dv + C

∫

M

(R2 + 1) dv.

By Bochner’s formula we finally obtain

∫

M

|∇2w|2(∇w)2 . δ

∫

M

|∇w|6 dv + C

∫

M

(R2 + 1) dv.

To see (8.38) recall from Lemma 7.2 (c) that Ric ≥ 3σ2

R , so that

2

∫

M

|∇w|2 Ric(∇w,∇w) dv ≥
∫

M

6σ2

R
|∇w|4 dv

≥
(∗)δ

−6δ

∫

M

|∇2w|2|∇w|2 dv

& −δ
∫

M

R3 dv − δ

∫

M

|∇w|6 dv −
∫

M

(R2 + 1) dv.

On the other hand,

2

∫

M

|∇w|2 Ric(∇w,∇w) dv =
1

6

∫

M

(R|∇w|4 − |∇w|6) dv

+
1

6

∫

M

R0e
−2w|∇w|4 dv

+ 2

∫

M

|∇w|2A0(∇w,∇w) dv,

where the last two terms are bounded by virtue of (8.2) in Proposition 8.5. 2
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Step c. To estimate
∫

M
|∇w|6 dv we proceed as follows:

∫

M

|∇w|6 dv =

∫

M

〈∇w,∇w〉|∇w|4 dv

= −
∫

M

w∆w|∇w|4 dv −
∫

M

w∇w∇(|∇w|4) dv

.

∫

M

|w||∇2w||∇w|4 dv

.

(∫

M

|∇2w|2|∇w|2 dv
)

1
2
(∫

M

|∇w|6w2 dv

)
1
2

.

(∫

M

|∇2w|2|∇w|2 dv
)

1
2
(∫

M

|∇w|12 dv
)

1
8
(∫

M

|∇w|4|w| 83 dv
)

3
8

.
(8.4),(8.34)

(∫

M

|∇2w|2|∇w|2 dv
)

1
2
(

1 +

∫

M

|∇w|6 dv
)

1
2

.

Thus,

∫

M

|∇w|6 dv .

∫

M

|∇2w|2|∇w|2 dv + 1

.
(8.36)

δ

∫

M

|∇w|6 dv +

∫

M

(R2 + 1) dv,

which implies

∫

M

|∇w|6 dv .

∫

M

R2 dv + 1

.

(∫

M

R3 dv

)
2
3

+ 1

.
(8.27)

(∫

M

|∇w|6 dv
)

2
3

+ 1,

i.e.,
∫

M
|∇w|6 dv ≤ C, and by (8.34),

∫

M
|∇w|12 dv . C, and

∫

M
|∇2w|3 dv . C. 2

Corollary 8.18 There is a constant C = C(g0), such that

δ

∫

M

(∆R)2

R2
dv ≤ C. (8.40)

Proof. We know already that

δ

∫

M

(∆R)2

R
dv .

∫

M

R3 dv + 1 . C.
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Thus it suffices to show minM R(·) ≥ c0 > 0, which will follow from the maximum
principle applied to

δ∆R = 8γ1|W |2 +
1

6
R2 − 2|E|2

≤ 8γ1|W |2 +
1

6
R2.

Hence at the minimum point p ∈ M of R we have ∆R(p) ≥ 0 and therefore

1

6
R2(p) ≥ −8γ1|W |2(p) ≥ 8|γ1|min

M
|W |2(·).

So if |W |2 =
(5.9)

e−4w|W |20 6= 0 on M , then we are done, since then

R2 ≥ 48|γ1|min
M

|W |2(·) =: c0.

If |W | = 0 somewhere, choose a section η ∈ Γ(Sym(T ∗M4⊗T ∗M4)), which denotes
the bundle of symmetric (0, 2)-tensors on M 4, e.g. η = any Riemannian metric on
M4. Then |η|2 = e−4w|η|2g0

, and we look at the equation

δ∆R = 4σ2 + 8γ1|η|2, (∗∗)δ

and apply the maximum principle as above.
Notice that the only relevant fact about |W |2 we used was the behavior under

conformal change, see (5.9). So instead of I[w] in the definition of F [w] or Fδ [w]
one uses

I′[w] : = 4

∫

M

w|η|2 dv −
∫

M

|η|2 dv log

∫

M

e4w dv.

2

We conclude with

Proposition 8.19 There is a constant δ0 < 1 such that for each s ∈ [0, 5) there
is a constant C = C(s, .g0), such that for all 0 < δ ≤ δ0 the following holds:

Any solution wδ ∈ C∞(M) of (∗∗)δ with Rgw > 0,
∫

M
w dv0 = 0,

∫

M
σw(Agw ) dvgw > 0 satisfies

∫

M

|∇2
0w|s dv0 ≤ C.

We will skip the details of the proof here. [23] The idea of the proof is to
apply the same arguments as above to the terms

I : =

∫

M

Sij∇i∇jR
p+1 dv = 0
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and

II : =

∫

M

Sij∇i(R
p∇jV ) dv = 0,

for p < 2.

As an immediate consequence we deduce from Sobolev’s embedding theorem

Corollary 8.20 There is a constant δ0 < 1, such that for each α ∈ (0, 1) there
is a constant Cα, such that the following holds: for all δ ∈ (0, δ0], any solution
wδ ∈ C∞(M) of (∗∗)δ with Rgw > 0,

∫

M
w dv0 = 0,

∫

M
σ2(Agw ) dvgw > 0 satisfies

||w||C1,α ≤ Cα.
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§ 9 Smoothing via the Yamabe flow

Theorem 9.1 Let g = e2wg0 be a solution of (∗∗)δ with positive scalar curva-
ture, normalized so that

∫

wdv0 = 0. Assume also
∫

σ2(A0)dv0 > 0. Then for δ
sufficiently small, there exists v ∈ C∞(M), such that σ2(Ah) > 0 for h = e2vg.

The key step is to look at the evolution of the quantity k/R under the Yamabe
flow, where

k : = σ2 + 2γ1|η|2, (9.1)

|η| > 0, on M , and |η|gw = e−2w|η|. Notice that by (∗∗)δ, δ∆R = 4k. We will as-
sume an a-priori bound in Lp, p > 4, for the curvature of the initial data. Through-
out Chapter 9 we assume that the hypotheses of Theorem 9.1 hold.

Proposition 9.2 Consider

{

∂h
∂t = − 1

3Rh,

h(0, ·) = g : = e2wg0.
(9.2)

Then there exists T0 = T0(g0), such that (9.2) has a unique smooth solution h ∈
C∞([0, T0),M).

Proof. Consider the normalized Yamabe flow











∂h∗

∂t = − 1
n−1 (R − r)h∗,

r(t) =
∫

M
Rdv/

∫

M
dv,

h∗(0, ·) = h∗0,

(9.3)

on (Mn, h0). Then (9.3) admits a unique smooth solution for all time (see [58],
[94]). When n = 4 (9.2) and (9.3) differ only by a rescaling in time and space.
(9.3) guarantees that the volume is normalized, hence we are only required to find
a time interval [0, T0(g0)), on which vol(M,h) is under control.

Some basic facts about the Yamabe flow are summarized in

Lemma 9.3 ([94]) Under (9.2) one has

∂

∂t
(dv) = −2

3
Rdv, (9.4)

∂

∂t
R = ∆R+

1

3
R2, (9.5)

∂

∂t
Rij =

1

3
∇i∇jR +

1

6
(∆R)gij . (9.6)
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Assuming the validity of (9.4) – (9.6), we now finish the proof of Proposition
9.2 as follows:

Since by (∗∗)δ Rg = Rh(0,·) > C(g0) > 0 we infer from (9.5) that at a
minimum point pt ∈ M

∂R

∂t
(pt) = ∆R(pt) +

1

3
R2(pt) ≥

1

3
R2(pt) > 0,

hence R remains positive under the flow.
The volume is decreasing, since by (9.4)

d

dt

∫

M

dv = −2

3

∫

M

Rdv < 0.

In addition,

d

dt

∫

M

dv ≥ −2

3

(∫

M

R2 dv

)
1
2
(∫

M

dv

)
1
2

,

whence

d

dt

(∫

M

dv

)
1
2

≥ −1

3

(∫

M

R2 dv

)
1
2

. (9.7)

On the other hand, by (9.4) and (9.5),

d

dt

∫

M

R2 dv =

∫

M

2R
dR

dt
dv +

∫

M

R2 d

dt
(dv)

=

∫

M

2R

(

∆R+
1

3
R2

)

dv +

∫

M

R2

(

−2

3
R

)

dv

= −2

∫

M

|∇R|2 dv ≤ 0.

(9.8)

(9.7) and (9.8) imply

[

vol(M,h(0, ·)) 1
2 − ||Rg ||L2

3
· t
]2

≤ vol(M,h(t, ·)) ≤ vol(M,h(0, ·)),

and ||Rg ||L2 is bounded according to Proposition 8.14.

Proposition 9.4 Fix s ∈ (4, 5). Then there is T1 = T1(g0) < T0, such that for
t ≤ T1 the solution h = e2vg of (9.2) satisfies

(a) ||Rich ||Ls ≤ 2||Ricg ||Ls ,

(b) ||Rich ||L∞ ≤ C2t
− 2

s , where C2 = C2(g0),

(c) ||v||L∞ ≤ C(g0).



82

Proof. The proof relies on general estimates for the Yamabe flow (see [93]) as a
parabolic evolution equation summarized in

Proposition 9.5 (Moser iteration for parabolic equations, see [93]).
Assume that with respect to the metric h(t), 0 ≤ t ≤ T the following Sobolev

inequality holds:

(∫

M

|ϕ| 2n
n−2 dv

)
n−2

n

≤ CS

[ ∫

M

|∇ϕ|2 dv +

∫

M

ϕ2 dv

]

for all ϕ ∈ W 1,2(Mn). Suppose b is a nonnegative function on [0, T ] ×Mn, such
that

∂

∂t
(dv) ≤ b dv.

Let q > n, and u ≥ 0 be a function satisfying

∂u

∂t
≤ ∆u+ bu,

sup
0≤t≤T

||b||Lq/2 ≤ β.

Then for all p0 > 1, there exists a constant C = C(n, q, p0, CS) such that for
0 ≤ t ≤ T ,

||u(t, ·)||L∞ ≤ CeCtt−
n

2p0 ||u(0, ·)||Lp0 .

Moreover, for given p ≥ p0 > 1, one has for all t ∈ [0, T ],

d

dt

∫

M

up dv +

∫

M

|∇(up/2)|2 dv ≤ Cp
2n

q−n

∫

M

up dv,

where C = C(n, q, p0, CS).

Remark 9.6 When applying Proposition 9.5 to prove Proposition 9.4, we only
require that s > n

2 = 2 for n = 4. Also, in our application, we can control the
Sobolev constant CS by the Yamabe constant Y (M, g0) which we assume to be
positive of (M, g0)[23].

2

The following result contains the key inequality for the proof of Theorem 9.1.

Proposition 9.7 For k as defined in (9.1), denote

ϕ : = max

(

− k

R
, 0

)

.

Then for t ≤ T1
∂ϕ

∂t
≤ ∆ϕ+ C1|Ric|ϕ+ C1|Ric| (9.9)

for some constant C1 = C1(g0).
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Proof. This statement is proved by straight-forward but lengthy computations,
we refer to [23]. 2

Now we are going to sketch the proof of Theorem 9.1.
First we will modify ϕ to “ remove ” the last term in (9.9). For this purpose,

we define ϕ1(t) : = exp
(

s
s−2C1C2t

s−2
s

)

−1, hence ϕ1(0) = 0, and since s > 2, one

easily checks that
∂ϕ1

∂t
(t) = C1C2(1 + ϕ1(t))t

− 2
s .

Then u : = ϕ− ϕ1 satisfies

∂u

∂t
=
∂ϕ

∂t
− ∂ϕ1

∂t

≤
(9.9)

∆ϕ+ C1|Ric|ϕ+ C1|Ric| − ∂ϕ1

∂t

= ∆u+ C1|Ric|u+ C1|Ric|ϕ1 + C1|Ric| − ∂ϕ1

∂t

≤
(Prop. (9.4)(b))

∆u+ C1|Ric|u+ C1C2(1 + ϕ1)t
− 2

s − ∂ϕ1

∂t

= ∆u+ C1|Ric|u.
Applying Proposition 9.5 for b = c1|Ric|, p0 = 2, q = 2s, s > 4, we conclude for
t ≤ T1,

||u||L∞ = ||ϕ− ϕ1||L∞ ≤ Ct−1||ϕ(0, ·) − ϕ1(0)||L2

=
C

t
||ϕ(0, ·)||L2 .

On the other hand, by (∗∗)δ,

||ϕ(0, ·)||L2 =

∣

∣

∣

∣

∣

∣

∣

∣

σ2(A) + 2γ1|η|2
R

∣

∣

∣

∣

∣

∣

∣

∣

L2

=
(∗∗)δ

∣

∣

∣

∣

∣

∣

∣

∣

δ

4

∆gRg

Rg

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤
(8.40)

C(g0)δ
1
2 .

Thus ||u||L∞ = ||ϕ − ϕ1||L∞ ≤ Cδ
1
2

t for all t ≤ T1. That is, by definition of ϕ in
Proposition 9.7,

1

R
(σ2 + 2γ1|η|2) ≥ −ϕ1(t) −

Cδ
1
2

t
,

hence

σ2 + 2γ1|η|2 ≥ R

(

−ϕ1(t) − C
δ

1
2

t

)

≥ Ct−
2
s

(

−t1− 2
s − δ

1
2 t−1

)

,
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since R ≤ Ct−
2
s by Proposition 9.4 (b), and ϕ1(t) ≤ Ct1−

2
s by the simple estimate

ex − 1 ≤ |x|e|x| for t ≤ T1.
Consequently,

σ2 ≥ −2γ1|η|2 − C3t
1− 4

s − C3δ
1
2 t−1− 2

s .

Recall that |η|2 = e−4(v+w)|η|20 ≥ C(g0) > 0, by Proposition 9.4 (c). Hence there

is a constant C4 = C4(g0) > 0 so that σ2(At) ≥ C4 − C3t
1− 4

s −C3δ
1
2 t−1− 2

s for all
t ≤ T1.

Let t0 : = min{T1, t̂0}, where t̂0 is chosen such that

C3t̂
(1− 4

s )
0 =

1

4
C4,

then at t = t0

σ2(At0 ) ≥
3

4
C4 − C3δ

1
2 t

−1− 2
s

0 >
1

2
C4,

if δ < δ0 is sufficiently small. This means that the metric h = h(t0, ·) ∈ C∞(M)
satisfies

σ2(At0) = σ2(Ah(t0,·)) > 0.

2
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§ 10 Deforming σ2 to a constant function

In this section we will outline the result in [24]. The goal is to deform σ2 = f ,
where f ∈ C∞(M), f > 0, into σ2 = c, where c > 0 is a constant on a compact
4-manifold. To achieve this, we will use the method of continuity together with a
degree-theoretic argument.

To apply the method of continuity, the main step is to obtain a-priori esti-
mates for solutions w of the equation σ2(Agw ) = f for a given positive function f .
First we observe that on (S4, gc), due to the non-compactness of the differmorphism
group on S4, we do not have an a-prior sup-norm bound of the conformal factor
for w with σ2(Agw ) ≡ 6. That is, if we consider the family of metrics gw = e2wgc

on S4 defined by e2wgc = φ∗gc for some differmorphism φ of S4 (actually we can
take φ to be a rotation and dilation on S4), then Rgw ≡ 12, Egw ≡ 0 and

σ2(Agw ) =
1

2

1

12
(4 · 3)2 = 6 on S4.

To see that there is no a-prior sup-norm bound of such family of w, we may use
the stereographic projection map S4 − {N} to R4, where N is the north pole and
observe that in Euclidean coordinates on R4, w corresponds to the sequence

w = wλ = log
2λ

λ2 + |x− x0|2

with λ > 0, x0 ∈ R4. Thus the supremum norm of wλ tends to infinity as λ→ 0.
The following theorem indicates that (S4, gc) is the only exceptional case

among all compact 4-manifolds.

Theorem 10.1 On (M4, g0), suppose that Rgw > 0, gw = e2wg0, and

σ2(Agw ) = f > 0

for some smooth function f . If (M 4, g0) is not conformally equivalent to (S4, gc),
then there is a constant C = C(||f ||C3 , g0, (min f)−1), such that

max
M4

(ew(·) + |∇0w|(·)) ≤ C. (10.1)

Once the estimate (10.1) is established, we can apply Theorem 8.10 to es-

tablish w ∈ C1,1(M), and then since (σ2)
1
2 is concave, we can apply the results

of Evans [42] and Krylov [60] to establish that w ∈ C2,α(M), hence w ∈ C∞(M).
That is, we have the following corollary.
Corollary A.
There is a constant C, such that ||w||C∞ ≤ C, if f ∈ C∞(M).

We then apply a degree theoretic argument to deform σ2 to a constant. We
will skip this part of the argument in this note and refer the readers to the article
[24].
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Theorem 10.2 Assume that σ2(Ag) = f > 0, then there is a metric gw = e2wg
such that

σ2(Agw ) ≡ 1.

Outline of the proof of Theorem 10.1

We will proceed in five steps:

Step 1. Given a sequence of functions wi ∈ C∞(M), such that (10.1) fails to hold
we use a blow-up argument to construct a new sequence converging to a solution
of σ2 ≡ 1 or σ2 ≡ 0 on (R4, |dx|2). The main technical difficulty is the absence
of a Harnack inequality for solutions of σ2 = f > 0. 5 Hence even if the suitably
dilated sequence may be shown to be bounded from above, there is a lack of a
lower bound.

Step 2. Classify the solutions of σ2 ≡ 0 on R4 according to

Theorem 10.3 Suppose gw = e2w|dx|2 is a conformal metric on R4 with w ∈
C1,1(R4) satisfying

σ2(Agw ) ≡ 0, Rgw ≥ 0,

then w ≡ const.

Step 3. Classify the solutions of σ2 ≡ constant > 0 on R4 according to

Theorem 10.4 Suppose gw = e2w|dx|2 =: u2|dx|2 is a conformal metric on R4

with

σ2(Agw ) ≡ 6 (⇒ Rgw ≡ ±12),

then u(x) = (a|x|2 +
∑4

i=1 bixi + c)−1 for some constants a, b, c. In particular, gw

is the pull-back of the round metric gc on S4 to R4.

Step 4. The previous two steps together with the following important Lemma by
Gursky will be used to establish Theorem 10.1.

Lemma 10.5 [54] Let (M4, g) with Y (M4, g) > 0. Then
∫

M σ2(Ag)dvg ≤ 16π2

and equality holds if and only if (M 4, g) is conformally equivalent to (S4, gc).

We remark that this is a restatement of Lemma 6.12 in Section 6. As on
(M4, g) we have

Qg = − 1

12
∆Rg +

1

2
σ2(Ag).

5(*) After this note was written, a form of Harnack inequality was established for a class of
fully non-linear elliptic equations defined on Rn which includes the σk equations. The reader is
referred to the recent articles of [52] and [62].
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Hence

kg :=

∫

M

Qgdvg =
1

2

∫

M

σ2(Ag)dvg .

Thus
∫

M
σ2(Ag)dvg ≤ 16π2 if and only if kg ≤ 8π2.

Remarks.

1. Step 3 above works also for σ2(Ag) ≡ const. on Rn for n = 4, 5, and for n ≥ 6
under the additional assumption that

∫

M dvg < ∞. For n = 4, σ2 > 0 and
R > 0 imply that

∫

dvg < ∞. We remark that for n ≥ 5 there is a metric
with σ2 > 0, R > 0 with

∫

dvg unbounded (obtained by a perturbation of a
metric on Sn−1 × S1). see the article [25].

2. The classification result of Step 3 should be compared to the result of
Caffarelli-Gidas-Spruck [16] for

−∆u = cnu
n+2
n−2 on R

n

⇒ u =

(

λ

λ2 + |x− x0|2
)

n−2
2

.

On (Sn, gc) the above result is Obata [71] theorem, which states that states
that if u > 0 satisfies

−∆u+R0u = cu
n+2
n−2 on Sn

for R0 = n(n − 1), then u
4

n−2 gc = φ∗gc for a conformal transformation
φ : Sn → Sn.

Such a classification result has been established by J. Viaclovsky [90] for
general σk (see also Corollary 8.12 for k = 2 on S4):

Theorem 10.6 (Viaclovsky [90]) If σk(Ag) ≡ const. on Sn for g = u
4

n−2 |dx|2,
then u = (a|x|2 + bixi + c)−

2
n−2 for some constants a, b, c.

Step 1. We will use an unusual blow-up sequence wk , since we do not have a
Harnack inequality to derive a lower bound on wk once we have an upper bound.

Assuming that the statement (10.1) is not true, we find a sequence of metrics
gk = e2wkg0, and smooth functions fk, such that σ2(Agk

) = fk with 0 < C0 ≤
fk ≤ C−1

0 and ||fk||C2 ≤ C1, such that

max
M

(ewk + |∇0wk|) → ∞ as k → ∞. (10.2)

Assume that pk ∈M are the corresponding maximum points. Choosing nor-
mal coordinates Φk at pk we may identify a neighbourhood of pk with the unit
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ball B1(0) ⊂ R4 with Φk(pk) = 0 ∈ R4. Define dilations

Tε : R
4 −→ R

4,

x −→ Tε(x) : = εx,

and consider wk,ε = T ∗
ε wk + log ε, hence

∇0wk,ε + ewk,ε = ε(∇0wk + ewk) ◦ Tε.

Now choose for each k, ε = εk such that the right-hand side equals 1 at x = 0, i.e.

∇0(wk,εk
) + ewk,εk |x=0

= 1, (10.3)

then wk,εk
is defined on B 1

εk

(0).

Notice that 0 ∈ R4 corresponds to a maximal point pk ∈ M for each k, with
value normalized to 1 by (10.3), i.e. with

∇0(wk,εk
) + ewk,εk ≤ 1 on B 1

εk

(0). (10.4)

Since the εk are chosen, we change notation by setting wk : = wk,εk
from now on.

Denote the pull back g∗k : = e2wkT ∗
εk
g0, then σ2(Ag∗

k
) = fk ◦ Tεk

with

gk
0 = T ∗

εk
g0 → |dx|2

in the C2,β-topology.

Case 1.
lim

k→∞
ewk(0) = 0,

i.e. wk(0) → −∞, then the shifted functions w̄k : = wk − wk(0) with the corre-
sponding metrics ḡk : = e2w̄kg0, satisfy























w̄k(0) = 0,

|dw̄k | ≤ 1 on B 1
εk

(0) ⊂ R4,

limk→∞|dw̄k(0)| = 1,

σ2(Aḡ∗

k
) = e4wk(0)fk ◦ Tεk

on B 1
εk

(0) ⊂ R4.

(10.5)

Thus maxB%(0)|w̄k| ≤ %, so the w̄k are uniformly bounded in the C1-topology on
compact subsets of R4. To obtain the necessary C1,1-bounds we appeal to a local
version of Theorem 8.10 on R4:

Theorem 10.7 Suppose g = e2w|dx|2 =: e2wg0 on R4 satisfies σ2(Ag) = f ≥ 0
and Rg > 0 on B%(0), then

|∇2
0w|L∞(B%/2) ≤ C(||w||L∞(B%), ||∇0w||L∞(B%), ||f ||C2(B%), %). (10.6)
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(10.6) implies in our situation

sup
B%(0)

|∇2w̄k | ≤ C%. (10.7)

Case 2.
lim sup

k→∞
ewk(0) = δ0 > 0,

then






−c2 ≤ wk(0) ≤
(10.4)

0,

|dwk| ≤ 1 on B 1
εk

(0).
(10.8)

Again as before we obtain
sup

B%(0)

|∇2wk | ≤ C%.

In contrast to Case 1 we even get uniform C2,β-bounds by the theory of Evans
[42] and Krylov [60], since the wk satisfy the uniformly elliptic equations

σ2(Agk
) = fk ◦ Tεk

≥ 1

C0
.

Recall that for the ellipticity one has to check that (by Lemma 7.2 (c))

−∂σ2(Agk
)

∂(wk)ij
= 2Sij ≥ 6σ2(Agk

)

Rgk

gij

which is uniformly positive definite.
Hence in Case 2 we are able to conclude that the sequence {wk} is uniformly

bounded in the C2,β-topology, hence in Ck(R4) for all k.
Case 1 can be excluded by means of Theorem 10.3, which will be proven in

Step 2. In fact, so far we know by (10.7) that w̄k → w̄ in C1,β
loc (R4) with

σ2(Aḡw ) = 0 and w̄ ∈ C1,1(R4), (10.9)

Rḡw ≥ 0, where (10.9) is meant to hold in the weak sense, i.e. a.e. on R
4, or in

integrated form. Hence w̄ ≡ const., in particular ∇w̄(0) = 0 contradicting (10.5).

Step 2. Proof of Theorem 10.3. Fix B% : = B%(0), choose a cut-off function
η ≡ 1 on B%, η ≡ 0 on R

4\B2% with |∇η| . %−1, |∇2η| . %−2, and set w̄ : =
∫

B2%

w dx.

Multiply the expression (7.10) for σ2(Agw )e4w, which holds a.e. on R4, by the
function (w − w̄)η4 and integrate on R4. Using the assumption of Theorem 10.3
one obtains

∫

R4

|∇w|4η4 dx .

(

∫

A%

|∇w|4η4 dx

)
1
2

,



90

where A% : = B2% −B%. Since
∫

R4 |∇w|4 dx ≤ ||w||4C1,1 <∞, we have

lim
%→∞

∫

A%

|∇w|4η4 dx = 0,

hence lim%→∞
∫

B%
|∇w|4 dx = 0, i.e. |∇w| ≡ 0 on compact subsets of R

4, which

implies that w ≡ const. 2

Notice that this proof works also in the case, when σ2 ≡ ε << 1, which will
be used in the degree-theoretic argument later.

Step 3. Proof of Theorem 10.4. We recall the geometric proof of Obata’s
Uniqueness Theorem on Sn: If Rg ≡ const. on Sn, then |E| ≡ 0 and g = φ∗(gc)
for some conformal transformation φ : Sn → Sn. For simplicity we review Obata’s
proof for n = 4. Then Eij = −2u−1(∇2

gu)ij + 1
2u

−1(∆gu)gij , where g = u2g0, and
calculating in the g metric (dv : = dvg),

∫

S4

|E|2u dv =

∫

S4

g(E,E)u dv

=
(TrE=0)

−2

∫

S4

g(E,∇2
gu) dv

= 2

∫

S4

g(δE, du) dv

=
(δE= 1

4 dR)
2

∫

S4

g

(

1

4
dR, du

)

dv =
(R≡const.)

0.

On R4, and assuming Rg ≡ const., we use a cut-off function to imitate Obata’s
proof:

∫

R4

g(E,E)uη2 dv = −2

∫

R4

g(E,∇2
gu)η

2 dv

=

∫

R4

g(δE, du)η2 dv + 2

∫

R4

g(E, du)∇g(η
2) dv

≤
(Rg≡const.)

2

∫

A%

|E|g |∇gu||∇g(η
2)| dv

.

(

∫

A%

|E|2guη2 dv

)
1
2
(

∫

A%

|∇gu|2|∇gη|2u−1 dv

)
1
2

.

Hence it suffices to prove

∫

A%

|∇gu|2|∇gη|2u−1 dv =

∫

A%

|∇0u|2|∇0η|2u−1 dx

≤ C independ of %.

(10.10)
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Since then (as before) E ≡ 0 follows by taking %→ ∞. To prove (10.10) one may
look at the situation for general n, and (10.10) amounts to showing that

I(%) : =
1

%2

∫

A%

|∇0u|2u−1 dx

is bounded independent of %. For n = 3 this can easily be done by multiplying

the differential equation −∆0u = c3u
n+2
n−2 (= c3u

5) by u−
n−2

2 to get I3(%) ≤ C. If
there is a volume bound then one can easily check that u−1 ≤ c|x|2 for all n, and
it remains to show that

∫

A%

|∇0u|2 dx ≤ C independent of %.

In general, a volume bound is too strong an assumption. For n = 4 in our situation
we proceed with a similar strategy replacing Rg by σ2(Ag) and E by some tensor
L with similar properties.

Lemma 10.8 Suppose (M4, g) is locally conformally flat (e.g. for g = e2w|dx|2),
then consider the tensor

L : =
1

4
|E|2g +

1

6
RE −E2.

Then
{

TrgL = 0

δL = 1
2dσ2(A).

(10.11)

Proof. Follows from a straightforward computation. 2

Proposition 10.9 If σ2(A) > 0, R > 0, then

(i) g(L,E) ≥ 0 with equality iff E ≡ 0,

(ii) |L|2 ≤ R
3 g(L,E).

Proof.
(i) is a consequence of the relation TrE3 ≤ 1√

3
|E|3, which was already used

in (8.17).
(ii) One calculates

|L|2 = |E2|2 − 1

4
|E|4 +

1

36
R2|E|2 − 1

3
RTrE3,

and |E2|2 ≤ 7
4 |E|4, which is sharp, since E might have diagonal form (Eij) =









−3λ
λ

λ
λ











92

2

Now we can proceed to sketch a proof of Theorem 10.4 along the lines of
Obata’s proof outlined above.

∫

R4

g(L,E)uη4 dvg =
(10.11)

−2

∫

R4

g(L,∇2
gu)η

4 dvg

= 2

∫

R4

g(δL, du)η4 dvg + 2

∫

R4

g(L, du)∇g(η
4) dvg

≤
(σ2≡const.)

(10.11)

8

∫

R4

|L|g|∇gu||∇gη|(η)2 dvg

≤
(ii)

8√
3

∫

R4

R
1
2 g

1
2 (L,E)|∇gu||∇gη|(η)2 dvg

.

(

1

%2

∫

A%

R|∇0u|2u−1 dx

)
1
2
(

∫

A%

g(L,E)uη4 dvg

)
1
2

.

Thus it suffices to prove that there is a constant C independent of ρ, such that

∫

A%

R|∇0u|2u−1 dx ≤ C%2, (10.12)

since then arguments analogous to Obata’s proof show that g(L,E) = 0, which by
Proposition 10.9 (i) implies E ≡ 0.

In order to show (10.12) one multiplies the expression (7.10) for σ2(Ag)e
4w

by e−w, which leads to (10.12) for n = 4. Also for n = 5 this can be worked out,
but this method seems to fail for n ≥ 6. 2
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