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0 Introduction

In the study of conformal structures on manifolds, the application of method of nonlinear
partial differential equation may be said to begin with the work of Poincare. In the paper
[43], Poincare solved the uniformization problem for Riemann surfaces of genus greater than
one by solving for a conformal metric with constant negative curvature —1. The analogous
question for surfaces of positive curvature was first studied successfully by Moser in two
fundamental papers ([37], [38]) in which he obtained with precise constants, a sharp version
of a limiting case of the Sobolev inequality that are now commonly referred to as the Moser-
Trudinger inequalities. The inequality asserts (for precise statement, see section one) that for
two dimensional domains, compactly supported functions with Dirichlet integrals bounded
by a constant automatically belong to exponentially integrable class. This inequality makes
it possible to obtain bounds for the Dirichlet integral of a minimizing family of functions
in a variational problem associated with the problem to prescribe the Gauss curvature of a
conformal metric on the real projective plane.

Subsequent development depends in part on understanding the role of the Mobius group
in the critical exponent inequalities. Since the variational functional in Moser’s approach
has a natural meaning in spectral geometry, there is beautiful development concerning the
compactness of isospectral family of metrics in low dimension. The theory is enriched by the
introduction of higher order invariants by the work of Paneitz ([44]) and Fefferman-Graham
([27]) , and more recently our own work on the oy equation ([11]). In this brief article,
we will survey some work in conformal geometry in which the Moser-Trudinger inequality
plays a role, as well as extensions and generalizations of this inequality to higher dimensions.
In the last section we will present a new inequality on the 4-sphere which is the natural
generalization of the original Moser’s inequality for the 2-sphere.
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1 The inequality of Moser and Trudinger

For a smooth domain © C R"™, let W;"?(Q) denote the closure of functions of compact support
in  with derivatives of order o in L? under the norm [[ullag0 = (f 22 51<a | DPuldx) /e,
The classical Sobolev embedding theorem states that Wy4(Q) C LP(Q2) where 1—1) =2 l
for ag < n and p > 1. In the limiting case when «g = n, one can easily see that the
corresponding inclusion cannot hold. For example, when o« = 1,4 = n = 2, one may take
Q to be the unit ball B in R?, and let u(z) = log(1 + log \71\)’ then one checks easily that u
belongs to W, *(B) but it does not belong to L(B). Trudinger pointed out that functions

in W, are in the exponential class (i.e. in the Orlicz space).

Theorem 1. (Trudinger [53], 1967) There exist constants [3,C depending only on the di-
mension n, so that for functions u € W, ™ () satisfying the normalization Jo IVu|*dz < 1,
we have

/Qexp(mm#)dx <cl). (1.1)

For application to the prescribed Gauss curvature equation, one requires a particular
value for the best constant fy. In connection with his work on the Gauss curvature equation,
Moser sharpened the above result of Trudinger:

1

Theorem 2. (Moser [37], 1971) There exists sharp constant By = Bo(n) = nw! "1 and
C = C(n) so that for u € W,™(Q) satisfying Jo |[Vul"dz < 1, the inequality (1.1) holds for
all B < Bo(n). The constant Py is sharp in the sense that for all > [y there is a sequence
of functions uy, € W, ™ () satisfying Jo IVug|"dz < 1, but the integrals [, exp(B|ug|n1)dx

grow without bound.

Subsequently, Carleson and Chang [8] found that, contrary to the situation for Sobolev
inequality, there is an extremal function realizing the equality when S = fy(n) and € is the
unit ball in Euclidean space. This fact remains true for simply connected domains in the
plane was shown by Fliicher ([28]), and for some domains in the n-sphere by Soong ([48]).

Since the argument of Moser was based on the symmetrization procedure, the nature of
the constant [ is expected to be related to the isoperimetric constant. This is made explicit
in the articles ([19], [21]) in the former it was shown that the constant f; is determined by
certain isoperimetric constant associated to two dimensional piecewise smooth domains and
in the latter for two dimensional orbitfolds.

2 Prescribing Gaussian curvature for surfaces

The problem to characterize the Gauss curvature function on the 2-sphere is commonly
attributed to Nirenberg. Since the 2-sphere has a unique conformal structure, this problem



can be interpreted as to find a conformal metric with a prescribed curvature function. Let
S? denote the unit sphere in R? with the standard metric gy of constant Gauss curvature
one. Consider conformal metric g, = €?“gy, whose Gaussian curvature K, is given by the
following equation:

—Aw + 1 = K,e*". (2.1)

Here and later on Aw and Vw, etc are taken with respect to the background metric gy. In
addition to the obvious sign requirement imposed by the Gauss-Bonnet theorem, there is an
obstruction discovered by Kazdan and Warner ([34])

/ VK, -V e*dAy =0 (2.2)
S2

where x is any of the ambient coordinate function. Moser realized that the implicit integra-
bility condition is satisfied if the conformal factor has antipodal symmetry and that in fact
there is no further integrability condition in that case:

Theorem 3. (Moser [38], 1971) Let K be a function with antipodal symmetry and positive
somewhere on the 2-sphere. Then there is a smooth function w also with antipodal symmetry
for which the equation (2.1) holds for K = K,,.

Moser studied the variational functional

1

J[w] = gy

/(|Vw|2+2w)dA0 log{—/ Ke*"dAg} (2.3)

and proved, in the same paper, a version of the inequality (1.1) for functions on the 2-sphere:

Theorem 4. (Moser [38]) Let w be a smooth function on the 2-sphere satisfying the nor-
malizing conditions: fs2 |IVw|*dAy < 1 and @ = 0 where w denotes the mean value of w,
then

/ P dA, < C (2.4)
S2

where B < 47 and C' is a fived constant. If w has antipodal symmetry then the inequality
holds for < 8.

The general inequality (2.4) with § = 47 shows the functional J{w]| is bounded from
below. However due to the action of the Mobius group, a minimizing sequence in general will
not satisfy the Palais-Smale property. But within the class of functions satisfying antipodal
symmetry, the inequality (2.4) hold with the better value § = 87, hence there is compactness
in a minimizing sequence. Thus the functional .J achieves a minimum within the class of
functions with antipodal symmetry.



The inequality of Moser shows that there is a lower bound for the functional J{w], Onofri
([40]) determined the best lower bound, in his study of the volume element in string theory
integrals, using an estimate of Aubin ([2]):

Jlw] = %/52(|Vw|2+2w)d140 —log{% /S 2 dAg) > 0 (2.5)
and equality holds precisely for conformal factors w of the form e**g, = T*g, where T is a
Mobius transformation of the 2-sphere. This inequality was also obtained independently by
Hong [33].

A fascinating implication of Moser’s inequality is associated with the fact that J[w] for
K =1 computes the logarithm of the regularized determinant of the Laplacian as defined
by Ray-Singer ([46]) see also ([45]):

1 detAy,

J[w] = ——I
vl = =5los(Gaa,,

). (2.6)

Independently of Onofri, Osgood-Philips-Sarnak ([41], [42]) arrived at the same sharp in-
equality in their study of the log-determinant of the Laplacian. This inequlity also plays
an important role in their proof of the C'* compactness of isospectral metrics on compact
surfaces. The reader is also referred to the lecture notes ([9]) for connections between Moser-
Onofri inequality and other isospectral problems in conformal geometry.

Returning to the solvability question of the Nirenberg problem, we devised a degree count
([18], [19], [10]) associated to the function K and the Mobius group on the 2-sphere, that
is motivated by the Kazdan-Warner condition. This degree actually computes the Leray-
Schauder degree of the equation as a nonlinear Fredholm equation. In the special case that
K is a Morse function satisfying the condition AK (x) # 0 at the critical points z of K, this
degree can be expressed as:

>, (-1 (2.7)

VK(q)=0,AK(q)<0

The latter degree count is also obtained later by Chang-Liu [17] and Han [32].

More recently, there is an extensive study of a generalization of the equation (2.1) to
compact Riemann surfaces. Since Moser’s argument is readily applicable to a compact
surface (M, go), a lower bound for similiarly defined functional .J on (M, gy) continues to
hold in that situation. The Chern-Simons-Higgs equation in the Abelian case is the study
of the equation on M:

N
Aw = pe*(e*” — 1) + 27 25 (2.8)
i=1

The mean field equation is the study of the equation :

h2w

Aw + p(f;j ~1) =0, (2.9)



where p is a real parameter that is allowed to vary.

There is active development on these equations by several group of researchers including
Caffarelli-Y.Yang ([7]), Ding-Jost-Li-Wang ([23]), Tarantello ([51]), Struwe and Tarantello
([49]), C.-C. Chen and C.S. Lin ([22]); and most recently by Y. Yang ([56]) on systems of
such equations.

In higher dimensional Kahler geometry, the Moser-Trudinger inequality also plays a role
in the study of Kéhler Einstein metrics. The reader is referred to the articles of Siu ([47]),
Ding-Tian ([24]) and Tian ([52]).

3 Fully nonlinear equations in conformal geometry in
dimension four

In dimensions greater than two, the natural curvature invariants in conformal geometry are
the Weyl tensor W, and the Weyl-Schouten tensor A = Rc — 2(n—RL1)9 that occur in the
decomposition of the curvature tensor.

1
ERm=Wa& ——AQ@g (3.1)
n—2

Since the Weyl tensor W transform by scaling under conformal change g,, = ¢**g, only the
Weyl-Schouten tensor depends on the derivatives of the conformal factor. It is thus natural
to consider oj(A,) the k-th symmetric function of the eigenvalues of the Weyl-Schouten
tensor A, as curvature invariants of the conformal metrics. As a differential invariant of the
conformal factor w, oy(Ay,) is a fully nonlinear expression involving the Hessian and the
gradient of the conformal factor w. We have abbreviating A,, for Ay, :

[Vw|®
2

Ay = {-2V?w + 2dw @ dw — P+ A, (3.2)

The equation
or(Ay) =1 (3.3)

is a fully nonlinear version of the Yamabe equation. When k£ # & and the manifold (M, g)
is locally conformally flat, Viaclovsky ([54]) showed that the equation (3.3) is the Euler
equation of the variational functional [ oy(Ay,)dV,,. In the exceptional case k = n/2, the
integral [ o4(A,)dVj is a conformal invariant. For a symmetric nxn matrix A, we say A € I';
if o, (A) > 0 and A may be joined to the identity matrix by a path consisting entirely of
matrices A; such that o (A4;) > 0. We say g € '} if the corresponding Weyl-Schouten tensor
Ay(x) € I} for every point & € M. For k = 1 the Yamabe equation for prescribing scalar
curvature
4(TL — 1) n+2



is a semilinear one in the conformal factor u where g = uﬁgo; hence the condition for
g € I'{ is the same as requiring the operator L = —%A + Ry be a positive operator.
The criteria for existence of a conformal metric ¢ € I’} is not as easy for k£ > 1 since the
equation is a fully nonlinear one. However when n = 4,k = 2 the invariance of the integral
[ 02(Ay)dV} is a reflection of the Chern-Gauss-Bonnet formula

1
82y (M) = / (02 + W)V (3.5)
M
In dimension 4, we also recall that
1 R* |E)?
02(Ag) = §(|T7“C’J‘3€Ag|2 —14,%) = YR (3.6)

where E denotes the traceless Ricci tensor.
In this case it is possible to find a criteria:

Theorem 5. ([11]) For a closed 4-manifold (M, g) satisfying the following conformally in-
variant conditions:

(i) L is a positive operator, and

(ii) [ o2(Ag)dVy > 0;

then there exists a conformal metric g, € I'y.

Remark: In dimension four, the condition g € I'; implies that R > 0 and an easy compu-
tation shows that Ricci is positive everywhere. Thus such manifolds have finite fundamental
group. In addition, the Chern-Gauss-Bonnet formula and the signature formula shows that
this class of 4-manifolds satisfy the same conditions as that of an Einstein manifold with
positive scalar curvatures. Thus it is the natural class of 4-manifolds in which to seek an
Einstein metric.

The existence result depends on the solution of a family of fourth order equations in-
volving the Paneitz operator ([43]). In the following we briefly outline this connection. In
dimension four, the Paneitz operator

2R
P=A%+ div(?g — 2Rc)V (3.7)

enjoys conformal covariance:under conformal change of metric g,, = ¢** gy

P,, =e P, (3.8)

The Paneitz operator computes a fourth order curvature called the Q-curvature:
Pow +2Qp = 2Qq, €™ (3.9)

where

-1 1
=—A —09. 1



In an elegant paper [31], Gursky showed that the positivity of the operator is a conse-
quence of the assumptions (i) and (ii) of Theorem 5, and of equal significance, such manifolds
satisfy the condition

/ o9(A,)dV, < 1677, (3.11)
M

and equality holds if and only if M is conformally diffeomorphic to S*. In an earlier article
[20], we showed that for such a 4-manifold M, the Q-curvature may be prescribed to be a
constant by a conformal metric. The main ingredient in that existence theory is the gen-
eralized Moser-Trudinger inequality of D. Adams ([1]; on manifolds [26]): For any bounded
domain 2 in R*, there is a constant C' = C(n) so that for a function w € CZ%(Q) satisfying
the normalization [ |Aw[* <1, we have

/ 3™ 4y < OQ. (3.12)
Q

A corresponding inequality can be shown to hold for a function w on a closed 4-manifold
whose Paneitz operator is positive, [, wdV = 0 and the normalization f,, Pw - wdV < 1.
This then is the starting point of a continuity argument in which we solve the family of
equations

09(A,) = ZAR—7|W|Q (3.13)
where  is chosen so that [ 05(A,)dVy = —v [ [W/[2dV,. The bulk of the analysis consist in
estimating the solution as 0 tends to zero, showing essentially that in the equation (3.13) the
term %AR is small in the weak sense. The proof ends by applying the Yamabe flow to the
metrics g5 which satisfies (3.13) to show that for sufficiently small ¢ the smoothing provided
by the Yamabe flow yields a metric g € T .

The equation (3.3) becomes meaningful for 4-manifolds which admits a metric g € I';.
In the article [12], we provide apriori estimates for solutions of the equation

o2(Ay) = f (3.14)

where f is a given positive smooth function. Then we use the following 1-parameter family
of equations

oa(Ag) = tf + (1—1) (3.15)

to deform the original metric to one with constant o2(A4,).

In terms of geometric application, this circle of ideas may be applied to characterize a
number of interesting conformal classes in terms of the the relative size of the conformal
invariant [ o9(A,)dV, compared with the Euler number.



Theorem 6. ([1/]) Suppose (M*,q) is a closed 4-manifold whose conformal Laplacian is
positive. If

1
[ oatagavy> 5 [ i, (3.16)
M M

then M 1is diffeomorphic to a quotient of the standard 4-sphere.
If M is not diffeomorphic to the standard 4-sphere and

1
[ entaav, =5 [ wav, (3.17)
M M

then M is conformally equivalent to a quotient of CP? or S* x S3.

This first part of Theorem 6 applies the existence argument to find a conformal metric
¢’ which satisfies the pointwise inequality

1
oa(4]) > Z|W’|2. (3.18)

The diffeomorphism assertion follows from Margerin’s ([36]) precise convergence result for
the Ricci flow: such a metric will evolve under the Ricci flow to one with constant curvature.
Therefore such a manifold is diffeomorphic to a quotient of the standard 4-sphere.

For the second part of the assertion, we argue that if such a manifold is not diffeomorphic
to the 4-sphere, then the conformal structure realizes the minimum of the quantity [ |W [*dV/,
and hence its Bach tensor vanishes. There are two possibilities depending on whether the
Euler number is zero or not. In the first case, an earlier result of Gursky ([30]) shows the
metric is conformal to that of the space S x S3. In the second case, we solve the equation

! ]' !
oa(A) = WP +e (319)

and let € tends to zero. We obtain in the limit a C'%! metric which satisfies the equation on
the open set Q = {x|W (x) # 0}:

!/ ]‘ !/
0y (A}) = Z|W 2. (3.20)

Then a long Lagrange multiplier computation, inspired in part by the corresponding com-
putation of Margerin, shows that the curvature tensor of the limit metric agrees with that
of the Fubini-Study metric on the open set where W # 0. Therefore |I¥'| is a constant on 2
thus W cannot vanish at all. It follows that the curvature tensor of the limit metric agrees
with that of Fubini-Study metric everywhere.



4 A Moser-Onofri inequality for the 4-sphere

In [3], Beckner generalized the sharp inequality (2.5) of Moser-Onofri to n-spheres. Denote
by (5™, go) the n-sphere in R"™! with the standard metric go; Beckner’s inequality bounds
the volume of the metric g, = €*“ ¢y by an energy term with leading order term of the form
[(Aw)>dV;. In our work ([20]), we gave an alternative argument for this inequality based
on the conformal covariance of the general n-th order Paneitz operator. For example in case
of the 4-sphere, the inequality takes the form:

1 1
=5 | {Aw)® +2|Vw|® + 12w}dVy — Blog{ = [ " dVy} >0, (4.1)
|S | S4 |S | g4

where |S*] (= % ) denotes the volume of the 4-sphere. The equality hold if and only if the
metric g, is isometric to the standard metric gy.

In this section we discuss another extension of the sharp Moser-Onofri inequality to S™
when n = 2k is even, and for a class of functions whose associated conformal metrics belong
to the class '}

For a compact surface (M?, gy), consider the functional

J[w) :/|Vw|2+2K0de0 (4.2)

under the volume constraint that [ e**dVy = Vol(go), where K; denotes the Gaussian cur-
vature of the metric go. Then

T[u)(6) = oo+ e] = 2 [ 2w+ Ko (43)

for all ¢ € C°(M) with [ e**¢dVy = 0. It follows from the Gaussian curvature equation
—Aw + Ky = K,e*" (4.4)

that at a critical point w of the functional .J:
0= J'wl(¢) = 2/Kwe2w¢dV0 (4.5)

for all ¢ € C*(M) with [ €*¢dVy = 0. We say $.J is a conformal primitive of the Gaussian
curvature K.
On a compact n-manifold (n > 3), a similar computation shows that the functional

Flu) = — /M Ry, dV), (46)

n —

is the conformal primitive of the scalar curvature R. Using this terminology, the result of
Viaclovsky which we have mentioned in the previous section can be restated as:



Theorem 7. ([5}]) On a compact (M™,g),

(a) in the case n # 2k, the functional Fylw] = — [\ ox(Ay,)dV,, is the conformal primi-
tive of oy (Ay);

(b) in the remaining case n = 2k, and assume also that (M™, g) is locally conformally flat,
then [,, ok(Ag,)dVy, is conformally invariant.

In view of the statement (a), it is natural to ask for the existence of a functional which is
the conformal primitive of o), (A,) when n = 2k. In our previous work on the log determinant
functional ([5] for the 4-sphere; [20] for general 4-manifolds), it was observed that such a
functional exists in the case n = 4 = 2k. To describe the functional, let us define for a
compact 4-manifold M, g, = e?“g:

Iw] = /Pw-w—l—éngdeg

1
IITw] = g(/ R? dVy, —/Rgdvg),

where P is the Paneitz operator, and () = —%AR + %O'Q as defined in section 3. In fact,
using equation (3.9) one can easily check that I7 is the conformal primitive of the fourth
order curvature 4¢). By another straightforward calculation, one can also check that I11 is
the conformal primitive of —4AR. Therefore, the conformal primitive of oy is given by
1 1
Fylw] = = (I1w] — —=1II[w]). (4.7)
2 12
It is thus natural to ask if one can study the problem to prescribe the curvature invariant
02(Ay) by a variational method using the conformal primitive. We remark that, in general
this cannot be an easy task since the functional F, is the difference of functionals 11 and
I11 which are both coercive (in the cases we consider) and of higher order, although there
is total cancellation of the fourth order terms. In particular on the 4-sphere, both /1 and
IIT are extremized by the standard metric ([5], see also [3]). It is not clear how to study
inf Fy[w]. It is our purpose in this section to study this problem for the restrictive class of
metrics g, € ['s. We will use a parabolic equation introduced by Guan and Wang ([29]):

d

ar?
where log(r(g)) = [ log(ok(g))dV, and the initial metric g(0) = go. When the manifold
M* is conformally flat, the argument of Ye ([57]), shows that there is apriori C'! estimates
for solutions of equation (4.8). In the article [29], Guan and Wang showed the longtime
existence as well as the uniform C? estimates for solutions of the equation. We now follow

the arguments in [50] and modify them to the functional F,. First it is easy to see that
under the flow (4.8) we have

GBl9(0) = =3 [ (0al0) = ral) togouls) - loglrg))a (49)

= —(log(ok(g)) — log(rr(9))) - g (4.8)



Therefore the functional Fy decreases under the flow (4.8). In addition, we have

/0 /M (02(9) — 2(9)) (log(02(9)) — log(ra(g))dV,dt < 2|Palg(1)] — Falg()].  (4.10)

It follows that under the flow 0y(g) and F;[g] remain bounded and

/ / 09(g) — ra2(g))?dV,dt < . (4.11)

Then there exists a sequence of times {t;} for which

/M (02 (t) — ralg(t))2aV, 0. (4.12)

On account of the uniform C? bounds for the metrics g(#;), a subsequence will converge in
CY® to a O metric go, which is a viscosity solution of the equation o9(g) = constant; this
constant is positive due to the conformal invariance of the integral [ o2(A4,)dV,. Since such
solutions are in fact smooth according to Evans-Krylov ([25], [35]), the classification provided
n ([55], see also [13]) shows that g, must be standard, hence the constant curvature metric
on S* realizes the infimum for F,. We summarize this conclusion in the following:

Theorem 8. On the j-sphere (S*, g0), if g» = €**go s a conformal metric lying in the set
IS, then we have

|S4|/{ 2Aw|Vuwl* — |Vw[* + 6|Vw|* + 12w}dV; — 310g{|54|/ e*dVp} > 0. (4.13)

Remark: The conditon g, € I'J cannot be removed as we see easily that by taking w to
be a large multiple of any first eigenfunction on the 4-sphere makes the quantity in (4.13)
an arbitrarily large negative number. We thank the referee for pointing out this example.
However, it is reasonable to ask if the inequality continues to hold for metrics in the set I'],
that is, metrics with positive scalar curvature.

More generally, we now describe a possible procedure to find a functional F} ,,, which is
a conformal primitive of o, when n = 2k for a conformally flat structure. We illustrate the
method by deriving the functional F, = iFg for the functional F5 in (4.7) in dimension
4. Thus the conformal flow (4.8) can be applied to derive, in principle, an extension of the
Moser-Onofri inequality to all even dimensional spheres.

We first set up the notations. To be consistent with the notations of Viaclovsky, let us
denote Cj; = ﬁAij and oy, the k-th symmetric function of the eigenvalues of Cj;. Thus
for n =4, we have 034 = iag for oy defined in (3.6).

We define the conformal primitive for oy, ,,, using the ”analytic continuation in dimension”
method that we learned from Tom Branson. In [4], Branson used a similar method to



calculate the conformal primitive of the Q)-curvatures. Let us denote for n # 2k, oy, (w) =
0.0 (Cy,) and define for g, = e*gy

Fialt] = — o /M (0n ()™ — 750 (0))dVh, (4.14)
Then according to Viaclovsky,
d
ClecoFiali + d] = / 0 (10)6dVi. (4.15)
We write for n # 2k,
Ok n(w)e™ — 0 n(0) = e(”_%)wakm(w)e%w — 01,0 (0)

= (e — Doy p(w)e™™ + (o n(w) — opop(w))e™

+ (ok2(w)e™ = 0k 2(0)) + (0k,26(0) — 04,2 (0)).

Notice that the second to the last term in the above expression is zero after integration over
the manifold M. Therefore we divide the equation above by n — 2k and take limit as n tends
to 2k:

Fk,Zk[w] = nlgjg]k Fk,n[w] = /'(’LUO']C’Q]C(’LU)BZI€ + %|n:2k{0k,n(w)e% — O'k,n(())})d% (416)

Remarks:

1. The quantity Fj ,[w] has the following scaling property: if in the definition of C;; we put
Cij = ¢, Ay for some choice of ¢,, and denote the resulting quantity by &, and repeat the
same steps to define the corresponding functional Fk,n- Then Fkyn[w] = ¢, F)n[w]. This is
clear when n # 2k. When n = 2k, we observe that in the formula (4.16) we have

d d

%|n:2k&k,n[w] = (%|n:2k0n)ak72k[w] + cn%|n:2kak,n[w]. (417)
Thus, due to the conformal invariance of the integral [ oy o(g)dV,, we have Fkygk[w] =
Canygk[’U)].
2. We need to explain the justification in taking the derivative % in the above formula. When
viewed as formal algebraic expressions in the various derivatives of w in an appropriate
tensor space, the quantity oy, (w) may be expanded using the formula of A;; as in (3.2)
into a polynomial expression in various derivatives of w with coefficients that are rational
expressions in n. Viewed as function of n such an expression is rational in n with no pole at
n = 2k. Since the formula (4.15) for the conformal primitive may be viewed as an identity
in the corresponding rational expression in n, it may be differentiated at n = 2k to derive
the equation of conformal primitive for oy, of.



To illustrate this procedure, we carry out the computation of Fj 5 in (4.16). Recall

_2(n—1— 1y 1190) = 2(n1— o )

Olp = t’I“(RZ'j —

)

n—2

Let us denote the conformal metric by g, = e**g = wie g. Recall the scalar curvature
equation (3.4):
n42

2
o1 (w) = (_n — 2Au + 01, (0)u)u -2, (4.19)

which may also be written as

n—2

o1 (w) =—{ 5 Vw|* + Aw — 01,(0) e 2v. (4.20)
Thus
d d 1
%len|n:2€2w - %|n:20—1,n(0) = —§|V'LU|2 (421)
It follows from (4.20) that
/wal,gemdv@ = /{—Aw + K}wdVy = /{|Vw|2 + Kw}dVy. (4.22)

Combining equations (4.21) and (4.22) into (4.16), and compare to the formula (4.2), we
find:

1 1

We remark that a similar, but more tedious computation also shows that Fy, = iFg

In view of the validity of Beckner’s inequality for spheres of all dimension, one has to
ponder what should be an appropriate analogue of the inequality (4.13) for odd dimensional
spheres. In the articles [15], [16] sharp versions of the Moser-Onofri inequality for a third
order operator on the 3-sphere as a boundary operator was obtained. Such considerations
may be relevant to this question. We hope to return to this question on a later occasion.
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