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ated to the memory of J�urgen Moser0 Introdu
tionIn the study of 
onformal stru
tures on manifolds, the appli
ation of method of nonlinearpartial di�erential equation may be said to begin with the work of Poin
are. In the paper[43℄, Poin
are solved the uniformization problem for Riemann surfa
es of genus greater thanone by solving for a 
onformal metri
 with 
onstant negative 
urvature �1. The analogousquestion for surfa
es of positive 
urvature was �rst studied su

essfully by Moser in twofundamental papers ([37℄, [38℄) in whi
h he obtained with pre
ise 
onstants, a sharp versionof a limiting 
ase of the Sobolev inequality that are now 
ommonly referred to as the Moser-Trudinger inequalities. The inequality asserts (for pre
ise statement, see se
tion one) that fortwo dimensional domains, 
ompa
tly supported fun
tions with Diri
hlet integrals boundedby a 
onstant automati
ally belong to exponentially integrable 
lass. This inequality makesit possible to obtain bounds for the Diri
hlet integral of a minimizing family of fun
tionsin a variational problem asso
iated with the problem to pres
ribe the Gauss 
urvature of a
onformal metri
 on the real proje
tive plane.Subsequent development depends in part on understanding the role of the Mobius groupin the 
riti
al exponent inequalities. Sin
e the variational fun
tional in Moser's approa
hhas a natural meaning in spe
tral geometry, there is beautiful development 
on
erning the
ompa
tness of isospe
tral family of metri
s in low dimension. The theory is enri
hed by theintrodu
tion of higher order invariants by the work of Paneitz ([44℄) and Fe�erman-Graham([27℄) , and more re
ently our own work on the �2 equation ([11℄). In this brief arti
le,we will survey some work in 
onformal geometry in whi
h the Moser-Trudinger inequalityplays a role, as well as extensions and generalizations of this inequality to higher dimensions.In the last se
tion we will present a new inequality on the 4-sphere whi
h is the naturalgeneralization of the original Moser's inequality for the 2-sphere.�Resear
h of Chang is supported in part by NSF Grant DMS-0070542yResear
hof Yang is supported in part by NSF Grant DMS-00705261



1 The inequality of Moser and TrudingerFor a smooth domain 
 � Rn, letW �;q0 (
) denote the 
losure of fun
tions of 
ompa
t supportin 
 with derivatives of order � in Lq under the norm jjujj�;q;
 = (R
Pj�j�� jD�ujqdx)1=q.The 
lassi
al Sobolev embedding theorem states that W �;q0 (
) � Lp(
) where 1p = �n � 1qfor �q < n and p > 1. In the limiting 
ase when �q = n, one 
an easily see that the
orresponding in
lusion 
annot hold. For example, when � = 1; q = n = 2, one may take
 to be the unit ball B in R2, and let u(x) = log(1 + log 1jxj), then one 
he
ks easily that ubelongs to W 1;20 (B) but it does not belong to L1(B). Trudinger pointed out that fun
tionsin W �;n�0 are in the exponential 
lass (i.e. in the Orli
z spa
e).Theorem 1. (Trudinger [53℄, 1967) There exist 
onstants �; C depending only on the di-mension n, so that for fun
tions u 2 W 1;n0 (
) satisfying the normalization R
 jrujndx � 1,we have Z
 exp(�juj nn�1 )dx � Cj
j: (1.1)For appli
ation to the pres
ribed Gauss 
urvature equation, one requires a parti
ularvalue for the best 
onstant �0. In 
onne
tion with his work on the Gauss 
urvature equation,Moser sharpened the above result of Trudinger:Theorem 2. (Moser [37℄, 1971) There exists sharp 
onstant �0 = �0(n) = n! 1n�1n�1 andC = C(n) so that for u 2 W 1;n0 (
) satisfying R
 jrujn dx � 1, the inequality (1.1) holds forall � � �0(n). The 
onstant �0 is sharp in the sense that for all � > �0 there is a sequen
eof fun
tions uk 2 W 1;n0 (
) satisfying R
 jrukjndx � 1, but the integrals R
 exp(�jukj nn�1 )dxgrow without bound.Subsequently, Carleson and Chang [8℄ found that, 
ontrary to the situation for Sobolevinequality, there is an extremal fun
tion realizing the equality when � = �0(n) and 
 is theunit ball in Eu
lidean spa
e. This fa
t remains true for simply 
onne
ted domains in theplane was shown by Fl�u
her ([28℄), and for some domains in the n-sphere by Soong ([48℄).Sin
e the argument of Moser was based on the symmetrization pro
edure, the nature ofthe 
onstant �0 is expe
ted to be related to the isoperimetri
 
onstant. This is made expli
itin the arti
les ([19℄, [21℄) in the former it was shown that the 
onstant �0 is determined by
ertain isoperimetri
 
onstant asso
iated to two dimensional pie
ewise smooth domains andin the latter for two dimensional orbitfolds.2 Pres
ribing Gaussian 
urvature for surfa
esThe problem to 
hara
terize the Gauss 
urvature fun
tion on the 2-sphere is 
ommonlyattributed to Nirenberg. Sin
e the 2-sphere has a unique 
onformal stru
ture, this problem




an be interpreted as to �nd a 
onformal metri
 with a pres
ribed 
urvature fun
tion. LetS2 denote the unit sphere in R3 with the standard metri
 g0 of 
onstant Gauss 
urvatureone. Consider 
onformal metri
 gw = e2wg0 whose Gaussian 
urvature Kw is given by thefollowing equation: ��w + 1 = Kwe2w: (2.1)Here and later on �w and rw, et
 are taken with respe
t to the ba
kground metri
 g0. Inaddition to the obvious sign requirement imposed by the Gauss-Bonnet theorem, there is anobstru
tion dis
overed by Kazdan and Warner ([34℄)ZS2 rKw � rx e2wdA0 = 0 (2.2)where x is any of the ambient 
oordinate fun
tion. Moser realized that the impli
it integra-bility 
ondition is satis�ed if the 
onformal fa
tor has antipodal symmetry and that in fa
tthere is no further integrability 
ondition in that 
ase:Theorem 3. (Moser [38℄, 1971) Let K be a fun
tion with antipodal symmetry and positivesomewhere on the 2-sphere. Then there is a smooth fun
tion w also with antipodal symmetryfor whi
h the equation (2.1) holds for K = Kw.Moser studied the variational fun
tionalJ [w℄ = 14� ZS2(jrwj2 + 2w)dA0 � logf 14� ZS2 Ke2wdA0g (2.3)and proved, in the same paper, a version of the inequality (1.1) for fun
tions on the 2-sphere:Theorem 4. (Moser [38℄) Let w be a smooth fun
tion on the 2-sphere satisfying the nor-malizing 
onditions: RS2 jrwj2dA0 � 1 and �w = 0 where �w denotes the mean value of w,then ZS2 e�w2dA0 � C (2.4)where � � 4� and C is a �xed 
onstant. If w has antipodal symmetry then the inequalityholds for � � 8�.The general inequality (2.4) with � = 4� shows the fun
tional J [w℄ is bounded frombelow. However due to the a
tion of the Mobius group, a minimizing sequen
e in general willnot satisfy the Palais-Smale property. But within the 
lass of fun
tions satisfying antipodalsymmetry, the inequality (2.4) hold with the better value � = 8�, hen
e there is 
ompa
tnessin a minimizing sequen
e. Thus the fun
tional J a
hieves a minimum within the 
lass offun
tions with antipodal symmetry.



The inequality of Moser shows that there is a lower bound for the fun
tional J [w℄, Onofri([40℄) determined the best lower bound, in his study of the volume element in string theoryintegrals, using an estimate of Aubin ([2℄):J [w℄ = 14� ZS2(jrwj2 + 2w)dA0 � logf 14� ZS2 e2wdA0g � 0 (2.5)and equality holds pre
isely for 
onformal fa
tors w of the form e2wg0 = T �g0 where T is aMobius transformation of the 2-sphere. This inequality was also obtained independently byHong [33℄.A fas
inating impli
ation of Moser's inequality is asso
iated with the fa
t that J [w℄ forK = 1 
omputes the logarithm of the regularized determinant of the Lapla
ian as de�nedby Ray-Singer ([46℄) see also ([45℄):J [w℄ = �16 log(det�gwdet�g0 ): (2.6)Independently of Onofri, Osgood-Philips-Sarnak ([41℄, [42℄) arrived at the same sharp in-equality in their study of the log-determinant of the Lapla
ian. This inequlity also playsan important role in their proof of the C1 
ompa
tness of isospe
tral metri
s on 
ompa
tsurfa
es. The reader is also referred to the le
ture notes ([9℄) for 
onne
tions between Moser-Onofri inequality and other isospe
tral problems in 
onformal geometry.Returning to the solvability question of the Nirenberg problem, we devised a degree 
ount([18℄, [19℄, [10℄) asso
iated to the fun
tion K and the Mobius group on the 2-sphere, thatis motivated by the Kazdan-Warner 
ondition. This degree a
tually 
omputes the Leray-S
hauder degree of the equation as a nonlinear Fredholm equation. In the spe
ial 
ase thatK is a Morse fun
tion satisfying the 
ondition �K(x) 6= 0 at the 
riti
al points x of K, thisdegree 
an be expressed as: XrK(q)=0;�K(q)<0(�1)ind(q) � 1: (2.7)The latter degree 
ount is also obtained later by Chang-Liu [17℄ and Han [32℄.More re
ently, there is an extensive study of a generalization of the equation (2.1) to
ompa
t Riemann surfa
es. Sin
e Moser's argument is readily appli
able to a 
ompa
tsurfa
e (M; g0), a lower bound for similiarly de�ned fun
tional J on (M; g0) 
ontinues tohold in that situation. The Chern-Simons-Higgs equation in the Abelian 
ase is the studyof the equation on M : �w = �e2w(e2w � 1) + 2� NXi=1 Æpi: (2.8)The mean �eld equation is the study of the equation :�w + �( he2wR he2w � 1) = 0; (2.9)



where � is a real parameter that is allowed to vary.There is a
tive development on these equations by several group of resear
hers in
ludingCa�arelli-Y.Yang ([7℄), Ding-Jost-Li-Wang ([23℄), Tarantello ([51℄), Struwe and Tarantello([49℄), C.-C. Chen and C.S. Lin ([22℄); and most re
ently by Y. Yang ([56℄) on systems ofsu
h equations.In higher dimensional K�ahler geometry, the Moser-Trudinger inequality also plays a rolein the study of K�ahler Einstein metri
s. The reader is referred to the arti
les of Siu ([47℄),Ding-Tian ([24℄) and Tian ([52℄).3 Fully nonlinear equations in 
onformal geometry indimension fourIn dimensions greater than two, the natural 
urvature invariants in 
onformal geometry arethe Weyl tensor W , and the Weyl-S
houten tensor A = R
 � R2(n�1)g that o

ur in thede
omposition of the 
urvature tensor.Rm =W � 1n� 2A 
̂g (3.1)Sin
e the Weyl tensor W transform by s
aling under 
onformal 
hange gw = e2wg, only theWeyl-S
houten tensor depends on the derivatives of the 
onformal fa
tor. It is thus naturalto 
onsider �k(Ag) the k-th symmetri
 fun
tion of the eigenvalues of the Weyl-S
houtentensor Ag as 
urvature invariants of the 
onformal metri
s. As a di�erential invariant of the
onformal fa
tor w, �k(Agw) is a fully nonlinear expression involving the Hessian and thegradient of the 
onformal fa
tor w. We have abbreviating Aw for Agw :Aw = f�2r2w + 2dw 
 dw � jrwj22 g+ Ag: (3.2)The equation �k(Aw) = 1 (3.3)is a fully nonlinear version of the Yamabe equation. When k 6= n2 and the manifold (M; g)is lo
ally 
onformally 
at, Via
lovsky ([54℄) showed that the equation (3.3) is the Eulerequation of the variational fun
tional R �k(Agw)dVgw . In the ex
eptional 
ase k = n=2, theintegral R �k(Ag)dVg is a 
onformal invariant. For a symmetri
 n�nmatrix A, we say A 2 �+kif �k(A) > 0 and A may be joined to the identity matrix by a path 
onsisting entirely ofmatri
es At su
h that �k(At) > 0. We say g 2 �+k if the 
orresponding Weyl-S
houten tensorAg(x) 2 �+k for every point x 2 M . For k = 1 the Yamabe equation for pres
ribing s
alar
urvature �4(n� 1)n� 2 �u+R0u = Rg0un+2n�2 (3.4)



is a semilinear one in the 
onformal fa
tor u where g = u 4n�2 g0; hen
e the 
ondition forg 2 �+1 is the same as requiring the operator L = �4(n�1)n�2 � + R0 be a positive operator.The 
riteria for existen
e of a 
onformal metri
 g 2 �+k is not as easy for k > 1 sin
e theequation is a fully nonlinear one. However when n = 4; k = 2 the invarian
e of the integralR �2(Ag)dVg is a re
e
tion of the Chern-Gauss-Bonnet formula8�2�(M) = ZM(�2 + 14 jW j2)dV: (3.5)In dimension 4, we also re
all that�2(Ag) = 12(jTra
eAgj2 � jAgj2) = R224 � jEj22 ; (3.6)where E denotes the tra
eless Ri

i tensor.In this 
ase it is possible to �nd a 
riteria:Theorem 5. ([11℄) For a 
losed 4-manifold (M; g) satisfying the following 
onformally in-variant 
onditions:(i) L is a positive operator, and(ii) R �2(Ag)dVg > 0;then there exists a 
onformal metri
 gw 2 �+2 .Remark: In dimension four, the 
ondition g 2 �+2 implies that R > 0 and an easy 
ompu-tation shows that Ri

i is positive everywhere. Thus su
h manifolds have �nite fundamentalgroup. In addition, the Chern-Gauss-Bonnet formula and the signature formula shows thatthis 
lass of 4-manifolds satisfy the same 
onditions as that of an Einstein manifold withpositive s
alar 
urvatures. Thus it is the natural 
lass of 4-manifolds in whi
h to seek anEinstein metri
.The existen
e result depends on the solution of a family of fourth order equations in-volving the Paneitz operator ([43℄). In the following we brie
y outline this 
onne
tion. Indimension four, the Paneitz operatorP = �2 + div(2R3 g � 2R
)r (3.7)enjoys 
onformal 
ovarian
e:under 
onformal 
hange of metri
 gw = e2wg0Pgw = e�4wPg0: (3.8)The Paneitz operator 
omputes a fourth order 
urvature 
alled the Q-
urvature:P0w + 2Q0 = 2Qgwe4w (3.9)where Q = �112 �R + 12�2: (3.10)



In an elegant paper [31℄, Gursky showed that the positivity of the operator is a 
onse-quen
e of the assumptions (i) and (ii) of Theorem 5, and of equal signi�
an
e, su
h manifoldssatisfy the 
ondition ZM �2(Ag)dVg � 16�2; (3.11)and equality holds if and only if M is 
onformally di�eomorphi
 to S4. In an earlier arti
le[20℄, we showed that for su
h a 4-manifold M , the Q-
urvature may be pres
ribed to be a
onstant by a 
onformal metri
. The main ingredient in that existen
e theory is the gen-eralized Moser-Trudinger inequality of D. Adams ([1℄; on manifolds [26℄): For any boundeddomain 
 in R4, there is a 
onstant C = C(n) so that for a fun
tion w 2 C20 (
) satisfyingthe normalization R j�wj2 � 1; we haveZ
 e32�2w2dx � Cj
j: (3.12)A 
orresponding inequality 
an be shown to hold for a fun
tion w on a 
losed 4-manifoldwhose Paneitz operator is positive, RM wdV = 0 and the normalization RM Pw � wdV � 1:This then is the starting point of a 
ontinuity argument in whi
h we solve the family ofequations �2(Ag) = Æ4�R� 
jW j2 (3.13)where 
 is 
hosen so that R �2(Ag)dVg = �
 R jW j2gdVg: The bulk of the analysis 
onsist inestimating the solution as Æ tends to zero, showing essentially that in the equation (3.13) theterm Æ4�R is small in the weak sense. The proof ends by applying the Yamabe 
ow to themetri
s gÆ whi
h satis�es (3.13) to show that for suÆ
iently small Æ the smoothing providedby the Yamabe 
ow yields a metri
 g 2 �+2 .The equation (3.3) be
omes meaningful for 4-manifolds whi
h admits a metri
 g 2 �+2 .In the arti
le [12℄, we provide apriori estimates for solutions of the equation�2(Ag) = f (3.14)where f is a given positive smooth fun
tion. Then we use the following 1-parameter familyof equations �2(Agt) = tf + (1� t) (3.15)to deform the original metri
 to one with 
onstant �2(Ag).In terms of geometri
 appli
ation, this 
ir
le of ideas may be applied to 
hara
terize anumber of interesting 
onformal 
lasses in terms of the the relative size of the 
onformalinvariant R �2(Ag)dVg 
ompared with the Euler number.



Theorem 6. ([14℄) Suppose (M4; g) is a 
losed 4-manifold whose 
onformal Lapla
ian ispositive. If ZM �2(Ag)dVg > 14 ZM jW j2gdVg; (3.16)then M is di�eomorphi
 to a quotient of the standard 4-sphere.If M is not di�eomorphi
 to the standard 4-sphere andZM �2(Ag)dVg = 14 ZM jW j2gdVg; (3.17)then M is 
onformally equivalent to a quotient of CP 2 or S1 � S3.This �rst part of Theorem 6 applies the existen
e argument to �nd a 
onformal metri
g0 whi
h satis�es the pointwise inequality�2(A0g) > 14 jW 0j2: (3.18)The di�eomorphism assertion follows from Margerin's ([36℄) pre
ise 
onvergen
e result forthe Ri

i 
ow: su
h a metri
 will evolve under the Ri

i 
ow to one with 
onstant 
urvature.Therefore su
h a manifold is di�eomorphi
 to a quotient of the standard 4-sphere.For the se
ond part of the assertion, we argue that if su
h a manifold is not di�eomorphi
to the 4-sphere, then the 
onformal stru
ture realizes the minimum of the quantity R jW j2dV ,and hen
e its Ba
h tensor vanishes. There are two possibilities depending on whether theEuler number is zero or not. In the �rst 
ase, an earlier result of Gursky ([30℄) shows themetri
 is 
onformal to that of the spa
e S1 � S3. In the se
ond 
ase, we solve the equation�2(A0g) = 14 jW 0j2 + � (3.19)and let � tends to zero. We obtain in the limit a C1;1 metri
 whi
h satis�es the equation onthe open set 
 = fxjW (x) 6= 0g: �2(A0g) = 14 jW 0j2: (3.20)Then a long Lagrange multiplier 
omputation, inspired in part by the 
orresponding 
om-putation of Margerin, shows that the 
urvature tensor of the limit metri
 agrees with thatof the Fubini-Study metri
 on the open set where W 6= 0. Therefore jW 0j is a 
onstant on 
thus W 
annot vanish at all. It follows that the 
urvature tensor of the limit metri
 agreeswith that of Fubini-Study metri
 everywhere.



4 A Moser-Onofri inequality for the 4-sphereIn [3℄, Be
kner generalized the sharp inequality (2.5) of Moser-Onofri to n-spheres. Denoteby (Sn; g0) the n-sphere in Rn+1 with the standard metri
 g0; Be
kner's inequality boundsthe volume of the metri
 gw = e2wg0 by an energy term with leading order term of the formR (�w)n2 dV0. In our work ([20℄), we gave an alternative argument for this inequality basedon the 
onformal 
ovarian
e of the general n-th order Paneitz operator. For example in 
aseof the 4-sphere, the inequality takes the form:1jS4j ZS4f�w)2 + 2jrwj2 + 12wgdV0 � 3logf 1jS4j ZS4 e4wdV0g � 0; (4.1)where jS4j ( = 8�23 ) denotes the volume of the 4-sphere. The equality hold if and only if themetri
 gw is isometri
 to the standard metri
 g0.In this se
tion we dis
uss another extension of the sharp Moser-Onofri inequality to Snwhen n = 2k is even, and for a 
lass of fun
tions whose asso
iated 
onformal metri
s belongto the 
lass �+k .For a 
ompa
t surfa
e (M2; g0), 
onsider the fun
tionalJ [w℄ = Z jrwj2 + 2K0wdV0 (4.2)under the volume 
onstraint that R e2wdV0 = V ol(g0), where K0 denotes the Gaussian 
ur-vature of the metri
 g0. ThenJ 0[w℄(�) = dd� j�=0J [w + ��℄ = 2 Z (��w +K0)�dV0 (4.3)for all � 2 C1(M) with R e2w�dV0 = 0. It follows from the Gaussian 
urvature equation��w +K0 = Kwe2w (4.4)that at a 
riti
al point w of the fun
tional J :0 = J 0[w℄(�) = 2 Z Kwe2w�dV0 (4.5)for all � 2 C1(M) with R e2w�dV0 = 0. We say 12J is a 
onformal primitive of the Gaussian
urvature K.On a 
ompa
t n-manifold (n � 3), a similar 
omputation shows that the fun
tionalF [w℄ = 1n� 2 ZM RgwdVgw (4.6)is the 
onformal primitive of the s
alar 
urvature R. Using this terminology, the result ofVia
lovsky whi
h we have mentioned in the previous se
tion 
an be restated as:



Theorem 7. ([54℄) On a 
ompa
t (Mn; g),(a) in the 
ase n 6= 2k, the fun
tional F k[w℄ = 1n�2k RM �k(Agw)dVgw is the 
onformal primi-tive of �k(Ag);(b) in the remaining 
ase n = 2k, and assume also that (Mn; g) is lo
ally 
onformally 
at,then RM �k(Agw)dVgw is 
onformally invariant.In view of the statement (a), it is natural to ask for the existen
e of a fun
tional whi
h isthe 
onformal primitive of �k(Ag) when n = 2k. In our previous work on the log determinantfun
tional ([5℄ for the 4-sphere; [20℄ for general 4-manifolds), it was observed that su
h afun
tional exists in the 
ase n = 4 = 2k. To des
ribe the fun
tional, let us de�ne for a
ompa
t 4-manifold M, gw = e2wg:II[w℄ = Z Pw � w + 4 QgwdVgIII[w℄ = 13(Z R2gwdVgw � Z R2gdVg);where P is the Paneitz operator, and Q = � 112�R + 12�2 as de�ned in se
tion 3. In fa
t,using equation (3.9) one 
an easily 
he
k that II is the 
onformal primitive of the fourthorder 
urvature 4Q. By another straightforward 
al
ulation, one 
an also 
he
k that III isthe 
onformal primitive of �4�R. Therefore, the 
onformal primitive of �2 is given byF2[w℄ = 12(II[w℄� 112III[w℄): (4.7)It is thus natural to ask if one 
an study the problem to pres
ribe the 
urvature invariant�2(Ag) by a variational method using the 
onformal primitive. We remark that, in generalthis 
annot be an easy task sin
e the fun
tional F2 is the di�eren
e of fun
tionals II andIII whi
h are both 
oer
ive (in the 
ases we 
onsider) and of higher order, although thereis total 
an
ellation of the fourth order terms. In parti
ular on the 4-sphere, both II andIII are extremized by the standard metri
 ([5℄, see also [3℄). It is not 
lear how to studyinf F2[w℄. It is our purpose in this se
tion to study this problem for the restri
tive 
lass ofmetri
s gw 2 �+2 . We will use a paraboli
 equation introdu
ed by Guan and Wang ([29℄):ddtg = �(log(�k(g))� log(rk(g))) � g (4.8)where log(rk(g)) = R log(�k(g))dVg and the initial metri
 g(0) = g0. When the manifoldM4 is 
onformally 
at, the argument of Ye ([57℄), shows that there is apriori C1 estimatesfor solutions of equation (4.8). In the arti
le [29℄, Guan and Wang showed the longtimeexisten
e as well as the uniform C2 estimates for solutions of the equation. We now followthe arguments in [50℄ and modify them to the fun
tional F2. First it is easy to see thatunder the 
ow (4.8) we haveddtF2[g(t)℄ = �12 Z (�2(g)� r2(g))(log�2(g)� log(r2(g))dVg: (4.9)



Therefore the fun
tional F2 de
reases under the 
ow (4.8). In addition, we haveZ T0 ZM(�2(g)� r2(g))(log(�2(g))� log(r2(g))dVgdt � 2jF2[g(t)℄� F2[g(0)℄j: (4.10)It follows that under the 
ow �2(g) and F2[g℄ remain bounded andZ 10 ZM(�2(g)� r2(g))2dVgdt <1: (4.11)Then there exists a sequen
e of times ftlg for whi
hZM(�2(g(tl))� r2(g(tl)))2dVg ! 0: (4.12)On a

ount of the uniform C2 bounds for the metri
s g(tl), a subsequen
e will 
onverge inC1;� to a C1;1 metri
 g1 whi
h is a vis
osity solution of the equation �2(g) = 
onstant; this
onstant is positive due to the 
onformal invarian
e of the integral R �2(Ag)dVg. Sin
e su
hsolutions are in fa
t smooth a

ording to Evans-Krylov ([25℄, [35℄), the 
lassi�
ation providedin ([55℄, see also [13℄) shows that g1 must be standard, hen
e the 
onstant 
urvature metri
on S4 realizes the in�mum for F2. We summarize this 
on
lusion in the following:Theorem 8. On the 4-sphere (S4; g0), if gw = e2wg0 is a 
onformal metri
 lying in the set�+2 , then we have1jS4j ZS4f�2�wjrwj2 � jrwj4 + 6jrwj2 + 12wgdV0 � 3 logf 1jS4j ZS4 e4wdV0g � 0: (4.13)Remark: The 
onditon gw 2 �+2 
annot be removed as we see easily that by taking w tobe a large multiple of any �rst eigenfun
tion on the 4-sphere makes the quantity in (4.13)an arbitrarily large negative number. We thank the referee for pointing out this example.However, it is reasonable to ask if the inequality 
ontinues to hold for metri
s in the set �+1 ,that is, metri
s with positive s
alar 
urvature.More generally, we now des
ribe a possible pro
edure to �nd a fun
tional Fk;n, whi
h isa 
onformal primitive of �k when n = 2k for a 
onformally 
at stru
ture. We illustrate themethod by deriving the fun
tional F2;4 = 14F2 for the fun
tional F2 in (4.7) in dimension4. Thus the 
onformal 
ow (4.8) 
an be applied to derive, in prin
iple, an extension of theMoser-Onofri inequality to all even dimensional spheres.We �rst set up the notations. To be 
onsistent with the notations of Via
lovsky, let usdenote Cij = 1n�2Aij and �k;n the k-th symmetri
 fun
tion of the eigenvalues of Cij. Thusfor n = 4, we have �2;4 = 14�2 for �2 de�ned in (3.6).We de�ne the 
onformal primitive for �k;n, using the "analyti
 
ontinuation in dimension"method that we learned from Tom Branson. In [4℄, Branson used a similar method to




al
ulate the 
onformal primitive of the Q-
urvatures. Let us denote for n 6= 2k, �k;n(w) =�k;n(Cgw) and de�ne for gw = e2wg0Fk;n[w℄ = 1n� 2k ZM(�k;n(w)enw � �k;n(0))dV0: (4.14)Then a

ording to Via
lovsky,dd� j�=0Fk;n[w + ��℄ = Z �k;n(w)�dVw: (4.15)We write for n 6= 2k,�k;n(w)enw � �k;n(0) = e(n�2k)w�k;n(w)e2kw � �k;n(0)= (e(n�2k)w � 1)�k;n(w)e2kw + (�k;n(w)� �k;2k(w))e2kw+ (�k;2k(w)e2kw � �k;2k(0)) + (�k;2k(0)� �k;n(0)):Noti
e that the se
ond to the last term in the above expression is zero after integration overthe manifoldM . Therefore we divide the equation above by n�2k and take limit as n tendsto 2k:Fk;2k[w℄ = limn!2kFk;n[w℄ = Z (w�k;2k(w)e2kw + ddn jn=2kf�k;n(w)e2kw � �k;n(0)g)dV0: (4.16)Remarks:1. The quantity Fk;n[w℄ has the following s
aling property: if in the de�nition of Cij we putCij = 
nAij for some 
hoi
e of 
n, and denote the resulting quantity by ~�k;n and repeat thesame steps to de�ne the 
orresponding fun
tional ~Fk;n. Then ~Fk;n[w℄ = 
nFk;n[w℄. This is
lear when n 6= 2k. When n = 2k, we observe that in the formula (4.16) we haveddn jn=2k~�k;n[w℄ = ( ddn jn=2k
n)�k;2k[w℄ + 
n ddn jn=2k�k;n[w℄: (4.17)Thus, due to the 
onformal invarian
e of the integral R �k;2k(g)dVg, we have ~Fk;2k[w℄ =
nFk;2k[w℄.2. We need to explain the justi�
ation in taking the derivative ddn in the above formula. Whenviewed as formal algebrai
 expressions in the various derivatives of w in an appropriatetensor spa
e, the quantity �k;n(w) may be expanded using the formula of Aij as in (3.2)into a polynomial expression in various derivatives of w with 
oeÆ
ients that are rationalexpressions in n. Viewed as fun
tion of n su
h an expression is rational in n with no pole atn = 2k. Sin
e the formula (4.15) for the 
onformal primitive may be viewed as an identityin the 
orresponding rational expression in n, it may be di�erentiated at n = 2k to derivethe equation of 
onformal primitive for �k;2k.



To illustrate this pro
edure, we 
arry out the 
omputation of F1;2 in (4.16). Re
all�1;n = 1n� 2tr(Rij � 12(n� 1)Rgij) = 12(n� 1)R: (4.18)Let us denote the 
onformal metri
 by gw = e2wg = u 4n�2 g. Re
all the s
alar 
urvatureequation (3.4): �1;n(w) = (� 2n� 2�u+ �1;n(0)u)u�n+2n�2 ; (4.19)whi
h may also be written as�1;n(w) = �fn� 22 jrwj2 +�w � �1;n(0)ge�2w: (4.20)Thus ddn�1;njn=2e2w � ddn jn=2�1;n(0) = �12 jrwj2: (4.21)It follows from (4.20) thatZ w�1;2e2wdV0 = Z f��w +KgwdV0 = Z fjrwj2 +KwgdV0: (4.22)Combining equations (4.21) and (4.22) into (4.16), and 
ompare to the formula (4.2), we�nd: F1;2 = 12 Z fjrwj2 + 2KwgdV0 = 12J [w℄: (4.23)We remark that a similar, but more tedious 
omputation also shows that F2;4 = 14F2In view of the validity of Be
kner's inequality for spheres of all dimension, one has toponder what should be an appropriate analogue of the inequality (4.13) for odd dimensionalspheres. In the arti
les [15℄, [16℄ sharp versions of the Moser-Onofri inequality for a thirdorder operator on the 3-sphere as a boundary operator was obtained. Su
h 
onsiderationsmay be relevant to this question. We hope to return to this question on a later o
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