
ar
X

iv
:1

20
2.

65
28

v2
  [

m
at

h.
A

G
] 

 1
3 

M
ar

 2
01

2

Stability of tautological bundles on the degree two

Hilbert scheme of surfaces

Malte Wandel

Leibniz Universität Hannover

e-mail: wandel@math.uni-hannover.de

March 14, 2012

Abstract

Let (X,H) be a polarized smooth projective surface satisfying H1(X,OX ) = 0
and let F be either a rank one torsion-free sheaf or a rank two µH -stable vector
bundle on X. Assume that c1(F) 6= 0. In this article it is shown that the rank
two, respectively rank four tautological sheaf F [2] associated with F on the Hilbert
square X [2] is µ-stable with respect to a certain polarization.
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0 Introduction

Let X be an algebraic K3 surface with polarization H ∈ Pic(X) and let v = (r, c, s) ∈
N⊕NS(X)⊕Z. Mukai has shown that in many cases - if v is carefully chosen - the moduli
space of H-semistable sheaves of rank r, first Chern class c and second Chern class s is
again a smooth compact complex manifold carrying a holomorphic symplectic structure.
In fact, all these moduli spaces are deformation equivalent to Hilbn(X) for some n ≥ 0.
Now the natural question arises what happens if we start with another hyperkähler man-
ifold and study the geometry of moduli spaces of sheaves on this manifold. Not much
is known about this topic and one of the fundamental questions is the following: Does
there exist a symplectic structure on these moduli spaces? Of course answering this
question in general will be very complicated. But one could hope for at least finding an
example of a such a moduli space that does carry such a symplectic structure. Therefore
we need examples of vector bundles on higher dimensional hyperkähler manifolds and
then have to ask for the stability of these bundles. One big class of examples are the
so-called ’tautological bundles’ on the Hilbert schemes of K3 surfaces. They arise as the
images of vector bundles on a K3 under a Fourier−Mukai transform. We will concentrate
on the case of Hilb2(X), where X is a projective K3-surface. Schlickewei has shown in
[Schl] that in many cases these tautological bundles associated with line bundles on X
are stable with respect to a carefully chosen polarization on the Hilbert scheme. We will
extend this result by showing that, in fact, every rank two tautological sheaf associated
with any rank one torsion-free sheaf having non-vanishing first Chern class is stable with
respect to some polarization. Furthermore we will prove that the rank four tautological
vector bundle associated with any stable rank two bundle is stable. Again we assume
that the first Chern class is nontrivial. This provides us with quite a big variety of stable
vector bundles on Hilb2(X). In a forthcoming paper it will be shown that in some cases
the component of the moduli space of sheaves on Hilb2(X) containing the tautological
sheaves is smooth and isomorphic to the moduli space of sheaves on the K3 surface. It
is therefore an irreducible holomorphic symplectic manifold.
In fact, all results concerning the stability of the tautological sheaves are valid for any
smooth projective surface X satisfying h1(X,OX) = 0, so they will be presented in this
generality.

Acknowledgements: I want to thank Klaus Hulek, David Ploog, Marc Nieper-Wißkirchen
and Andreas Krug for many useful comments and suggestions.

1 The geometric set-up

Let X be a projective surface satisfying h1(X,OX) = 0 and choose a polarization H .
Throughout this text we will consider the following basic blow-up and projections dia-

2



gram:

D i
//

σD

��

X̃ ×X

π

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

σ

��
r1

		

r2

��

X [2] ×X

p
zz✉✉
✉✉
✉✉
✉✉
✉✉

q

##●
●●

●●
●●

●●
●●

X
∆

// X ×X

π1
{{✇✇
✇✇
✇✇
✇✇
✇

π2
##●

●●
●●

●●
●●

X [2] X

X X .

Here ∆ is the diagonal embedding, σ is the blowing-up morphism (we are blowing up
the diagonal), D ≃ P(NX|X×X) ≃ P(TX) denotes the exceptional divisor together with
the projection σD, the inclusion i and OD(1), the dual of the tautological line bundle.
It is well know that N

D|X̃×X
∼= OD(−1) (see for example Theorem II 8.24 in [Har]).

Furthermore π1, π2, p and q denote the natural projections onto the particular factors
and r1 and r2 are the compositions of π1 and π2 with σ. Last but not least we have the
flat two-to-one covering π.
We want to summarize the most important facts about the Chow rings and cohomology
of the upper diagram. Therefore, for any variety Y denote by A∗(Y ) its Chow ring and
by H∗(Y ) its rational cohomology. The following results are formulated in terms of Chow
rings in [Ful] but we will sometimes tacitly use the cycle map to transfer the results to
the rational cohomology. By Künneth formula we have H∗(X ×X) ∼= H∗(X)⊠2. Now
let ξ denote the first Chern class of OD(1). By Remark 3.2.4 and Theorem 3.3 in [Ful]
we have

A∗(D) ∼= A∗(X)[ξ]/(ξ2 + c1(TX)ξ + c2(TX)).

Finally, from Proposition 6.7e) in [Ful] it follows that

H∗(X̃ ×X) ∼= σ⋆H∗(X ×X)⊕ i⋆σ
⋆
DH

∗(X).

The ring structure on A∗(X̃ ×X) is explained in c) and d) of the following lemma
together with the most fundamental identities in this ring.

Lemma 1.1 Let α, β, γ ∈ A∗(X). In A∗(X̃ ×X) we have the following identities:

a)
i⋆(ξ · σ

⋆
D(α)) = σ⋆∆⋆(α),

b)
i⋆i⋆λ = −ξ · λ, for all λ ∈ A∗(D),

c)
i⋆σ

⋆
Dα · σ⋆(β ⊗ γ) = i⋆σ

⋆
D(α · β · γ),

d)
i⋆σ

⋆
D(α) · i⋆σ

⋆
D(β) = −σ⋆∆⋆(α · β).
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Proof : a) Follows from the general formula in Prop. 6.7. a) in [Ful]. The proof in this
special case is quite elementary but lenghty.
b) This is the self-intersection formula Cor 6.3 in [Ful]:

i⋆i⋆λ = c1(ND|X̃×X
) · λ = c1(OD(−1)) · λ = −ξ · λ.

c) We have α · β · γ = α ·∆⋆(β ⊗ γ). Applying σ⋆
D we get

σ⋆
D(α · β · γ) = σ⋆

D(α ·∆⋆(β ⊗ γ))
= σ⋆

Dα · σ⋆
D∆

⋆(β ⊗ γ) = σ⋆
Dα · i⋆σ⋆(β ⊗ γ).

Now we apply i⋆ and use the projection formula.
d) We use b) to find

i⋆σ
⋆
D(α) · i⋆σ

⋆
D(β) = i⋆(i

⋆i⋆σ
⋆
D(α) · i⋆σ

⋆
D(β)) = −i⋆(ξ · σ

⋆
D(α) · i⋆σ

⋆
D(β)).

Now we apply c) and we are done. �

Corollary 1.2 We have

a)
i⋆D = −ξ,

where we denote i⋆[D] ∈ A3(X̃ ×X) simply by D,

b)
D2 = −i⋆ξ = −σ⋆∆,

where ∆ also denotes the cohomology class of the diagonal in X ×X, and finally

c)
(σ⋆∆)2 = σ⋆∆⋆(c2(TX)).

Proof : a) Apply b) of the lemma to λ = [D].
b) We use a) and for the second equality we apply a) of the Lemma to α = [X ] to get

D2 = i⋆i
⋆D = i⋆(−ξ) = −σ⋆∆.

c) Very similarly to the proof of b) in the lemma we have:

(σ⋆∆)2 = σ⋆∆⋆∆
⋆∆ = σ⋆∆⋆∆

⋆∆⋆[X ] = σ⋆∆⋆(c2(NX|X×X)) = σ⋆∆⋆(c2(TX)).

�

We will continue with some considerations concerning the Picard groups of the varieties
we are looking at. We have Pic(X ×X) ∼= (PicX)⊞2. Here we apply exercise III 12.6b)

in [Har] since h1(X,OX) = 0. And accordingly we have Pic(X̃ ×X) ∼= (PicX)⊞2 ⊕ZD.
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So we will write an element of Pic(X̃ ×X) as g ⊗ 1 + 1⊗ h+ aD for some g, h ∈ PicX
and a ∈ Z and denote the corresponding line bundle by L(g,h,a).
Furthermore it is well known that Pic(X [2]) ∼= Pic(X) ⊕ Zδ, where δ is a class such
that 2δ is the exceptional divisor in X [2] coming from the blow-up of the diagonal in the
quotient (X × X)/S2. We will denote the line bundle corresponding to δ by Lδ. We
have the relations π⋆δ = D and π⋆D = 2δ.

Let us finish this chapter by determinig the canonical line bundles of D and X̃ ×X.
Therefore we will follow very closely [Ful] Section 15.4, especially Lemma 15.4. On
D = P(TX) we have the short exact sequence: 0 → OD(−1) → σ⋆

DTX → Q → 0, where
Q is the universal quotient line bundle. We find Q = OD(1)⊗ σ⋆

Dω
∨
X :

0 → OD(−1) → σ⋆
DTX → OD(1)⊗ σ⋆

Dω
∨
X → 0. (1)

On X̃ ×X we have a short exact sequence:

0 → T
X̃×X

→ σ⋆TX×X → i⋆(OD(1)⊗ σ⋆
Dω

∨
X) → 0.

So we immediately see c1(TX̃×X
) = r⋆1c1(TX) + r⋆2c1(TX) − D and therefore ω

X̃×X
=

L(KX ,KX ,1).
Next, on D we have the exact sequence:

0 → TD → i⋆T
X̃×X

→ OD(−1) → 0.

So again, we derive c1(TD) = 2σ⋆
Dc1(TX) + 2ξ, so ωD ≃ σ⋆

Dω
∨2
X ⊗OD(−2).

2 Tautological bundles

Now let F be a vector bundle on X of rank r with first Chern class f . Recall that
in X [2] × X there is the universal cycle Ξ consisting of pairs (ξ, x) such that x ∈ ξ.
We define the tautological bundle associated with F to be the image of F under the
Fourier−Mukai transform with the structure sheaf of the universal cycle as kernel:

F [2] := Rp⋆(q
⋆F ⊗OΞ).

Since we are only considering the case of the second Hilbert scheme we can simplify this

definition. Indeed, the universal cycle Ξ is naturally isomorphic to the blow-up X̃ ×X
of X ×X at the diagonal. And p restricted to Ξ is nothing but the two-to-one cover π.
Thus we end up with the much simpler formula:

F [2] = π⋆r
⋆
1F .

Remark: We see immediately that this process is, in fact, an exact functor and we do
not need to derive the pushforward along the finite morphism π.
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Of course, we could also have chosen the second projection to form this vector bundle,
but the image under π is the same.

Now F [2] is, of course, a vector bundle on X [2] of rank 2r and we have the following
formula for its dual:

Lemma 2.1 Let F be a vector bundle on X. Then

F [2]∨ ≃ F∨[2] ⊗ Lδ. (2)

Proof: Using Grothendieck−Verdier duality we have

F [2]∨ = HomO
X

[2]
(π⋆r

⋆
1F ,OX[2]) ≃ π⋆HomO

X̃×X

(r⋆1F ,L(KX ,KX ,1) ⊗ π⋆ω∨
X[2])

≃ π⋆HomO
X̃×X

(r⋆1F ,L(0,0,1)) ≃ π⋆(r
⋆
1F

∨ ⊗ π⋆Lδ)

≃ F∨[2] ⊗ Lδ.

Note that we have used here the identity ωX[2] ≃ ωX . �

Schlickewei showed that the pullback π⋆F [2] fits into a basic exact sequence as follows:

0 → π⋆F [2] → r⋆1F ⊕ r⋆2F → i⋆σ
⋆
DF → 0. (3)

Note that the exactness of this sequence is a special case of a more general result due to
Scala (cf. [Sca]). From sequence (3) we find a simple formula for the first Chern class of
F [2] :

Lemma 2.2 We have

c1(F
[2]) = r⋆1f + r⋆2f − rD. (4)

Proof: It is certainly enough to show that for every sheaf E on D of rank r we have
c1(i⋆E) = rD. But this follows easily from the Grothendieck−Riemann−Roch theorem:

ch(i⋆E) = i⋆(ch(E)tdi) = i⋆((r + . . . )(1 + . . . )) = i⋆(r + . . . ) = rD + . . . .

�

In the sequel we will analyze conditions such that F [2] is stable. As a main ingredi-
ent for this to be possible, we will from now on assume that we are given a polarization
H of X and that F is µH-stable. More precisely for every subsheaf E ⊆ F of rank
0 < rE < r we have

c1(E) ·H

rE
<

c1(F) ·H

r
.

Next we have to fix a polarization on X [2]. This is done as follows: For N ∈ N we define
HN := NH − δ. This divisor is ample for all sufficiently large N , say N ≥ N0.
Now let us assume that there is a destabilizing subsheaf E ′ ⊆ F [2]. Pulling back both

sheaves via π we get an inclusion of sheaves on X̃ ×X:

π⋆E ′ =: E ⊆ π⋆F [2].
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Since the slope of a vector bundle is just multiplied by two under the finite pullback π⋆,
E is also a destabilizing subsheaf of π⋆F [2] with respect to the polarization H̃N = π⋆HN

of X̃ ×X. Therefore we will, in fact, consider destabilizing subbundles of π⋆F [2] which
come from X [2].
As a first step towards any considerations about the stability of a vector bundle π⋆F [2],
we first have to calculate the slope of a sheaf E with respect to the given polarization.
It is defined as

µH̃N

(E) :=
c1(E)H̃N

3

rE
,

considered as a number by integrating against the fundamental class of X̃ ×X . Thus

we first calculate H̃N

3
:

H̃N

3
= (NH ⊗ 1 + 1⊗NH −D)3

= (NH ⊗ 1 + 1⊗NH)3 − 3(NH ⊗ 1 + 1⊗NH)2D
+3(NH ⊗ 1 + 1⊗NH)D2 −D3

= 3N3(H2 ⊗H +H ⊗H2)− 3N2(H2 ⊗ 1 + 2H ⊗H + 1⊗H2)D
−3Nσ⋆∆(H ⊗ 1 + 1⊗H) +Dσ⋆∆.

Now let E be a sheaf on X̃ ×X . We write its first chern class as c1(E) = g⊗1+1⊗h+aD,
with g, h ∈ PicX and a ∈ Z.

Lemma 2.3 We have the following formulas for the slopes of E and F [2]:

µH̃N

(E) =
1

rE

{
3H2(H.(g + h))N3 + 12aH2N2 − 6(H.(g + h))N − c2(TX)a

}
,(5)

µH̃N

(π⋆F [2]) =
3H2(H.f)

r
N3 − 6H2N2 −

6(H.f)

r
N +

c2(TX)

2
. (6)

Proof : At first note, that formula (6) is just the special case of setting g = h =
f , a = −r and rH′ = 2r in formula (5). Next from Lemma 1.1 c) we deduce that
σ⋆(H i(X×X))·i⋆σ

⋆
D(H

j(X)) = 0 for i+j > 4. Thus half of the terms in our computation
vanish and we are left with

H̃N

3
c1(E) = 3N3(H2 ⊗H +H ⊗H2)(g ⊗ 1 + 1⊗ h)

−3N2(H2 ⊗ 1 + 2H ⊗H + 1⊗H2)D · aD
−3N(σ⋆∆)(H ⊗ 1 + 1⊗H)(g ⊗ 1 + 1⊗ h) +D(σ⋆∆) · aD,

from which we easily get (5). �

3 Destabilizing line subbundles of tautological bun-

dles

In this section we will show that for N ≥ N0 there exist no HN destabilizing line
subbundles L′ ⊆ F [2] in the case F 6≃ OX . So assume that L′ was such a destabilizing
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line subbundle. The pullback L = π⋆L′ of such a line bundle is a destabilizing line
subbundle of the pullback π⋆F [2] with respect to H̃N . Composing this inclusion with the
one from the basic exact sequence (3) we find L ⊆ r⋆1F⊕r⋆2F . We will proceed by showing
that Hom

X̃×X
(L, r⋆1/2F) = 0. The situation is completely symmetric, thus we will focus

on Hom
X̃×X

(L, r⋆1F). We write the first Chern class of L as c1(L) = g⊗ 1+ 1⊗ h+ aD

with g = c1(G) and h = c1(H) for some line bundles G and H on X . In fact, since L is
coming from X [2] this class is invariant under the S2-action, that is, g = h. But for later
use we will proceed in this generality and denote the line bundle class with first Chern
class equal to g⊗1+1⊗h+aD simply by L(g,h,a). We have the following central result:

Proposition 3.1 For all g, h ∈ PicX and a ∈ Z we have

Hom
X̃×X

(L(g,h,a), r
⋆
1F) ⊆ HomX(G,F)h

2(X,H⊗ωX). (7)

Proof: Consider the defining exact sequence of the structure sheaf of the exceptional
divisor D:

0 → L(0,0,−1) → O
X̃×X

→ OD → 0.

Tensoring this sequence with L(0,0,a) we have

0 → L(0,0,a−1) → L(0,0,a) → OD(−a) → 0. (8)

So we see immediately that σ⋆L(0,0,a) is contained in OX×X for all a ∈ Z. Thus we
find that r1⋆(r

⋆
2H

∨ ⊗ L(0,0,−a)) ≃ π1⋆(π
⋆
2H

∨ ⊗ σ⋆L(0,0,−a)) is a subsheaf of π1⋆π
⋆
2H

∨ ≃

H0(H∨)⊗OX ≃ O
h2(X,H⊗ωX)
X . Now using the projection formula and adjunction we get:

Hom
X̃×X

(L(g,h,a), r
⋆
1F) ∼= Hom

X̃×X
(r⋆1G, r

⋆
1F ⊗ L(0,−h,−a)) ∼=

HomX(G, r1⋆(r
⋆
1F ⊗ L(0,−h,−a))) ∼= HomX(G,F ⊗ r1⋆(r

⋆
2H

∨ ⊗ L(0,0,−a))).

Together with the inclusion of above we are done. �

Corollary 3.2 Let F be a µH-stable vector bundle on X of rank r and first Chern class

c1(F) = f . Assume F 6≃ OX . Then r⋆1F contains no line subbundles L(g,h,a) satisfying:

H.(g + h) ≥
H.f

r
, (9)

except the case r = 1, h = 0 and g = f .

Proof: So let L(g,h,a) be a line subbundle of r
⋆
1F . We will show that HomX(G,F)h

2(X,H⊗ωX) =
0 which yields a contradiction to Proposition 3.1.
If H.h > 0 we have 0 = h0(X,H∨) = h2(X,HωX) and we are done.
If H.h ≤ 0 we see

H.g ≥ H.(g + h) ≥
H.f

r
. (10)
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So if G 6≃ F by the stability of F we have HomX(G,F) = 0.
If G ≃ F we must have r = 1 and equalities everywhere in equation (10), so H.h = 0.
But then again h2(X,H⊗ωX) = 0 for all such H but the trivial line bundle, i.e. h = 0.�

Now that we have an explicit description when homomorphisms from a line bundle
to π⋆F [2] may exist, let us have a closer look at the destabilzing condition for line sub-
bundles in π⋆F [2].

Lemma 3.3 For sufficiently large N a line subbundle L(g,h,a) in π⋆F [2] is HN -destabilizing

if and only if

rH.(g + h) > H.f or rH.(g + h) = H.f and a ≥ 0.

Proof: Equation (5) computes the slope of L(g,h,a) as

µH̃N

(L(g,h,a)) = 3H2(H.(g + h))N3 + 12aH2N2 − 6(H.(g + h))N − c2(TX)a.

And we also derived µH̃N

(π⋆F [2]) in (6):

µH̃N

(π⋆F [2]) =
3H2(H.f)

r
N3 − 6H2N2 +

6(H.f)

r
N +

c2(TX)

2
.

Thus LaD+e is destabilizing if either rH.(g+h) > H.f or rH.(g+h) = H.f and 2a > −1.
Since a ∈ Z we can replace the last inequality by a ≥ 0. �

Theorem 3.4 Let F be a µH-stable vector bundle on X of rank r and first Chern class

c1(F) = f . Assume F 6≃ OX . Then for sufficiently large N the tautological vector

bundle F [2] on X [2] has no µHN
-destabilizing line subbundles.

Proof: As explained before we consider an S2-invariant destabilizing line subbundle
L(g,g,a) of π

⋆F [2]. The destabilizing condition yields H.g ≥ H.f
2r

. So by Corollary 3.2 such
a line subbundle cannot exist. �

4 The cases r = 1 and r = 2

From Theorem 3.4 we immediately deduce:

Corollary 4.1 Let F be a line bundle on X not isomorphic to OX . Then for sufficiently

large N , F [2] is a µHN
-stable rank two vector bundle on X [2].

We can generalize this result to arbitrary torsion free rank one sheaves on X with
nonvanishing first Chern class:

Theorem 4.2 Let F be a rank one torsion free sheaf on X satisfying c1(F) 6= 0. Then
for sufficiently large N , F [2] is a µHN

-stable rank two torsion free sheaf on X [2].
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Proof: Every torsion free rank one sheaf F on a surface can be written as F ≃ L ⊗ IZ

for some line bundle L and an ideal sheaf IZ of a zero dimensional subscheme Z ⊂ X .
We thus have an injection F ⊆ L and, of course, c1(F) = c1(L).
Now since (−)[2] is an exact functor we see (cf. Lemma 2.23 in [Sca]) that F [2] is also
torsion free. Furthermore we have an injection F [2] ⊆ L[2] and c1(F

[2]) = c1(L
[2]). So

the stability of F [2] follows immediately. �

Now we want to consider the case r = rkF = 2. We have seen before that F [2] cannot
contain destabilizing line subbundles. In this section we will prove that in most cases,
in fact, F [2] does not contain any destabilizing subsheaves.

Theorem 4.3 Let F be a rank two µH-stable vector bundle on X and assume f =
c1(F) 6= 0. Then for sufficiently large N , F [2] is a µHN

-stable rank four vector bundle

on X [2].

Proof: Let E be the maximal destabilizing subsheaf of π⋆F [2]. Note that it is semistable,
reflexive, saturated and − since it is unique − it has to be S2-linearized. By Theorem
3.4, E cannot have rank one. So let us first consider the case that rk E = 3 and let us

have a look at the corresponding short exact sequence on X̃ ×X :

0 → E → π⋆F [2] → Q → 0,

where E := π⋆E ′ is also destabilizing and Q is the corresponding destabilizing quotient.
Let us write c1(E) = e⊗ 1 + 1⊗ e+ aD. Using equation (2) we see that the dual of this
sequence looks as follows:

0 → HomO
X̃×X

(Q,O
X̃×X

)
︸ ︷︷ ︸

=:Q′

→ π⋆(F∨[2])⊗ L(0,0,1) → E∨ → Ext1OX
(Q,OX) → 0.

Since E is saturated, we may assume Q to be torsion free and so the support of
Ext1OX

(Q,OX) has codimension at least 2, so vanishing first chern class. We compute

c1(Q
′) = c1(π

⋆(F∨)[2]) + c1(L(0,0,1)) · rk(π
⋆(F∨)[2])− c1(E

∨)

= (e− f)⊗ 1 + 1⊗ (e− f) + (4 + a)D.

Now we may assume that Q′ is reflexive, i.e. locally free. (If necessary we replace Q′ by
its reflexive hull which still gives a subsheaf of π⋆(F∨[2])⊗L(0,0,1) with the same first chern
class.) More precisely, Q′ ≃ L(e−f,e−f,4+a). We have an inclusion Q′⊗L(0,0,−1) →֒ π⋆F∨[2].
Now the destabilizing condition on E implies:

4H.e ≥ 3H.f.

Thus 2H.(e− f) ≥ −H.f
2

and by Corollary 3.2 we get a contradiction.
Finally assume that the maximal destabilizing subsheaf of π⋆F [2] is a rank two sheaf E .
Again its first chern class can be written as c1(E) = e⊗1+1⊗e+aD with e ∈ PicX and
a ∈ Z and by the fundamental exact sequence (3) we get an injective homomorphism
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E →֒ r⋆1F ⊕r⋆2F . We will denote its composition with the projection onto the first factor
by β : E → r⋆1F . Now we will distinguish three cases:
a) rank ker β = 0.
So ker β is a torsion subsheaf of E , so it is trivial since E is torsion-free. So β is an

isomorphism away from an effective divisor j : Y →֒ X̃ ×X . Thus coker β can be written
as j⋆K for some sheaf K on Y . Let Y =

⋃
i Yi be the decomposition into irreducible

components, then by Grothendieck−Riemann−Roch we can write its first chern class as
c1(coker β) =

∑
i(Yi · rkKi), where Ki is the restriction of K to Yi. On the other hand

we can compute the first chern class of coker β directly:

c1(coker β) = c1(r
⋆
1F)− c1(E) = f ⊗ 1− e⊗ 1− 1⊗ e− aD.

Now Y is effective. So if rkKi 6= 0 for some i we must have (f−e)⊗1−1⊗e effective, i.e.
the zero set of a section s ∈ H0(r⋆1L1⊗r⋆2L2), where L1, L2 are the according line bundles
on X . By the Künneth formula we have H0(r⋆1L1⊗ r⋆2L2) ∼= H0(X,L1)⊗H0(X,L2). So
both factors must not vanish and we see that f − e as well as −e have to be effective
on X . In particular, H.e < 0 and H.e < H.f . Together with the destabilizing condition
on E − which implies 2.He ≥ H.f − we get a contradiction. If rkKi = 0 ∀i, i.e.
c1(coker β) = 0 we must have f = 0 which we excluded.
b) rank ker β = 2.
This says that on an open subset β has to vanish which by symmetry contradicts the
fact that E injects into r⋆1F ⊕ r⋆2F .
c) rank ker β = 1.
Now imβ is a rank one quotient sheaf of E and we write its first Chern class c1(imβ) =
g ⊗ 1 + 1⊗ h+ bD. The stability of E yields

H.e ≤ H.(g + h).

At the same time imβ is a rank one subsheaf of r⋆1F . Denote by imβ∨∨ its reflexive
hull. This is a reflexive rank one sheaf, thus a line bundle. And it has the same
first chern class as imβ, so imβ∨∨ = L(g,h,b). The destabilizing condition on E implies
2H.e ≥ H.f . Putting things together we find a line subbundle L(g,h,b) in r⋆1F satisfying
2H.g + 2H.h ≥ H.f . This is a contradiction to Corollary 3.2. �

5 The case of the trivial line bundle

In the previous section we explicitly excluded the case F ≃ OX . We did this not only
because the above proof does not work, but because the corresponding result is false.
The following example shows, that indeed the tautological vector bundle associated with
the structure sheaf is not stable:

Example 5.1 Consider the defining exact sequence of the structure sheaf of the uni-
versal cycle Ξ in X [2] ×X :

0 → IΞ → OX[2]×X → OΞ → 0.
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We will now analyze the derived pushforward of the upper sequence via the projection p,
whose fibres are isomorphic to X . Since X is a projective surface, we find R0p⋆OX[2]×X =

OX[2] . Furthermore by definition R0p⋆OΞ = O
[2]
X . Looking a bit closer at IΞ we see that

the fibre of R0p⋆IΞ at a point ξ ∈ X [2] is isomorphic to H0(X, Iξ), which is definitely
trivial. Alltogether we see that the pushforward of the upper sequence yields an inclusion

0 → OX[2] → O
[2]
X .

Now we claim that OX[2] is a destabilizing line subbundle of O
[2]
X with respect to the

polarizations of X [2] defined above. To see this, let us calculate the slopes of the bundles
of interest. We will again consider the pullbacks under π. We have:

µH̃N

(π⋆OX[2]) = 0 and

µH̃N

(π⋆O
[2]
X ) = −1

2
DH̃N

3

= −3
2
N2σ⋆∆(H2 ⊗ 1 + 2H ⊗H + 1⊗H2) + 1

2
(σ⋆∆)2

= −6N2H2 + 1
2
(σ⋆∆)2 ≤ 0.
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