
Journal of Automated Reasoning25: 219–246, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

219

A Deductive Database Approach to Automated
Geometry Theorem Proving and Discovering?

SHANG-CHING CHOU
Dept. of Computer Science, Wichita State University, Wichita, KS 67260, USA

XIAO-SHAN GAO
Inst. of Systems Science, Academia Sinica, Beijing 100080, China

JING-ZHONG ZHANG
Inst. of Computer App., Academia Sinica, ChengDu 610015, China

(Received: 26 September 1996)

Abstract. We report our effort to build a geometry deductive database, which can be used to find
thefixpoint for a geometric configuration. The system can find all the properties of the configuration
that can be deduced using a fixed set of geometric rules. To control the size of the database, we
propose the idea of astructured deductive database. Our experiments show that this technique could
reduce the size of the database by one hundred times. We propose the data-based search strategy to
improve the efficiency of forward chaining. We also make clear progress in the problems of how to
select good geometric rules, how to add auxiliary points, and how to construct numerical diagrams as
models automatically. The program is tested with 160 nontrivial geometry configurations. For these
geometric configurations, the program not only finds most of their well-known properties but also
often gives unexpected results, some of which are possibly new. Also, the proofs generated by the
program are generally short and totally geometric.

Key words: deductive database, automated geometry theorem proving and discovering, search strate-
gies, redundant deduction, Skolemization, structured database.

1. Introduction

1.1. INTRODUCTION

The aim of this paper is to develop a geometry deductive database that can be used
to prove or discover nontrivial geometry theorems by exploring the full strength
of forward chaining. For a given geometric configuration, the program can find its
fixpoint with respect to a fixed set of geometric rules or axioms; in other words,
it can find all the properties of the configuration that can be deduced using these
axioms.

The basic ideas behind the program, such as fixpoints and the treatment of neg-
ative clauses, come from deductive database theory [10]. Our contributions are as

? This work was supported in part by the NSF Grant CCR-9420857 and the Chinese NSF.



220 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

follows: (1) in the general setting, we propose the idea of thestructured deductive
databaseand thedata-based search strategyto improve the search efficiency; and
(2) in the geometry reasoning setting, we show how to select a good set of rules,
how to add auxiliary points, and how to construct numerical diagrams as models
automatically.

We tested the program with 160 geometry configurations ranging from well-
known geometry theorems such as the centroid theorem, the orthocenter theorem,
and Simson’s theorem to problems recently proposed in the problem section of the
American Mathematical Monthly. The program not only finds most of the well-
known properties of these configurations but also often gives many unexpected
results, some of which are possibly new (see Example 6.2). As we know, most
of the 160 theorems cannot be proved by the previous programs based on syn-
thetic approaches. The strength of our program is mainly based on the following
improvements.

In traditional deductive databases, eachn-ary predicate is associated with an
n-dimensional relation. Since most of the geometric predicates satisfy special prop-
erties such as transitivity and symmetry, the traditional way of representing a data-
base is not suitable for building a geometry deductive database for two reasons:
the excessively large database and repetitive representation of information. On
average, the databases for the 160 tested geometry configurations would be of size
242,117 if using the traditional representation. We solve this problem by using
some simple mathematical structures such as sequences and equivalent classes to
represent facts in the database. The average size of the structured databases for the
160 configurations is 221. So the size of the structured database is one hundred
times smaller.

We propose thedata-based search strategyas opposed to the previousrule-
based search strategy. In the data-based search, we keep a list of ‘new data’ and
for each new data the system searches the rule set (or intensional database) to find
and apply the rules using this data. If using the data-based strategy, the redun-
dant deductions caused by repeated application of a rule to the same facts will
be automatically eliminated. In this aspect, the data-based strategy is similar to
the semi-naive strategy[1]. However, the data-based strategy also uses thecom-
bined rulesanddynamic database updatestrategies to further improve efficiency.
Also, the data-based search strategy is particularly efficient in the case of a struc-
tured database, since in such a database a fact could represent a large amount of
information. For instance, a fact could be ‘ten triangles are similar to each other’.

All the previous work based on the synthetic approach [8, 11, 15, 17] uses
geometric rules about congruent triangles as its basic geometric rules. Without
adding techniques about auxiliary points, these rules can be used to prove a limited
number of high-school-level theorems involving straight lines only. Most of the
basic results in geometry such as the centroid theorem, the orthocenter theorem,
and Simson’s theorem are beyond the scope of these rules. In Section 2, we will
discuss three concerns about selecting a set of geometric rules: the number of proof



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 221

steps, the auxiliary points, and the order relation. We also show how to solve some
of the related problems by selecting good rules.

We discuss how to make the adding of auxiliary points or Skolemization in
geometry reasoning practically possible. About twenty rules of adding auxiliary
points are implemented, and 39 of the 160 configurations solved by our program
need auxiliary points. This is the first implementation of a nontrivial set of rules of
adding auxiliary points.

Numerical diagrams of geometry statements are used as models to deal with
the negative information in the rules. Our program can construct the diagram auto-
matically for a class of linear constructive geometry statements (see Section 2.3).
In all the previous work using diagrams as models [8, 11, 15], the diagrams are
constructed by the user.

1.2. RELATED WORK

There are mainly three approaches to automated geometry reasoning: the approach
based onsynthetic deduction[8, 11, 15, 17, 19], the approach based onalgebraic
computation(mainly Wu’s method and the Gröbner basis method) [3, 14, 26], and
thegeometric invariant approach, like the area method [5] and the methods given
in [12, 24]. Other interesting work can be found in [9, 16, 23].

We will discuss the synthetic approaches below because they are more closely
related to this paper. Most of the synthetic approaches to automated geometry theo-
rem proving use backward chaining [8, 11, 15]. In [17], Nevins used a combination
of forward chaining and backward chaining with emphasis on the forward chaining.
But the fixpoint is not reached. All the synthetic approaches except Nevins’s use
numerical diagrams as models. The idea of adding auxiliary points is discussed in
[19, 21] but not implemented. More about this topic can be found in Section 5.
All previous synthetic work deals with theorems involving straight lines only. The
problem of including circles into the program is discussed but not implemented
in [17]. Our program, using geometric rules with thefull-angle congruenceas the
central concept, can deal with theorems involving circles naturally.

Generally speaking, the algebraic approaches are decision procedures and are
more powerful. The synthetic approaches, including the one in this paper, are not
decision procedures. In theory, all theorems that can be proved with the method
reported in this paper can also be proved with algebraic methods such as Wu’s
method. Despite its ‘weakness,’ it is still worth improving the synthetic approach
because this may lead to techniques useful to automated reasoning in the gen-
eral case. Even for automated geometry reasoning alone, improving the synthetic
method has the following positive aspects. (1) Proofs produced by synthetic meth-
ods are generally easier to understand than proofs given by algebraic computations.
(2) Using predicates only (no algebraic computation) makes the reaching of fix-
points possible. As a result, new theorems may be discovered. Using algebraic
methods, one can also discover new geometric facts [4, 18], but in a quite differ-



222 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

ent manner. (3) Although algebraic methods can prove a much greater number of
theorems, there still exist theorems (Example 6.2) that can be solved by the syn-
thetic approaches elegantly but have not been solved with the algebraic approaches
because to prove them we need excessively large computer memory.

General-purpose deductive database systems fail to reach fixpoints for most of
our examples within reasonable time because of the large database and the weak
strategies for the redundancy control. Some useful general methods of controlling
redundancies [1, 2, 13] and their usage in our case are discussed in Section 4.2.

Finally, we mention that the method in this paper benefits from many ideas
developed in the algebraic approaches. The idea of using geometric predicates not
involving the order relation, such as the full-angle congruent, is initiated by Wu in
his algebraic method [26]. The concept of nondegenerate conditions and statements
of constructive type is also from algebraic methods.

The rest of the paper is organized as follows. The selection of geometric rules is
discussed in Section 2. The database organization is discussed in Section 3.1. The
search strategies are discussed in Section 4. Adding auxiliary points is discussed in
Section 5. Concluding remarks are given in Section 6.

2. The Geometric Rules

To select a set of ‘better’ geometric (inference) rules, we need to consider the
following issues.

Auxiliary Points

Since most synthetic geometry reasoning systems use Horn clauses as rules, the
systems have no ability to generate auxiliary points. Thus it is important that we can
prove at least a large portion of the geometry theorems with the chosen geometric
rules. The rules about congruent triangles, used by most of the previous work on
synthetic automated geometry theorem proving, do not have this property. Most of
the commonly used theorems including basic results such as the orthocenter the-
orem and the centroid theorem cannot be proved using these rules without adding
auxiliary points. The rules used by us improve a lot in this aspect: most of the 160
geometry theorems proved by our program without adding auxiliary points cannot
be proved with the previous programs based on congruent triangles.

Order Relations

The validity of most elementary geometry theorems involving only equalities is
independent of the relative order positions of the points involved. Such geometry
theorems belong to the so-called unordered geometry. This idea originated from
Wu’s algebraic method of automated reasoning [26]. In unordered geometry, the
proofs of these theorems can be very simple. However, the ordinary proofs of
these theorems involve the order relation (or inequalities); hence they are not only



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 223

Figure 1.

complicated but also not strict. The method based on congruent triangles is not for
unordered geometry. In the work using this method, the order relations needed in
the deduction are either derived from a numerical diagram or given in the input. As
a result, these programs can be used only to prove particular cases of a geometry
theorem. On the other hand, the rules used by us are for unordered geometry.

For instance, one proof of the theorem ‘the two diagonals of a parallelogram
bisect each other’ in Figure 1 is based on the congruence of trianglesABO and
CDO which is in turn based on the fact that angles6 OAB and 6 OCD are al-
ternative angles of the parallel linesAB andCD. In this statement, we implicitly
assume that pointsB andD are on different sides of lineAC. But this fact is not
proved logically in most machine produced proofs. If a set of rules for unordered
geometry, like the one in this paper, is used, a proof of this theorem does not need
the fact that pointsB andD are on different sides of the lineAC.

2.1. THE GEOMETRIC RULES

A rule is called adefinite Horn clauseif it has the following form:

Q(x) :− P1(x), . . . , Pk(x) meaning

∀x[(P1(x) ∧ · · · ∧ Pk(x))⇒ Q(x)]
where thex are the points occurring in the geometry predicatesP1, . . . , Pk , andQ.
Also (P1(x) ∧ · · · ∧ Pk(x)) andQ(x) are called thebody andheadof the rule,
respectively. As in the field of deductive bases [10], only definite Horn clauses
without function symbols are allowed in our program. As a consequence, no alge-
braic computations are allowed because algebraic computations are actually func-
tion symbols and may easily lead to infinite inference sequences and hence make
the reaching of fixpoints impossible.

We use the following predicates: points, coll (collinear), para (parallel), perp
(perpendicular), midp (midpoint), cyclic, circle, eqangle, cong (congruent of seg-
ment), eqratio, simtri (similar triangle), and contri (congruent triangle).

The central concept is eqangle. Here the angle is not the ordinary angle but the
full-angle. Intuitively, afull-angle 6 [u, v] is the angle from lineu to line v. Note
that u and v are not rays as in the definition for the ordinary angles. Two full-
angles6 [l,m] and 6 [u, v] are equal if there exists a rotationK such thatK(l) ‖ u
andK(m) ‖ v. If A,B andC,D are distinct points onl andm, respectively, then
6 [l,m] is also denoted by6 [AB,CD], 6 [BA,CD], 6 [AB,DC], and6 [BA,DC].



224 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

Figure 2.

Figure 3.

The introduction of full-angles greatly simplifies the predicate of the angle con-
gruence. For instance, we have the following rule about parallel lines and angles.

R1.AB ‖ CD if and only if 6 [AB,PQ] = 6 [CD,PQ] (Figure 2).

If using ordinary angles, we need to specify the relations among eight angles and
we need to use order relations (inequalities) to distinguish the cases. For instance,
we have ‘if pointsB, D are on the same side of linePQ and pointP , C are on
the different sides of lineAB (the order relations), thenAB ‖ CD ⇔ 6 PEB =
6 PFD.’ This rule is very difficult to use and may lead to branchings during the
deduction. The following two rules also show why full-angle is crucial to our
approach.

R2. 6 [PA,PB] = 6 [QA,QB] :− cyclic(A,B, P,Q) (Figure 3).

R3. cyclic(A,B, P,Q) :−6 [PA,PB] = 6 [QA,QB], ¬ coll(P,Q,A,B) (Fig-
ure 3).

In rule R2, if using the ordinary angle, we need two conditions (Figure 3):
6 APB = 6 AQB or 6 APB + 6 AQ1B = 180◦ and to distinguish these two cases,
we need to know ‘points P and Q are on the same or different sides of line AB.’
This kind of order relations is difficult to deal with, because for different diagrams
of the same theorem, the answer could be different. Using full-angles, the two cases
can be treated uniformly. Also note that the use of full-angles here is quite different
from our previous full-angle method in [7], which uses algebraic computation and
backward chaining as the main deduction tools, while here only the concept of
angle congruence is used.

The program uses about seventy rules (see the appendix). Some of the rules
describe basic properties of the geometry predicates, such asAB ‖ CD :−AB ‖
PQ, CD ‖ PQ. Some of the important rules are listed below.



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 225

R4. para(E, F,B,C) :−midp(E,A,B), midp(F,A,C).
R5. midp(F,A,C) :−midp(E,A,B), para(E, F,B,C), coll(F,A,C).
R6. 6 [OA,AB] = 6 [AB,OB] :− cong(O,A,O,B).
R7. cong(O,A,O,B) :−6 [OA,AB] = 6 [AB,OB], ¬ coll(O,A,B).
R8. 6 [AX,AB] = 6 [CA,CB] :− circle(O,A,B,C), perp(O,A,A,X).
R9. 6 [AB,AC] = 6 [OB,OM] :− circle(O,A,B,C), midp(M,B,C).

R10. perp(A,B, P,Q) :− cong(A, P,B, P ), cong(A,Q,B,Q).
R11. perp(P,A,A,Q) :− cong(A, P,B, P ), cong(A,Q,B,Q),

cyclic(A,B, P,Q).
R12. simtri(A,B,C, P,Q,R) :− 6 [AB,BC] = 6 [PQ,QR],

6 [AC,BC] = 6 [PR,QR],¬coll(A,B,C).
R13. eqratio(A,B,A,C,P,Q,P, R) :− simtri(A,B,C, P,Q,R).
R14. contri(A,B,C, P,Q,R) :− simtri(A,B,C, P,Q,R), cong(A,B,P,Q).

Notice that we also use6 [AB,CD] = 6 [PQ,UV ] andAB = CD to represent
full-angle and segment congruences. Though not axioms in common textbooks,
these rules are basic geometric facts that can be proved without difficulty.

In common textbooks and previous synthetic approaches, the three theorems
about triangle congruence, s.s.s, s.a.s, and a.a.s, are the key deduction rules. In our
program, only the a.a.s (Rule R14) is used. The s.a.s rule is not correct if full-angle
is used. For instance, trianglesAOB andAOD in Figure 1 satisfyBO = DO,
AO = AO, 6 [BO,OA] = 6 [DO,OA], but they are not congruent. The s.s.s
rule is correct but cannot generate new properties about full-angles in the general
case.

The rules are highly complicated from the viewpoint of a deductive database: all
the predicates are mutually recursive, and most of the rules are not linear [1]. We
mention that the rules are not complete in the sense that a valid geometry theorem
described using our predicates may not be proved using our rules.

2.2. NONDEGENERATE CONDITIONS

In some rules such as Rule R3, there are negations in their bodies. Strictly speaking,
these rules are not Horn clauses. We solve this problem using thenegation by
failure criteria proposed in [20]; that is, we assume¬P to be valid ifP cannot
be deduced by the program. This may lead to inconsistency, since the rules used by
us are not complete and hence failure to proveP does not mean that¬P is valid.
We solve this problem in two steps.

First, whenever used, a negative condition will be added to the hypotheses of
the statement and called thenondegenerate(ndg) conditionof the geometry state-
ment. Adding the ndg conditions to the geometry statement is acceptable for the
following reasons. The original description for most of the geometry theorems in
textbooks implicitly assumes some necessary conditions, which are part of the ndg
conditions found by our method. For some theorems proved by previous synthetic



226 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

provers, the necessary ndg conditions are missing. More about ndg conditions can
be found in [3, 9, 26].

Second, suppose that we have an exact numerical diagram for the statement.
When encountering a negative predicate¬P in a rule, the prover checks whether
P is true in the diagram. This rule can be used only ifP is false in the numerical di-
agram. As a consequence, we avoid the possible proof of ‘trivially true’ statements,
namely, statements whose hypotheses are inconsistent.

2.3. CONSTRUCTING EXACT NUMERICAL MODELS

The use of exact numerical diagrams as semantic models has been the cornerstone
of most of the previous efforts of synthetic mechanical geometry theorem prov-
ing [8, 11, 15]. There are two benefits the early provers derive from a numerical
diagram. (1) The diagram is used as a filter to reject goals occurring during a
backward chaining that are not consistent with its numerical representation. (2)
More important, the numerical diagram is used to determine order relations among
points and lines. The first benefit is very important to the backward search and is
not useful in the forward chaining. The second benefit is related to the problem of
producing diagram-independent proofs [6]. In this paper, the diagrams are used to
treat negative information in the Horn clauses.

In previous work, the diagram was prepared by the user. In our program, the
diagram is generated automatically for a class oflinear constructive geometry
statements. A geometry statement is said to be linear constructive if the points in
the statement can be listed in a sequence such that each point in the sequence can
be uniquely constructed from the previous points in the sequence. More precisely,
a geometry statement is linear constructive if the points in it can be described by
the following constructions:

• Take a free point.
• Take an arbitrary point on a line.
• Take the intersection of two lines.
• Take the intersection of a line and a circle or two circles when the other

intersection point of them is already constructed.

For instance, the statement in Figure 1 is a linear constructive statement. Its points
can be introduced as follows: take three free pointsA, B, andC; take the intersec-
tionD of the line passing through pointA and parallel toBC and the line passing
through pointC and parallel toAB; take the intersectionO of linesAC andBD.
More details can be found in [5]. Most of the commonly used geometry statements
are linear constructive ones. For example, 80 percent of the 512 geometry theorems
in [3] are in this class.

For a linear constructive geometry statement, the coordinates of each point can
be represented as rational expressions in the coordinates of the previous points.



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 227

Thus, by assigning random numbers to the coordinates of the free points in the
statement, we can easily compute the coordinates of all the points as rational
numbers and hence an exact numerical model for the statement.

If a geometry statement is not linear, then to construct its diagram we gener-
ally need algebraic numbers to represent the coordinates. Also, if the statement
is reducible (see [3] for the definition) more than one diagram is needed for the
statement. Our program cannot construct an exact numerical model for such state-
ments.

3. Structured Database

3.1. STRUCTURE OF THE DATABASE

In the traditional way of representing a relational database, eachn-ary predicate is
associated with ann-dimensional array. Since most geometric predicates used by
us satisfy some special properties, building databases according to the traditional
way will lead to very large databases. The main aim of this section is to design
a structured database whose size can be effectively controlled. The main idea is
to represent the properties involving a predicate alone using the structure of the
database. In other words, we build some rules about predicates into the structure of
the database. The following are three such principles:

(1) Use canonical form for predicates. One geometric property can be represented
as many predicate forms. For instance, the predicate coll satisfies the following
rules:

coll(A,B,C) :− coll(A,C,B),

coll(A,B,C) :− coll(B,A,C).

Thus, from coll(A,B,C), we can obtain five ‘new’ facts: coll(A,C,B), coll
(B,A,C), coll(B,C,A), coll(C,A,B), coll(C,B,A). In order to save space and
enhance search speed, we represent predicates as canonical forms by assigning an
order to the points in a geometry statement. With such an order, predicates can be
represented uniquely. Furthermore, by using the canonical form, the above rules
are not needed explicitly in the deduction steps. This will reduce the number of
rules used in the deduction process.

(2) Use equivalent classes to represent some predicates. We may use sequences to
represent certain transitive geometric predicates. For instance, the fact that points
A1, A2, . . . , An are on the same line can be represented by a sequence of points. In
predicate form, we needn(n − 1)(n − 2) different forms like coll(Ai,Aj ,Ak) to
represent this fact.

(3) Use representative elements for equivalent classes. Some predicates are es-
sentially geometric relations about equivalent classes. In that case, we will use
a representative element to represent the equivalent class. For instance, the fact



228 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

that the line containing pointsA1, . . . , An is parallel to the line containing points
B1, . . . , Bk can be represented byl1 ‖ l2 if using l1 and l2 to represent the two
lines. If using predicates para(Ai ,Aj , Bk, Bl) to represent this fact, we need 2n(n−
1)k(k − 1) predicates.

We will now give the structure of the database. At the top level, the facts
satisfying each predicate are represented by a list of structures defined below.

coll. The structure is a list of points on the same line. Letn be the number of
points on the line. We needn(n− 1)(n− 2) predicate forms to represent
this fact.

para. The structure is a pair of line pointersl1 andl2, meaning thatl1 ‖ l2. Let
l1 andl2 containn1 andn2 points, respectively. Then we need 2n1(n1 −
1)n2(n2− 1) predicate forms.

perp. The structure is a pair of line pointersl1 andl2, meaning thatl1 ⊥ l2. Let
l1 andl2 containn1 andn2 points, respectively. Then we need 2n1(n1 −
1)n2(n2− 1) predicate forms.

eqangle. The structure is a four tuple of line pointers[l1, l2, l3, l4], meaning that
6 [l1, l2] = 6 [l3, l4]. Let li containni points. Then we need 8

∏4
i=1 ni(ni−

1) predicate forms.
cong. The structure is a list of pairs of points. If the list containsn pairs of

points, we need 4n(n− 1) predicate forms.
eqratio. The structure is a four tuple of cong pointers[c1, c2, c3, c4], meaning that

c1/c2 = c3/c4. Let ci containni points. Then we need 16
∏4
i=1 ni(ni −1)

predicate forms.
midp. The structure is a three tuple of points[M,A,B], meaning thatM is the

midpoint ofAB. We need two predicate forms to represent this fact.
circle. The structure is a list of points[O,P1, . . . , Pn], meaning that pointsP1,

. . . , Pn are on a circle with centerO. We needn(n − 1)(n − 2)(n − 3)
predicate (cyclic) forms.

simtri (contri). The structure is a list of three-tuple of points. If the list contains
n tuples, we need 6n(n− 1) predicate forms.

DEFINITION 3.1. An element in the database described above is called adata
or a fact of the corresponding predicate. Ifd is a fact of predicateP , then we also
call P the predicate ofd. Facts in the traditional sense, such as coll(A,B,C) and
para(A,B,C,D) for concrete pointsA,B,C, andD, are called simple facts.

We also need to know how to trace the deduction route to give a proof for a
given fact in the database. For this reason, when updating a fact in the database
we first copy the old fact to a new position and update the new one, leaving the
old fact intact. For each fact, we also need to save the information such as which
lemma and what conditions are used to get this fact. The real structure of a fact in



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 229

the structured database is as follows:

[TYPE, LEMMA, COND, DATA, LINK]

where TYPE tells whether this fact is an ‘old’ one in the sense that it has been
updated; LEMMA contains the rules or axioms used to obtain this fact; COND
contains the facts used to obtain this fact; DATA is the fact in structured form;
LINK points to the next data in the database.

The above structure is not optimized for size control. We could further reduce
the size of the database by introducing more complicated structures. But the more
complicated the database structure, the more complicated the program needed to
handle it. Here we need to consider a tradeoff between the size of the database and
the difficulty of implementation. From the following facts, we know that the above
structure already reduces the database size significantly.

For the 160 geometry configurations solved by our prover, the average size of
the databases is 221 if the above structure is used. With the predicate form, the av-
erage size would be 242,117, or one hundred times larger. For many configurations
such as Example 6.3, we cannot reach the fixpoint within reasonable time if the
above structure is not used.

3.2. GENERATING PROOFS

After a fixpoint is reached, we can generate a proof for each fact in the data-
base. This task is not trivial mainly because we use a database with complicated
structures. A straightforward print of the deduction steps is not easy to understand.

We have mentioned in Section 3.1.1 that for each fact in the database, we save
the name of the lemma and the conditions used to derive this fact. So a proof step
has the following form:

(R) : C :− P1, . . . , Pk,

whereC is a simple fact (see Definition 3.1) and thePi are either facts or simple
facts.C is always a simple fact for the following reasons: at first step,C is the
geometry statement the user want to prove, and at the following steps this is ensured
by our tracing procedure described below.

To print the deduction R above, we first print the simple factC. For eachPi ,
if Pi is a simple fact, we print it and find the first fact (there might be more than
one fact) in the database that impliesPi; if Pi is not a simple fact, we need to find
a simple fact that can be deduced fromPi and is relevant to deduction R (see (2)
below). After printing deduction R, we repeat the process for eachPi until Pi is in
the hypotheses of the geometry statement.

The following three strategies are used in the above tracing process.
(1) Finding missing conditions. Because of the structured database, some con-

ditions are implicitly assumed and hence missed in the database. In the tracing
process, we need to bring them back to make the proofs easy to understand. The



230 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

most often missed condition is collinear. For instance, in the following deduction
in Example 6.1

perp[AB,CG] :− perp[BC,AF ], 6 [BC,AF ] = 6 [AB,CH ].
a condition coll[GCH ] is missed. This condition will be added to the proof in this
step.

(2) Finding proper conditions. If a predicate is represented by a sequence, its
facts can be very large. In the tracing process, we need to find the proper simple
facts from them. For instance, the following deduction

AB = PQ :− AB = CD,CD = EF = XY = PQ
can be simplified to

AB = PQ :− AB = CD,PQ = CD.
(3) Avoiding redundancies. Before printing a factPi in a deduction, we first

check whether it has been printed before. If so, we need only to point to the fact
printed before. In the machine proof for Example 6.4, Step 4 is used by Steps 2
and 7.

4. Search and Control Strategies

4.1. DATA -BASED SEARCH

Since we want to reach the fixpoint, breadth-first forward chaining is the natural
choice for us. The geometric rules are highly complicated: all the predicates are
mutually recursive, and most of the rules are not linear. Hence, it is impossible
to use some of the more specialized search strategies in [1] that are designed for
certain special situations.

Basically speaking, the breadth-first forward chaining search works as follows:

D0
R⊂ D1

R⊂ · · · R⊂ Dk (Fixpoint)

whereD0 is the hypotheses of the geometry statement andR is the rule set. For
each ruler in R, apply it toD0 to obtain new facts. LetD1 be the union ofD0 and
the set of new facts obtained. Repeat the above process forD1 to obtainD2, and so
on. If at certain stepDk = Dk+1, we say that afixpoint for D0 andR is reached. In
the case of a deductive database [10] (i.e., when we assume that the rules are Horn
clauses without function symbols) the fixpoint can always be reached if the rule
setR (i.e., the intensional database) and the initial fact setD0 (i.e., the extensional
database) are finite.

SinceD1 containsD0 as a subset, the derivation ofD2 fromD1 clearly repeats
all the previous deductions used to deriveD1 fromD0. Thesemi-naive evaluation
is proposed to solve this problem [1]. The basic idea is that the input fact for at
least one of the predicates in the body of the rule must be a new one, namely, a fact



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 231

in D1−D0. Note that in the semi-naive and all the forward chaining searches, the
main loop of process is to search the rule setR. We call such search strategiesrule-
based search strategies. In what follows, we present adata-based search strategy,
in which we keep a new-fact-list and for each factd in the list we find and apply
all the rules whose bodies contain the predicate ofd.

The Data-Based Search Algorithm

Step 1. Set the hypotheses of the statement to be initial new-fact-list and the initial
database. While the new-fact-list is not empty, do Step 2.

Step 2. Let d be the first new fact in the list. Delete it from the list, add it to the
database, and do Step 3.

Step 3. Let r be a rule whose body contains a predicateP0 of the factd. To apply
the ruler, we need to instantiate other predicates inr. Since predicateP0 will be
instantiated as the new factd, other predicates inr need to be instantiated for all
the facts in the database. For all the predicate forms of factd (notice that a fact
could have many predicate forms) and for all the facts of the other predicates inr,
do Step 4.

Step 4. Apply rule r to obtain a factd ′. If d ′ is in the database, do nothing. Other-
wise, add it to the end of the new-fact-list.

Since the hypothesis set of a geometry statement is finite and we use a finite
rule set without function symbols, a fixpoint will always be reached. It is clear that
the fixpoint is unique and does not depend on the search strategies and the order of
the applications of the rules.

Generally speaking, the breadth-first search is extremely expensive. However,
our implementation of it for geometry reasoning performs quite well. This is due
to several factors. We use the structured database to reduce the size of the database
dramatically and to reduce the number of rules that are built into the structure of
the database. Also, our implementation using the C language is specially targeted
toward the geometry case.

An interesting fact about the data-based search is that the order of application
of the rules is determined by the order of the facts in the new-fact-list: rules are
selected according to the type of the fact on the top of the new-fact-list. The user
may assign an order of importance to the predicates. Those predicates used more
frequently, such as middle points, parallel, and perpendicular, will have higher
orders. During the search, the program will sort the new fact list according to this
order so that the fact with the highest order will be the first data of the list. In this
way, the order of application of rules can be determined automatically.

Another related improvement of the data-based search is to formcombined
rules. Let d be the new fact on the top of the new-fact-list. There are rules like

P ∧ f1⇒ Q1, . . . , P ∧ fs ⇒ Qs,



232 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

whereP is the predicate of factd andfi are conjunctions of other predicates. Then
we can form a new combined rule

P ∧ (f1⇒ Q1,∨ · · · ∨, fs ⇒ Qs).

In the new rule we need only search factd once. Since a fact in our database could
be very large (e.g., it might be a sequence of similar triangles), the new rule will
clearly save time. We can go further to combine the rulesf1⇒ Q1, . . . , fs ⇒ Qs

recursively to obtainmultiple combined rules. For instance, the following multiple
combined rule is formed from rules R6, R10, and R11:

cong(O,A,O,B) ∧ [⇒ 6 [OA,AB] = 6 [AB,OB],
cong(U,A,U,B) ∧ [⇒ perp(A,B,O,U),

cyclic(A,B,O,U) ⇒ perp(O,A,A,U)]].
To further improve the search efficiency, we can update and use the database

dynamically. In the traditional approaches, the facts are clearly divided into levels,
and to obtain a fact atk-level, only the facts at(k − 1)-level will be used. A better
way seems to be that new facts will be stored into the database and used immedi-
ately. This makes the program using a combination of the breadth-first search and
the depth-first search.

4.2. AVOIDING REDUNDANT DEDUCTIONS

A deduction is redundantif it generates a fact that is already in the database. The
redundant deduction is a major hurdle for speeding up the search, and eliminating
redundancies is proposed as a basic research problem by L. Wos [25]. It is proved
that in general cases, the problem of eliminating all redundancies is undecidable
[13]. So the best we can do is to design strategies reducing the redundancies.

There are three kinds of redundant deductions. First, repeated use of the same
rule to the same fact will generate the same result. These kind of redundancies can
be solved by the semi-naive search or our data-based search.

Second, some redundant deductions are logically guaranteed. For example, if a
rule r in a rule setR is a logical consequence ofR − {r}, then each fact deduced
using ruler will also be deduced by other rules inR. For a given rule set, the
problem of obtaining a minimal and logically equivalent rule set is undecidable
[22]. Many useful partial methods are given in [2, 13, 22]. Since the rule set used by
us is fixed, we try to remove the redundant rules based on our geometric intuition.
Thediagram-based standard rulesexplained below can be considered special cases
of these methods.

Third, two logically irrelevant deductions may give the same fact if the input
facts satisfy certain conditions. We call these kind of redundancies theconditional
redundancies. There seems no general method to control conditional redundancies.
In our program, the heuristic (1) explained below is designed for this purpose.



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 233

Figure 4.

The following heuristics are used to control redundant deductions in our pro-
gram:

(1) Checking Results before Searching. During the execution of a rule

Q :− P1, . . . , Ps,

if all the variables inQ are instantiated and predicatesP1, . . . , Pk (k < s) are valid,
we have two ways of finishing the deduction. First, we can go on to search for facts
of predicatesPk+1, . . . , Ps . If they are instantiated andQ is not in the database, we
obtain a new factQ. Second, we can checkQ first. If Q is already in the database,
nothing is needed to be done. Otherwise we need to checkPk+1, . . . , Ps . If the head
Q of the rule is in the database, the second way is always faster. Otherwise the step
of checking forQ is a waste of time. In our program, we use the second way if the
fact forP1, (i.e., the new fact) is a derived fact, because in that case the chance of
redundant deduction is fairly high.

(2) Avoiding Tautologies.If the composition of rules is an identity, the successive
deductions by these rules will give the same fact as the input. A special but often-
encountered case is the composition of a rule and its reversed rule, such as rules
R2 and R3. For each deduced fact in our database, the program always remembers
the lemma used to deduce it (Section 3.1). Thus it is easy to detect and delete these
kinds of redundancy.

(3) Avoiding Empty Fact. We call a factempty if no new information can be derived
from it. An example of empty fact is contri(O,A,B,O,B,A) if OA = OB,
because all the information we can get from this fact is already known. We could
have many such congruent triangles if there are circles in the geometry statement.
For instance, in a circle with centerO and passing through pointsP1, . . . , Pn, there
exist n(n−1)

2 empty facts of the form contri(O,Pi , Pj ,O,Pj , Pi). In our program,
we do not store empty facts in the database to reduce the database size and to
reduce redundancies in later steps.

(4) Diagram Based Standard Forms. Many rules generating redundancies are re-
lated to a diagram. In this case, we can eliminate some rules to avoid redundancies.
We use the following example to illustrate how to do this.

In Figure 4, we have five properties: midp(M,A,B), perp(O,M,A,B),
cong(O,A,O,B), eqangle(A,O,M,M,O,B), and eqangle(O,A,B,A,B,O).



234 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

By rules R6 and R7, cong(O,A,O,B) and eqangle(O,A,B,A,B,O) are equiv-
alent, so we need consider only one of them. The interesting fact about this figure
is that any two of the four statements implies the other three. We thus could have
twelve rules. These rules clearly lead to many redundant deductions. To avoid this,
we choose a set ofstandard rules, say,
S1. cong(O,A,O,B) :−midp(M,A,B), perp(O,M,A,B).
S2. eqangle(A,O,M,M,O,B) :−midp(M,A,B), perp(O,M,A,B).

For the ten rules left, we keep only those whose head is either midp(M,A,B) or
perp(O,M,A,B). As a result, only six rules are left.

5. Constructing Auxiliary Points and Skolemization

In logic, constructing new points corresponds to the Skolemization of the existen-
tial quantifiers. Even before the first geometry theorem prover was developed, A.
Robinson suggested that the auxiliary points and lines needed in a proof can be
constructed as elements of the Herbrand universe for the problem [21]. Based on
similar ideas, Reiter presented a deductive method that can generate new points
[19]. But both of the above ideas are not implemented. It is clear that constructing
auxiliary points may lead to infinite geometric objects and prevent the reaching
of fixpoints. Also, introducing new points may drastically increase the size of the
database. We use two strategies to control the adding of new points to achieve
effectiveness.

Our first strategy is to separate the process of adding new points from the
process of reaching the fixpoints. The program works precisely as follows. For
a geometry theorem, we first find a fixpoint for the corresponding configuration of
the theorem without adding auxiliary points. If the conclusion of the statement is
already in the database, the program terminates. Otherwise, the program will try
to construct an auxiliary point, add the facts related to the auxiliary point to the
new-fact-list, and find a new fixpoint. The program will repeat this process until
either the conclusion is in the new database or there exist no new auxiliary points.

If the above strategy is not used, we may encounter the unpleasant situation that
the conclusion of the statement can be deduced without adding auxiliary points,
but in the process of finding the first fixpoint, many auxiliary points will still be
constructed. Construction of many irrelevant points may dramatically drag down
the searching speed.

Our second strategy is to use two heuristics to control the constructing of too
many auxiliary points. (1) After an auxiliary point is added and a new fixpoint
is reached, we will check whether new properties about the original diagram are
found. If they are, we will keep this auxiliary point; otherwise, the auxiliary point
will be deleted. (2) No recursive auxiliary points are allowed. In other words,
to construct an auxiliary point, we can use only points occurring in the original
statement. The second condition guarantees that the program will terminate.



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 235

A rule of constructing auxiliary points is actually the modification of a rule
given in Section 2 in which a universal quantifier is changed to an existential
quantifier. The following are four rules of constructing auxiliary points. Rules A1
and A2 are related to Rules S1 and R3.

A1: [perp(O,M,M,A) and 6 [XO,MO] = 6 [MO,AO]] ⇒
∃B[coll(B,A,M) and coll(B,O,X) and cong(O,B,O,A)

and midp(M,A,B)].
A2: [6 [AP,BP ] = 6 [AX,BY ] and¬coll(A,B, P )] ⇒
∃Q[6 [AP,BP ] = 6 [AQ,BQ] and cyclic[A,B,P,Q].]

A3: [midp(M,A,B) and midp(N,C,D)] ⇒
∃P [midp(P,A,D),para(P,M,B,D), and para[P,N,A,C].]

A4: [cong(O,C,O,D) and perp(A,B,B,O)] ⇒
∃P [cong(O,C,O,P ),para(P,C,A,B), cong[B,C,B,P ].]

The negative statement used in rule A2 is treated similarly to the negative in-
formation in Section 2.3. In rules A1 and A2, the new point is introduced as the
intersection of two non-parallel lines. In rule A3, the new point is introduced as
the midpoint of a line segment. In rule A4, the new point is introduced as the
intersection of a line and a circle.

Totally, we have about twenty rules of constructing auxiliary points. The most
often used experimental ‘methods’ of adding auxiliary points are selected as rules.
These rules are not complete. Of the 160 geometry configurations solved by our
program, 39 of them need the construction of auxiliary points. Two of them are
Examples 6.4 and 6.5.

In [8, 11], two constructions are considered: construction of new points and
construction of new lines between two existing points. In our program, lines con-
necting all possible pairs of points will be stored into the database if more than two
points are on them or they are used in one of the following predicates: para, perp,
and eqangle. In other words, lines connecting any pair of points in the diagram are
considered to exist in our program and do not need to be added.

6. Conclusion

6.1. IMPLEMENTATION

The method reported in this paper is actually one of the proving methods imple-
mented in our geometry reasoning system,Geometry Expert, which is available via
ftp at emcity.cs.twsu.edu: pub/geometry/software/gex_sparc.tar.Z. First, you need
to select the ‘Deductive Database Method’ item in the ‘Parameter’ menu to use the
fixpoint approach. The default proving method of the program is the area method
[5]. For a given geometry statement, the program works as follows:



236 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

Figure 5.

6.2. APPLICATIONS

The current program has the following applications.

(1) Automated Theorem Proving and Discovering. It is clear that the program can
be used to prove a given geometry theorem. A more interesting application is
to discover ‘new’ facts about the geometric configuration. Anything obtained in
the forward chaining may be looked at as a ‘new’ result. Our experiments show
that our program can discover most of the well-known results and often some
unexpected ones. Take the simple configuration (Figure 6) related to the ortho-
center theorem as an example. Our program discovered the most often mentioned
properties about this configuration: (1) the three altitudes are concurrent and (2)
6 [EG,CG] = 6 [CG,FG]. The program also finds 105 essentially different ratios
in such a simple configuration! In Example 6.2, the program even discovered some
new results.

(2) Basis for Other Reasoning Methods. We plan to develop a geometry reasoning
system having the merits of both the synthetic and algebraic approaches. For a
geometry theorem, the system first forms a database using the synthetic approach.
If the conclusion is in the database, then a synthetic proof for it can be produced.
Otherwise, the system proves the theorem using the decision procedures such as



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 237

the area method [5], and the database may help these decision methods to produce
more elegant proofs.

(3) Geometry Education. Starting from the hypotheses of a geometry statement,
reasoning forward to prove the conclusion is one of the basic proving techniques
in geometry. Our program mechanizes this approach and gives it more power. By
adding a nice interface, the program can teach a student how to prove a specific
theorem with forward chaining or can how to explore interesting properties of a
given configuration. For another application, since the current program can gener-
ate almost all the properties for a configuration within seconds, a geometry teacher
can use it to select exercises for the students or examples for a geometry textbook.

6.3. EXPERIMENT RESULTS AND EXAMPLES

The 160 geometry configurations are mainly from [3, 5]. All the theorems in
[17] and the nontrivial theorems in [8, 11] are also included. There are about
600 theorems in [3, 5] that are solved with Wu’s method or the area method.
We can find fixpoints for each of the 600 theorems, but only about 160 of them
can be proved in this way. Some well-known theorems such as Pappus’s theorem
and Pascal’s theorem are beyond the scope of our program, although the fixpoints
can be reached for both of them. For Pappus’s theorem, the fixpoint is the set of
original hypotheses. For Pascal’s theorem, the fixpoint contains 89 facts. Therefore,
although it might be the most powerful synthetic approach, our deductive database
approach is still much less powerful in scope than the algebraic approaches. On
the other hand, our approach has the following advantages: (1) it can be used to
discover theorems automatically; (2) the proofs produced are more intelligible;
and (3) for some theorems (we have two such examples), the deductive database
method can produce elegant proofs while no algebraic method can even prove them
because exceedingly large amounts of computer memory and computing time are
required. Using the geometric rules adopted by us, one can find short proofs for
these theorems.

Table I contains the timing and database size statistics for the 160 geometry
theorems solved by the program. The timing is collected on a NeXT workstation.

The predicate that has the largest database is eqratio. Without this predicate,
the size of the database will reduce significantly. So a heuristic might be: First
obtain a fixpoint without considering predicate eqratio; if the conclusion is not in
the database, then obtain a new fixpoint including eqratio.

EXAMPLE 6.1 (The Orthocenter Theorem).Show that the three altitudes of a tri-
angle are concurrent(Figure 6).

The hypotheses (extensional database) are points(A,B,C), coll(E,A,C), perp
(B,E,A,C), coll(F,B,C), perp(A, F,B,C) coll(H,A,F), coll(H,B,E), coll
(G,A,B), coll(G,C,H).



238 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

Table I. Structures for 160 Geometry Theorems

Proving Time (seconds) Size of Structured DB Size of Predicate DB

Time Theorems Size Theorems Size Theorems

≤ 0.1 30% ≤ 50 16% ≤ 10, 000 11%

≤ 1 69% ≤ 100 42% ≤ 50, 000 43%

≤ 10 94% ≤ 200 66% ≤ 100, 000 59%

≤ 60 98% ≤ 500 91% ≤ 1, 000, 000 95%

≤ 650 100% ≤ 4021 100% ≤ 5, 041, 102 100%

8.37 (average) 221 (average) 242,117 (average)

Figure 6.

Reaching the fixpoint costs the program 0.75 second. The size of the fixpoint
is 146 if the structured database is used. In predicate form, the size of the fixpoint
would be 56,940. The following is the breakdown of the fixpoint into predicates:
coll 9 (36 in predicate form), perp 3 (216), cyclic 6 (144), eqangle 19 (29376),
simtri 4 (288), eqratio 105 (26880).

The fixpoint contains two of the most often encountered properties of this con-
figuration: perp(C,G,A,B) (the conclusion) and6 [GF,GC] = 6 [GC,GE]. An-
other amazing fact is that this simple configuration contains 105 nontrivial ratios!
We list those ratios involving segmentHC below.

HC ∗ BE = EC ∗ BA,HC ∗ EA = BA ∗HE,
HC ∗HG = FH ∗HA = HE ∗HB,
HC ∗AF = EF ∗AC = BA ∗ CF,
HC ∗ FB = HB ∗ FE = FH ∗ BA,
HC ∗ FG = CF ∗HB = FH ∗ AC,
HC ∗ BG = EC ∗HB = FH ∗ BC,
HC ∗ CG = BC ∗ FC = EC ∗ CA,



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 239

HC ∗AG = HE ∗ AC = HA ∗ CF,
HC ∗EG = HE ∗ BC = HA ∗ EC.

The following is the proof for the fact perp(C,G,A,B), which isautomatically
generated by our prover. In the proof (hyp) means that the corresponding fact is
from the hypotheses.

The Machine Proof
1. perp[CG,AB] :− (hyp)perp[BC,AF ], (hyp)coll[GCH ], (2)[BC,AF ] =

[AB,CH ].
2. 6 [BC,AF ] = 6 [AB,CH ] :− (3)6 [BC,AB] = 6 [AF,CH ].
3. 6 [BC,AB] = 6 [AF,CH ] :− (4)6 [BC,AB] = 6 [FE,AC], (5)6 [AF,CH ]

= 6 [FE,AC].
4. 6 [BC,AB] = 6 [FE,AC] :− (hyp)coll[CBF ], (hyp)coll[CEA],

(6)6 [BF,BA] = 6 [EF,EA].
5. 6 [AF,CH ] = 6 [FE,AC] :− (hyp)coll[AHF ], (hyp)coll[AEC],

(7)6 [HF,HC] = 6 [EF,EC].
6. 6 [BF,BA] = 6 [EF,EA] :− (8)cyclic[AFBE].
7. 6 [HF,HC] = 6 [EF,EC] :− (9)cyclic[CFEH ].
8. cyclic[AFBE] :− (hyp)perp[FB,FA], (hyp)perp[EB,EA].
9. cyclic[CFEH ] :− (hyp)perp[FH,FC], (hyp)perp[EH,EC].

EXAMPLE 6.2 (The Five Circle Theorem?). As in Figure 7, P0P1P2P3P4 is a
pentagon.Qi = Pi−1Pi ∩ Pi+1Pi+2,Mi = circle(Qi−1Pi−1Pi)∩ circle(QiPiPi+1)

(the subscripts are understood to bemod 5). Show that pointsM0, M1, M2, M3,
M4 are cyclic.

The fixpoint is reached in 3.89 seconds and contains 541 (220,680 in predicate
form) facts. Besides the fact thatM0,M1,M2,M3, andM4 are cyclic, our program
finds the following new result: The following ten groups of lines

{Pi+1Mi+1,Qi−1Mi−1,Qi+2Mi−2}, {Pi−1Mi−2, PiMi+1,Qi−1Mi+2},
i = 0,1,2,3,4,

are concurrent, and the ten intersection points of them are on the circle determined
by M0, M1, M2, M3, andM4. In other words, this circle contains 15 points. The
three dotted lines in Figure 7 represent one group of concurrent lines.

EXAMPLE 6.3. In the right triangle ABC,6 A = 90◦; AH ⊥ BC; S is the
midpoint ofAH ; KN ‖ AB; PL ‖ AC; QM ‖ BC. Show that six points
P,Q,K,L,M,N are on the same circle(Figure 8).

? This problem was proposed in the news group sci.math by Noam D. Elkies of Harvard Uni-
versity in 1992. The theorem was proved by Gerald A. Edgar of Ohio State University with Maple.
However, for the general-purpose geometry theorem provers based on the algebraic methods, the
proofs require exceedingly large amounts of computer memory, which are currently not available on
most computer systems. Wen-Tsün Wu was later able to give a simple synthetic proof. Our program
can discover his result totally automatically.



240 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

Figure 7.

Figure 8.

It takes the program 461.06 seconds to reach the fixpoint which contains 1326
(5,041,102 in predicate form) facts. Without using the structured database, the
fixpoint is too big to be reached within reasonable time.

EXAMPLE 6.4. ABCD is a trapezoid such thatAB ‖ CD. M andN are the
midpoints ofAC andBD. LetE be the intersection ofMN andBC. Show thatE
is the midpoint ofBC (Figure 9).

This example is originally given in [11] and used in [8, 19]. In [8, 11], an
auxiliary pointK = CN ∩ AB is added by the user. In [19], it is reported that
the same auxiliary point will be added based on Skolemization. But the method
has not been implemented. Our program solves this problem by adding a different
auxiliary point using rule A3:A0 is the midpoint ofAD. With this auxiliary point,
the proof of the conclusion seems easier using rules R4 and R5.

Figure 9.



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 241

Figure 10.

The Machine Proof
1. midp[E,BC] :− (2)para[CD,EN ], (hyp)midp[N,BD].
2. para[CD,EN] :− (3)coll[ENMA0], (4)para[CD,MA0].
3. coll[ENMA0] :− (hyp)line[MNE], (5)line[MNA0].
4. para[CD,MA0] :− (hyp)midp[M,AC], (hyp)midp[A0,DA].
5. line[MNA0] :− (6)para[A0M,A0N ].
6. para[A0M,A0N] :− (7)para[A0M,AB], (8)para[A0N,AB].
7. para[A0M,AB] :− (4)para[CD,MA0], (hyp)para[AB,CD].
8. para[A0N,AB] :− (hyp)midp[N,BD], (hyp)midp[A0,DA].

EXAMPLE 6.5 (The Butterfly Theorem).P , Q, R, andS are on the same circle
with centerO. A is the intersection ofPQ and SR. The line passing throughA
and perpendicular toOAmeetsPR andQS in N andM, respectively. Show that
A is the midpoint ofNM (Figure 10).

The conclusion is not in the first fixpoint. The program automatically adds
an auxiliary pointA0 (using rule A4), that is the intersection of the line passing
throughS and parallel toAN and the circleO. With the pointA0, it takes the
program 0.4 second to reach the fixpoint which contains the conclusion. The key
steps in the proof are (1)6 NAA0 = 6 SA0A, 6 SA0A = 6 ASA0 = 6 RSA0,
and 6 RSA0 = 6 RPA0 imply 6 NAA0 = 6 NPA0; (2) 6 NAA0 = 6 NPA0 im-
plies cyclic(A,N,P,A0); (3) cyclic(A,N,P,A0) implies 6 AA0N = 6 APN =
6 QPR = 6 QSR = 6 MSA; (4) 6 MSA = 6 AA0N , 6 MAS = 6 NAA0, andAS =
AA0 imply 4AMS ∼= 4ANA0; (5)4AMS ∼= 4ANA0 impliesAM = AN ; and
(6) AM = AN implies midp(A,M,N). Note that this step uses the technique
mentioned in Section 2.2. We need to check whetherM = N numerically. Since
this is not true, we can deduce midp(A,M,N) fromAM = AN .

Acknowledgment

We thank Prof. D. Kapur for providing many valuable suggestions on this paper.



242 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

Appendix

This appendix contains the geometric deductive rules and the rules for adding aux-
iliary points used in our program. The meaning of the geometric predicates can
be found in Section 2.1. Rules D1–D38 describe basic properties of the geometry
predicates, and have been built into the structure of the deductive database (see
Section 3.1). We implicitly assume that all points in a rule are different.

D1. coll(A,C,B) :− coll(A,B,C).
D2. coll(B,A,C) :− coll(A,B,C).
D3. coll(C,D,A) :− coll(A,B,C), coll(A,B,D).
D4. para(A,B,D,C) :− para(A,B,C,D).
D5. para(C,D,A,B) :− para(A,B,C,D).
D6. para(A,B,E,F) :− para(A,B,C,D), para(C,D,E,F).
D7. perp(A,B,D,C) :− perp(A,B,C,D).
D8. perp(C,D,A,B) :− perp(A,B,C,D).
D9. para(A,B,E,F) :− perp(A,B,C,D), perp(C,D,E,F).

D10. perp(A,B,E,F) :− para(A,B,C,D), perp(C,D,E,F).
D11. midp(M,A,B) :−midp(M,B,A).
D12. circle(O,A,B,C) :− cong(O,A,O,B), cong(O,A,O,C).
D13. cyclic(A,B,C,D) :−

cong(O,A,O,B), cong(O,A,O,C), cong(O,A,O,D).
D14. cyclic(A,B,D,C) :− cyclic(A,B,C,D).
D15. cyclic(A,C,B,D) :− cyclic(A,B,C,D).
D16. cyclic(B,A,C,D) :− cyclic(A,B,C,D).
D17. cyclic(B,C,D,E) :− cyclic(A,B,C,D), cyclic(A,B,C,E).
D18. eqangle(B,A,C,D,P,Q,U, V ) :− eqangle(A,B,C,D,P,Q,U, V ).
D19. eqangle(C,D,A,B,U, V, P,Q) :− eqangle(A,B,C,D,P,Q,U, V ).
D20. eqangle(P,Q,U, V,A,B,C,D) :− eqangle(A,B,C,D,P,Q,U, V ).
D21. eqangle(A,B, P,Q,C,D,U, V ) :− eqangle(A,B,C,D,P,Q,U, V ).
D22. eqangle(A,B,C,D,E,F,G,H) :−

eqangle(A,B,C,D,P,Q,U, V ), eqangle(P,Q,U, V,E,F,G,H).
D23. cong(A,B,D,C) :− cong(A,B,C,D).
D24. cong(C,D,A,B) :− cong(A,B,C,D).
D25. cong(A,B,E,F) :− cong(A,B,C,D), cong(C,D,E,F).
D26. eqratio(B,A,C,D,P,Q,U, V ) :− eqratio(A,B,C,D,P,Q,U, V ).
D27. eqratio(C,D,A,B,U, V, P,Q) :− eqratio(A,B,C,D,P,Q,U, V ).
D28. eqratio(P,Q,U, V,A,B,C,D) :− eqratio(A,B,C,D,P,Q,U, V ).
D29. eqratio(A,B, P,Q,C,D,U, V ) :− eqratio(A,B,C,D,P,Q,U, V ).
D30. eqratio(A,B,C,D,E,F,G,H) :−

eqratio(A,B,C,D,P,Q,U, V ), eqratio(P,Q,U, V,E,F,G,H).
D31. simtri(A,B,C, P,Q,R) :− simtri(A,C,B, P,R,Q).
D32. simtri(A,B,C, P,Q,R) :− simtri(B,A,C,Q,P,R).
D33. simtri(A,B,C, P,Q,R) :− simtri(P,Q,R,A,B,C).



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 243

D34. simtri(A,B,C, P,Q,R) :−
simtri(A,B,C,E,F,G), simtri(E, F,G,P,Q,R).

D35. contri(A,B,C, P,Q,R) :− contri(A,C,B, P,R,Q).
D36. contri(A,B,C, P,Q,R) :− contri(B,A,C,Q,P,R).
D37. contri(A,B,C, P,Q,R) :− contri(P,Q,R,A,B,C).
D38. contri(A,B,C, P,Q,R) :−

contri(A,B,C,E,F,G), contri(E, F,G,P,Q,R).
D39. para(A,B,C,D) :− eqangle(A,B, P,Q,C,D,P,Q).
D40. eqangle(A,B, P,Q,C,D,P,Q) :− para(A,B,C,D).
D41. eqangle(P,A,P,B,Q,A,Q,B) :− cyclic(A,B, P,Q).
D42. cyclic(A,B, P,Q) :−

eqangle(P,A,P,B,Q,A,Q,B), ¬ coll(P,Q,A,B).
D43. cong(A,B, P,Q) :−

cyclic(A,B,C, P,Q,R), eqangle(C,A,C,B,R,P,R,Q).
D44. para(E, F,B,C) :−midp(E,A,B), midp(F,A,C).
D45. midp(F,A,C) :−midp(E,A,B), para(E, F,B,C), coll(F,A,C).
D46. eqangle(O,A,A,B,A, B,O,B) :− cong(O,A,O,B).
D47. cong(O,A,O,B) :− eqangle(O,A,A,B,A,B,O,B), ¬ coll(O,A,B).
D48. eqangle(A,X,A,B,C,A,C,B) :− circle(O,A,B,C), perp(O,A,A,X).
D49. perp(O,A,A,X) :− circle(O,A,B,C), eqangle(A,X,A,B,C,A,C,B).
D50. eqangle(A,B,A,C,O,B,O,M) :− circle(O,A,B,C), midp(M,B,C).
D51. midp(M,B,C) :−

circle(O,A,B,C), coll(M,B,C), eqangle(A,B,A,C,O,B,O,M).
D52. cong(A,M,B,M) :− perp(A,B,B,C), midp(M,A,C).
D53. perp(A,B,B,C) :− circle(O,A,B,C), coll(O,A,C).
D54. eqangle(A,D,C,D,C,D,C,B) :− cyclic(A,B,C,D), para(A,B,C,D).
D55. cong(O,A,O,B) :− midp(M,A,B), perp(O,M,A,B).
D56. perp(A,B, P,Q) :− cong(A, P,B, P ), cong(A,Q,B,Q).
D57. perp(P,A,A,Q) :−

cong(A, P,B, P ), cong(A,Q,B,Q), cyclic(A,B, P,Q).
D58. simtri(A,B,C, P,Q,R) :−

eqangle[A,B,B,C,P,Q,Q,R], eqangle[A,C,B,C,P,R,Q,R],
¬ coll(A,B,C).

D59. eqratio(A,B,A,C,P,Q,P, R) :− simtri(A,B,C, P,Q,R).
D60. eqangle(A,B,B,C,P,Q,Q,R) :− simtri(A,B,C, P,Q,R).
D61. contri(A,B,C, P,Q,R) :− simtri(A,B,C, P,Q,R), AB = PQ.
D62. cong(A,B, P,Q) :− contri(A,B,C, P,Q,R).
D63. para(A,C,B,D) :− midp(M,A,B), midp(M,C,D).
D64. midp(M,C,D) :−midp(M,A,B), para(A,C,B,D), para(A,D,B,C).
D65. eqratio(O,A,A,C,O,B,B,D) :−

para(A,B,C,D), coll(O,A,C), coll(O,B,D).
D66. coll(A,B,C) :− para(A,B,A,C).
D67. midp(A,B,C) :− cong(A,B,A,C), coll(A,B,C).



244 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

D68. cong(A,B,A,C) :− midp(A,B,C).
D69. coll(A,B,C) :−midp(A,B,C).
D70. eqratio(M,A,A,B,N,C,C,D) :− midp(M,A,B), midp(N,C,D).
D71. perp(A,B,C,D) :− eqangle(A,B,C,D,C,D,A,B),¬ para(A,B,C,D).
D72. para(A,B,C,D) :− eqangle(A,B,C,D,C,D,A,B),¬ perp(A,B,C,D).
D73. para(A,B,C,D) :− eqangle(A,B,C,D,P,Q,U, V ), para(P,Q,U, V ).
D74. perp(A,B,C,D) :− eqangle(A,B,C,D,P,Q,U, V ), perp(P,Q,U, V ).
D75. cong(A,B,C,D) :− eqratio(A,B,C,D,P,Q,U, V ), cong(P,Q,U, V ).

The following rules are used to add auxiliary points in our program.

X1. [perp(O,M,M,A), eqangle(X,O,M,O,M,O,A,O)] ⇒
∃B [coll(B,A,M), coll(B,O,X)].

X2. [cong(O,A,O,B), eqangle(A,O,O,X,O,X,O,B)] ⇒
∃M [coll(B,A,M), coll(M,O,X)].

X3. [perp(O,X,A,B), eqangle(A,O,O,X,O,X,O,B)] ⇒
∃M [coll(B,A,M), coll(M,O,X)].

X4. [perp(O,X,A,B), cong(O,A,O,B)] ⇒
∃M [coll(B,A,M), coll(M,O,X)].

X5. [eqangle(A,P,B, P,A,X,B, Y ), ¬coll(A,B, P )] ⇒
∃Q [eqangle(A,P,B, P,A,Q,B,Q), cyclic[X,B,P,Q]].

X6. [midp(M,A,B), midp(N,C,D)] ⇒
∃P [midp(P,A,D), para(P,M,B,D), para[P,N,A,C]].

X7. [midp(M,A,B), midp(N,C,D), coll(C,A,B), coll(D,A,B), point(Q)]
⇒ ∃P [midp(P,A,Q)].

X8. [midp(M,A,B), para(A, P,R,M), para(A, P,B,Q), coll(P,Q,R)] ⇒
∃X [coll(X,A,Q),coll(X,M,R)].

X9. [cong(O,C,O,D), perp(A,B,B,O)] ⇒
∃P [cong(O,C,O,P ), para(P,C,A,B), cong[B,C,B,P ]].

X10. [perp(A,H,B,C), perp(B,H,A,C)] ⇒
∃P,Q [coll(P,C,B), perp(A, P,C,B), coll(Q,C,A), perp(B,Q,C,A)].

X11. [circle(O,A,B,C)] ⇒ ∃P [perp(P,A,A,O)].
X12. [circle(M,A,B,C), cong(M,A,M,D), cong(N,A,N,B)], M 6= N ]⇒

∃P,Q [coll(P,A,C), cong(P,N,N,A), coll(Q,B,D), cong(Q,N,N,A)].
X13. [cyclic(A,B,C,D), para(A,B,C,D)], midp(M,A,B)⇒

∃O [circle(O,A,B,C)].
X14. [perp(A,C,C,B), cyclic(A,B,C,D)] ⇒ ∃O [circle(O,A,B,C)].
X15. [perp(A,C,C,B), coll(B,E,F)]⇒∃P [coll(P,E,F), perp(P,A,E,F)].
X16. [perp(A,B,A,C), perp(C,A,C,D), midp(M,B,D)] ⇒

∃P [midp(P,A,C)].
X17. [cong(O,A,O,B), perp(A,O,O,B)] ⇒

∃C [coll(A,O,C), cong(O,A,O,C)].
X18. [para(A,B,C,D), coll(P,A,C)], coll(P,B,D), coll(Q,A,B)] ⇒

∃R [coll(P,Q,R), coll(R,C,D)].



AUTOMATED GEOMETRY THEOREM PROVING AND DISCOVERING 245

References

1. Bancilhon, F. and Ramakrishnan, R.: An amateur’s introduction to recursive query processing
strategies, in C. Zanioilo (ed.),Proc. of ACM SIGMOD Conference, 1986, pp. 16–52.

2. Buntine, W.: Generalized subsumption and its application to induction and redundancy,Artif.
Intell. 36(2) (1988), 149–179.

3. Chou, S. C.:Mechanical Geometry Theorem Proving, D. Reidel Publishing Company, Dor-
drecht, Netherlands, 1988.

4. Chou, S. C. and Gao, X. S.: Mechanical formula derivation in elementary geometries, inProc.
ISSAC-90, ACM, New York, 1990, pp. 265–270.

5. Chou, S. C., Gao, X. S. and Zhang, J. Z.:Machine Proofs in Geometry, World Scientific, 1994.
6. Chou, S. C., Gao, X. S. and Zhang, J. Z.: Automated generation of readable proofs with geomet-

ric invariants, I: Multiple and shortest proof generation,J. Automated Reasoning17(3) (1996),
325–347.

7. Chou, S. C., Gao, X. S. and Zhang, J. Z.: Automated generation of readable proofs with geo-
metric invariants, II: Proving theorems with full-angles, WSUCS-94-3, CS Dept, Wichita State
University, March 1994,J. Automated Reasoning17(3) (1996), 349–370.

8. Coelho, H. and Pereira, L. M.: Automated reasoning in geometry theorem proving with prolog,
J. Automated Reasoning2 (1986), 329–390.

9. Bulmer, M. and Fearnley-Sander, D.: The kinds of truth of geometry theorems, Preprint.
10. Gallaire, H., Minker, J. and Nicola, J. M.: Logic and databases: A deductive approach,ACM

Comput. Surveys16(2) (1984), 153–185.
11. Gerlentner, H., Hanson, J. R. and Loveland, D. W.: Empirical explorations of the geometry-

theorem proving machine, inProc. West. Joint Computer Conf., 1960, pp. 143–147.
12. Havel, T.: The use of distance as coordinates in computer-aided proofs of theorems in Euclidean

geometry, IMA Preprint, No. 389, University of Minnesota, 1988.
13. Helm, R.: On the elimination of redundant derivations during execution, inProc. of 1990 North

American Conference on Logic Programming, The MIT Press, 1990, pp. 551–568.
14. Kapur, D.: Geometry theorem proving using Hilbert’s nullstellensatz, inProc. SYMSAC’86,

Waterloo, 1986, pp. 202–208.
15. Koedinger, K. R. and Anderson, J. R.: Abstract planning and perceptual chunks: Elements of

expertise in geometry,Cognitive Science14 (1990), 511–550.
16. Hong-Bo, Li and Minteh, Cheng: Clifford algebraic reduction method for automated theorem

proving in differential geometry,J. Automated Reasoning21(1) (1998), 1–21.
17. Nevins, A. J.: Plane geometry theorem proving using forward chaining,Artif. Intell. 6 (1975),

1–23.
18. Recio, T. and Velex-Melon, M. P.: Automatic discovery of theorems in elementary geometry,

Preprint, 1997.
19. Reiter, R.: A semantically guided deductive system for automatic theorem proving,IEEE Trans.

on ComputersC-25(4) (1976), 328–334.
20. Reiter, R.: On the closed world data bases, in H. Gallaire and J. Minker (eds),Logic and Data

Bases, Plenum Press, New York, 1978, pp. 55–76.
21. Robinson, A.: Proving a theorem (as done by Man, Logician, or Machine), in J. Siekmann and

G. Wrightson (eds),Automation of Reasoning, Springer-Verlag, 1983, pp. 74–78.
22. Sagiv, Y.: Optimizing datalog programs, in J. Minker (ed.),Foundations of Deductive Data-

bases and Logic Programming, Morgan Kauffmann, 1988, pp. 659–698.
23. Wang, D. M.: Reasoning about geometric problems using an elimination method, in J. Pfalzgraf

and D. M. Wang (eds),Automated Practical Reasoning, Springer-Verlag, 1995, pp. 148–185.
24. White, N. L. and Mcmillan, T.: Cayley factorization, inProc. ISSAC’88, ACM Press, 1988, pp.

4–8.



246 SHANG-CHING CHOU, XIAO-SHAN GAO, AND JING-ZHONG ZHANG

25. Wos, L.:Automated Reasoning: 33 Basic Research Problems, Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

26. Wu Wen-tsün:Basic Principles of Mechanical Theorem Proving in Geometries, Volume I:
Part of Elementary Geometries, Science Press, Beijing (in Chinese), 1984. English version,
Springer-Verlag, 1993.


