

arXiv.org > math > arXiv:1204.3015

Mathematics > Algebraic Geometry

Search or Article-id

All papers 🚽 Go!

(Help | Advanced search)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.AG

< prev | next >

new | recent | 1204

Change to browse by:

math

Configuration types and cubic surfaces

E. Guardo, B. Harbourne

(Submitted on 13 Apr 2012)

This paper is a sequel to the paper \cite{refGH}. We relate the matroid notion of a combinatorial geometry to a generalization which we call a configuration type. Configuration types arise when one classifies the Hilbert functions and graded Betti numbers for fat point subschemes supported at $n\est{s}$ essentially distinct points of the projective plane. Each type gives rise to a surface X obtained by blowing up the points. We classify those types such that n=6 and $-K_X$ is nef. The surfaces obtained are precisely the desingularizations of the normal cubic surfaces. By classifying configuration types we recover in all characteristics the classification of normal cubic surfaces, which is well-known in characteristic 0 \cite{refBW}. As an application of our classification of configuration types, we obtain a numerical procedure for determining the Hilbert function and graded Betti numbers for the ideal of any fat point subscheme $Z=m_1p_1+...+m_6p_6$ such that the points p_i are essentially distinct and K_X is nef, given only the configuration type of the points $p_1,...,p_6$ and the coefficients m_i .

Comments:	14 pages, final version
Subjects:	Algebraic Geometry (math.AG)
MSC classes:	Primary 14C20, 14J26, 13D02, Secondary 14N20 14Q99
Journal reference:	Journal of Algebra, 320 (2008) 3519-3533
DOI:	10.1016/j.jalgebra.2008.05.032
Cite as:	arXiv:1204.3015 [math.AG]
	(or arXiv:1204.3015v1 [math.AG] for this version)

Submission history

From: Elena Guardo [view email] [v1] Fri, 13 Apr 2012 14:47:54 GMT (21kb)

Which authors of this paper are endorsers?