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TORELLI THEOREM FOR THE

DELIGNE–HITCHIN MODULI SPACE, II

INDRANIL BISWAS, TOMÁS L. GÓMEZ, AND NORBERT HOFFMANN

Abstract. Let X and X ′ be compact Riemann surfaces of genus at least three. Let
G and G′ be nontrivial connected semisimple linear algebraic groups over C. If some
components Md

DH
(X,G) and Md

′

DH
(X ′, G′) of the associated Deligne–Hitchin moduli

spaces are biholomorphic, then X ′ is isomorphic to X or to the conjugate Riemann
surface X.

1. Introduction

Let X be a compact connected Riemann surface of genus g ≥ 3. Let X denote the
conjugate Riemann surface; by definition, it consists of the real manifold underlying X
and the almost complex structure JX := −JX . Let G be a nontrivial connected semisimple
linear algebraic group over C. The topological types of holomorphic principal G–bundles
E over X correspond to elements of π1(G). LetMd

Higgs(X,G) denote the moduli space of
semistable Higgs G–bundles (E, θ) over X with E of topological type d ∈ π1(G).

The Deligne–Hitchin moduli space [Si3] is a complex analytic spaceMd
DH(X,G) associ-

ated to X , G and d. It is the twistor space for the hyper-Kähler structure onMd
Higgs(X,G);

see [Hi2, §9]. Deligne [De] has constructed it together with a surjective holomorphic map

Md
DH(X,G) −։ CP1 = C ∪ {∞}.

The inverse image of C ⊆ CP1 is the moduli spaceMd
Hod(X,G) of holomorphic principal

G–bundles over X endowed with a λ–connection. In particular, every fiber over C∗ ⊂ CP1

is isomorphic to the moduli space of holomorphic G–connections over X . The fiber over
0 ∈ CP1 isMd

Higgs(X,G), and the fiber over ∞ ∈ CP1 isM−d
Higgs(X,G).

In this paper, we study the dependence of these moduli spaces on X . Our main result,
Theorem 5.3, states that the complex analytic spaceMd

DH(X,G) determines the unordered
pair {X,X} up to isomorphism. We also prove thatMd

Higgs(X,G) andMd
Hod(X,G) each

determine X up to isomorphism; see Theorem 5.1 and Theorem 5.2.
The key technical result is Proposition 3.1, which says the following: Let Z be an

irreducible component of the fixed point locus for the natural C∗–action on a moduli
spaceMd

Higgs(X,G) of Higgs G–bundles. Then,

dimZ ≤ (g − 1) · dimCG,

with equality holding only for Z =Md(X,G).
In [BGHL], the case of G = SL(r,C) was considered.
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2. Some moduli spaces associated to a compact Riemann surface

Let X be a compact connected Riemann surface of genus g ≥ 3. Let G be a nontrivial
connected semisimple linear algebraic group defined over C, with Lie algebra g.

2.1. Principal G–bundles. We consider holomorphic principal G–bundles E over X .
Recall that the topological type of E is given by an element d ∈ π1(G) [Ra]; this is a finite
abelian group. The adjoint vector bundle of E is the holomorphic vector bundle

ad(E) := E ×G g

over X , using the adjoint action of G on g. E is called stable (respectively, semistable) if

(1) degree(ad(EP )) < 0 (respectively, ≤ 0)

for every maximal parabolic subgroup P $ G and every holomorphic reduction of structure
group EP of E to P ; here ad(EP ) ⊂ ad(E) is the adjoint vector bundle of EP .

LetMd(X,G) denote the moduli space of semistable holomorphic principal G–bundles
E over X of topological type d ∈ π1(G). It is known that Md(X,G) is an irreducible
normal projective variety of dimension (g − 1) · dimC G over C.

2.2. Higgs G–bundles. The holomorphic cotangent bundle of X will be denoted by KX .
A Higgs G–bundle over X is a pair (E, θ) consisting of a holomorphic principal G–bundle

E over X and a holomorphic section

θ ∈ H0(X, ad(E)⊗KX),

the so-called Higgs field [Hi1, Si1]. The pair (E, θ) is called stable (respectively, semistable)
if the inequality (1) holds for every holomorphic reduction of structure group EP of E to
a maximal parabolic subgroup P $ G such that θ ∈ H0(X, ad(EP )⊗KX).

Let Md
Higgs(X,G) denote the moduli space of semistable Higgs G–bundles (E, θ) over

X such that E is of topological type d ∈ π1(G). It is known that Md
Higgs(X,G) is an

irreducible normal quasiprojective variety of dimension 2(g− 1) · dimC G over C [Si2]. We
regardMd(X,G) as a closed subvariety ofMd

Higgs(X,G) by means of the embedding

Md(X,G) −֒→ Md
Higgs(X,G) , E 7−→ (E, 0) .

There is a natural algebraic symplectic structure onMd
Higgs(X,G); see [Hi1, BR].

2.3. Representations of the surface group in G. Fix a base point x0 ∈ X . The
fundamental group of X admits a standard presentation

π1(X, x0) ∼= 〈a1, . . . , ag, b1, . . . , bg|

g
∏

i=1

aibia
−1
i b−1

i = 1〉

which we choose in such a way that it is compatible with the orientation of X . We identify
the fundamental group of G with the kernel of the universal covering G̃ −։ G. The type

d ∈ π1(G) of a homomorphism ρ : π1(X, x0) −→ G is defined by

d :=

g
∏

i=1

αiβiα
−1
i β−1

i ∈ π1(G) ⊂ G̃

for any choice of lifts αi, βi ∈ G̃ of ρ(ai), ρ(bi) ∈ G. This is also the topological type
of the principal G–bundle Eρ over X given by ρ. The space Homd(π1(X, x0), G) of all
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homomorphisms ρ : π1(X, x0) −→ G of type d ∈ π1(G) is an irreducible affine variety over
C, and G acts on it by conjugation. The GIT quotient

Md
Rep(X,G) := Homd(π1(X, x0), G)//G

doesn’t depend on x0. It is an affine variety of dimension 2(g − 1) · dimC G over C, which
carries a natural symplectic form [AB, Go]. Its points represent equivalence classes of
completely reducible homomorphisms ρ. There is a natural bijective map

Md
Rep(X,G) −→Md

Higgs(X,G)

given by a variant of the Kobayashi–Hitchin correspondence [Si1]. This bijective map is
not holomorphic.

2.4. Holomorphic G–connections. Let p : E −→ X be a holomorphic principal G–
bundle. Because the vertical tangent space at every point of the total space E is canonically
isomorphic to g, there is a natural exact sequence

0 −→ E × g −→ TE
dp
−→ p∗TX −→ 0

of G-equivariant holomorphic vector bundles over E. Taking the G-invariant direct image
under p, it follows that the Atiyah bundle for E

At(E) := p∗(TE)G ⊂ p∗(TE)

sits in a natural exact sequence of holomorphic vector bundles

(2) 0 −→ ad(E) −→ At(E)
dp
−→ TX −→ 0

over X . This exact sequence is called the Atiyah sequence. A holomorphic connection on
E is a splitting of the Atiyah sequence, or in other words a holomorphic homomorphism

D : TX −→ At(E)

such that dp ◦D = idTX . It always exists if E is semistable [At, AzBi]. The curvature of
D is a holomorphic 2–form with values in ad(E), so D is automatically flat.

A holomorphic G–connection is a pair (E,D) where E is a holomorphic principal G–
bundle over X , and D is a holomorphic connection on E. Such a pair is automatically
semistable, because the degree of a flat vector bundle is zero.

Let Md
conn(X,G) denote the moduli space of holomorphic G–connections (E,D) over

X such that E is of topological type d ∈ π1(G). It is known that Md
conn(X,G) is an

irreducible quasiprojective variety of dimension 2(g − 1) · dimCG over C.
Sending each holomorphic G–connection to its monodromy defines a map

(3) Md
conn(X,G) −→Md

Rep(X,G)

which is biholomorphic, but not algebraic; it is called Riemann–Hilbert correspondence.
The inverse map sends a homomorphism ρ : π1(X, x0) −→ G to the associated principal
G–bundle Eρ, endowed with the induced holomorphic connection Dρ.
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2.5. λ–connections. Let p : E −→ X be a holomorphic principal G–bundle. For any
λ ∈ C, a λ–connection on E is a holomorphic homomorphism of vector bundles

D : TX −→ At(E)

such that dp ◦D = λ · idTX for the epimorphism dp in the Atiyah sequence (2). Therefore,
a 0–connection is a Higgs field, and a 1–connection is a holomorphic connection.

If D is a λ–connection on E with λ 6= 0, then λ−1D is a holomorphic connection on E.
In particular, the pair (E,D) is automatically semistable in this case.

LetMd
Hod(X,G) denote the moduli space of triples (λ,E,D), where λ ∈ C, E is a holo-

morphic principal G–bundle over X of topological type d ∈ π1(G), and D is a semistable
λ–connection on E; see [Si2]. There is a canonical algebraic map

(4) pr = prX :Md
Hod(X,G) −։ C, (λ,E,D) 7−→ λ.

Its fibers over λ = 0 and λ = 1 are Md
Higgs(X,G) and Md

conn(X,G), respectively. The
Riemann–Hilbert correspondence (3) allows to define a holomorphic open embedding

j = jX : C∗ ×Md
Rep(X,G) −֒→Md

Hod(X,G), (λ, ρ) 7−→ (λ,Eρ, λDρ)

with image pr−1(C∗). This map commutes with the projections onto C∗.

2.6. The Deligne–Hitchin moduli space. The compact Riemann surface X provides
an underlying real C∞ manifold XR, and an almost complex structure JX : TXR −→ TXR.
Since any almost complex structure in real dimension two is integrable,

X := (XR,−JX)

is a compact Riemann surface as well. It has the opposite orientation, so

(5) Md
Rep(X,G) =M−d

Rep(X,G).

The Deligne–Hitchin moduli space Md
DH(X,G) is the complex analytic space obtained by

gluingMd
Hod(X,G) andM−d

Hod(X,G) along their common open subspace

Md
Hod(X,G)

jX
←−֓ C∗ ×Md

Rep(X,G) ∼= C∗ ×M−d
Rep(X,G)

j
X

−֒→ M−d
Hod(X,G)

where the isomorphism in the middle sends (λ, ρ) to (1/λ, ρ); see [Si3, De]. The projections
prX onMd

Hod(X,G) and 1/prX onM−d
Hod(X,G) patch together to a holomorphic map

Md
DH(X,G) −։ CP1 = C ∪ {∞}.

Its fiber over any λ ∈ C∗ is biholomorphic to the representation space (5), whereas its
fibers over λ = 0 and λ =∞ areMd

Higgs(X,G) andM−d
Higgs(X,G), respectively.

3. Fixed points of the natural C∗–action

The group C∗ acts algebraically on the moduli spaceMd
Higgs(X,G), via the formula

(6) t · (E, θ) := (E, tθ).

The fixed point locusMd
Higgs(X,G)C

∗

contains the closed subvarietyMd(X,G).

Proposition 3.1. Let Z be an irreducible component ofMd
Higgs(X,G)C

∗

. Then one has

dimZ ≤ (g − 1) · dimCG,

with equality holding only for Z =Md(X,G).
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Proof. Let (E, θ) be a stable Higgs G–bundle over X . Its infinitesimal deformations are,
according to [BR, Theorem 2.3], governed by the complex of vector bundles

(7) C0 := ad(E)
ad(θ)
−−−→ ad(E)⊗KX =: C1

over X . Since (E, θ) is stable, it has no infinitesimal automorphisms, so

H0(X,C•) = 0 .

The Killing form on g induces isomorphisms g∗ ∼= g and ad(E)∗ ∼= ad(E). Hence the
vector bundle ad(E) has degree 0. Serre duality allows us to conclude

H2(X,C•) = 0 .

Using all this, the Riemann–Roch formula yields

(8) dimH1(X,C•) = 2(g − 1) · dimC G .

From now on, we assume that the point (E, θ) is fixed by C∗, and we also assume θ 6= 0.
Then (E, θ) ∼= (E, tθ) for all t ∈ C∗, so the sequence of complex algebraic groups

1 −→ Aut(E, θ) −→ Aut(E,Cθ) −→ Aut(Cθ) = C∗ −→ 1

is exact. Because (E, θ) is stable, Aut(E, θ) is finite. Consequently, the identity component
of Aut(E,Cθ) is isomorphic to C∗. This provides an embedding

C∗ −֒→ Aut(E) , t 7−→ ϕt ,

and an integer w 6= 0 with ϕt(θ) = tw · θ for all t ∈ C∗. We may assume that w ≥ 1.
Choose a point e0 ∈ E. Then there is a unique group homomorphism

ι : C∗ −→ G

such that ϕt(e0) = e0 · ι(t) for all t ∈ C∗. The conjugacy class of ι doesn’t depend on e0,
since the space of conjugacy classes Hom(C∗, G)/G is discrete. The subset

EH := {e ∈ E : ϕt(e) = e · ι(t) for all t ∈ C∗}

of E is a holomorphic reduction of structure group to the centralizer H of ι(C∗) in G. Let

(9) g =
⊕

n∈Z

gn

denote the eigenspace decomposition given by the adjoint action of C∗ on g via ι.
Let N ∈ Z be maximal with gN 6= 0. Let P ⊂ G be the parabolic subgroup with

Lie(P ) =
⊕

n≥0

gn ⊂ g .

Since H ⊂ G has Lie algebra g0, it is a Levi subgroup in P . Choose subgroups

ι(C∗) ⊆ T ⊆ B ⊆ P ⊂ G

such that T is a maximal torus in H ⊂ G and B is a Borel subgroup in G. Let

αj : T −→ C∗ and α∨
j : C∗ −→ T

be the resulting simple roots and coroots of G. We denote by 〈 , 〉 the natural pairing
between characters and cocharacters of T . Let αj be a simple root of G with 〈αj, ι〉 > 0,
and let β be a root of G with 〈β, ι〉 = N . Then the elementary reflection

sj(β) = β − 〈β, α∨
j 〉αj
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is a root of G, so 〈sj(β), ι〉 ≤ N ; this implies that 〈β, α∨
j 〉 ≥ 0. The sum of all such roots

β with 〈β, ι〉 = N is the restriction χ|T of the determinant

(10) χ : P −→ Aut(gN)
det
−→ C∗

of the adjoint action of P on gN . Hence we conclude 〈χ|T , α
∨
j 〉 ≥ 0 for all simple roots αj

with 〈αj, ι〉 > 0. This means that the character χ of P is dominant.
The decomposition (9) of g induces a vector bundle decomposition

ad(E) =
⊕

n∈Z

EH ×
H gn .

Since C∗ acts with weight w on the Higgs field θ by construction, we have

(11) θ ∈ H0
(

X, (EH ×
H gw)⊗KX

)

.

In particular, θ ∈ H0(X, ad(EP ) ⊗ KX) for the reduction EP := EH ×
H P ⊆ E of the

structure group to P . The Higgs version of the stability criterion [Ra, Lemma 2.1] yields

degree(EH ×
H gN) ≤ 0

since P acts on det(gN) via the dominant character χ in (10). Now Riemann–Roch implies
the following:

(12) dimH1(X,EH ×
H gN) ≥ (g − 1) · dimC gN > 0 .

The complex C• in (7) is, due to (11), the direct sum of its subcomplexes C•
n given by

C0
n := EH ×

H gn
ad(θ)
−−−→ (EH ×

H gn+w)⊗KX =: C1
n .

Thus the hypercohomology of C• decomposes as well; in particular, we have

H1(X,C•) =
⊕

n∈Z

H1(X,C•
n) .

In the last nonzero summand C•
N , we have C1

N = 0 and hence

dimH1(X,C•
N) = dimH1(X,EH ×

H gN) > 0

due to (12). Since g∗n
∼= g−n via the Killing form on g, Serre duality yields in particular

dimH1(X,C•
0) = dimH1(X,C•

−w).

Taken together, the last three formulas and the equation (8) imply that

dimH1(X,C•
0) <

1

2
dimH1(X,C•) = (g − 1) · dimC G .

But H1(X,C•
0) parameterizes infinitesimal deformations of pairs (EH , θ) consisting of a

principal H–bundle EH and a section θ as in (11); see [BR, Theorem 2.3]. This proves
that

dimZ < (g − 1) · dimC G

for every irreducible component Z of the fixed point locus Md
Higgs(X,G)C

∗

such that Z
contains stable Higgs G–bundles (E, θ) with θ 6= 0.

The non-stable points inMd
Higgs(X,G) correspond to polystable HiggsG–bundles (E, θ).

Polystability means that E admits a reduction of structure group EL to a Levi subgroup
L $ G of a parabolic subgroup in G such that θ is a section of the subbundle

ad(EL)⊗KX ⊂ ad(E)⊗KX
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and the pair (EL, θ) is stable. Let C ⊆ L be the identity component of the center, and let
c ⊆ l be their Lie algebras. Then EL/C := EL/C is a principal (L/C)–bundle over X , and

ad(EL) ∼= (c⊗OX)⊕ ad(EL/C)

since l = c⊕ [l, l], where the subalgebra [l, l] ⊆ l is also the Lie algebra of L/C. We have

dimC G− dimC L ≥ 2 dimC C

because maximal Levi subgroups in G have 1-dimensional center and at least one pair of
opposite roots less than G; the other Levi subgroups can be reached by iterating this.

Now suppose that C∗ fixes the point (E, θ). Then (EL, θ) ∼= (EL, tθ) for all t ∈ C∗. But
the action of Aut(EL) on the direct summand c⊗OX of ad(EL) is trivial, since the adjoint
action of L on c is trivial. So θ lives in the other summand of ad(EL), meaning

θ ∈ H0
(

X, ad(EL/C)⊗KX

)

.

The Higgs (L/C)–bundle (EL/C , θ) is still stable and fixed by C∗; we have already proved
that the locus of such has dimension ≤ (g−1) ·dimC(L/C). The abelian varietyM0(X,C)
acts simply transitively on lifts of EL/C to a principal L–bundle EL, so these lifts form a
family of dimension g · dimC C. Hence the pairs (EL, θ) in question have at most

(g − 1) · dimC(L/C) + g · dimCC < (g − 1) · dimC G

moduli. This implies that dimZ < (g − 1) · dimC G for each non-stable component
Z of the fixed point locus, since there are only finitely many possibilities for L up to
conjugation. �

The algebraic C∗–action (6) on Md
Higgs(X,G) extends naturally to an algebraic C∗–

action onMd
Hod(X,G), which is given by the formula

(13) t · (λ,E,D) := (tλ, E, tD).

A point (λ,E,D) can only be fixed by this action if λ = 0, so Proposition 3.1 yields the
following corollary:

Corollary 3.2. Let Z be an irreducible component ofMd
Hod(X,G)C

∗

. Then one has

dimZ ≤ (g − 1) · dimCG,

with equality only for Z =Md(X,G).

The algebraic C∗–action (13) on Md
Hod(X,G) extends naturally to a holomorphic C∗–

action onMd
DH(X,G), which is on the other open patchM−d

Hod(X,G) given by the formula

t · (λ,E,D) := (t−1λ,E, t−1D).

Applying Corollary 3.2 to bothMd
Hod(X,G) andM−d

Hod(X,G), one immediately gets

Corollary 3.3. Let Z be an irreducible component ofMd
DH(X,G)C

∗

. Then one has

dimZ ≤ (g − 1) · dimCG,

with equality only for Z =Md(X,G) and for Z =M−d(X,G).
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4. Vector fields on the moduli spaces

A stable principal G–bundle E over X is called regularly stable if the automorphism
group Aut(E) is just the center of G. The regularly stable locus

Md,rs(X,G) ⊆Md(X,G)

is open, and coincides with the smooth locus ofMd(X,G); see [BH, Corollary 3.4].

Proposition 4.1. There are no nonzero holomorphic vector fields onMd,rs(X,G).

Proof. This statement is contained in [Fa, Corollary III.3]. �

Proposition 4.2. There are no nonzero holomorphic 1–forms onMd,rs(X,G).

Proof. The moduli space of Higgs G–bundles is equipped with the Hitchin map

Md
Higgs(X,G) −→

rank(G)
⊕

i=1

H0(X,K⊗ni

X )

where the ni are the degrees of generators for the algebra Sym(g∗)G; see [Hi1, § 4], [La].
Any sufficiently general fiber of this Hitchin map is a complex abelian variety A, and

ϕ : A //❴❴❴ Md,rs(X,G), (E, θ) 7−→ E,

is a dominant rational map. This rational map ϕ is defined outside a closed subscheme of
codimension at least two; see [Fa, Theorem II.6].

Let ω be a holomorphic 1–form onMd,rs(X,G). Then ϕ∗ω extends to a holomorphic 1–
form on A by Hartog’s theorem. As any holomorphic 1–form on A is closed, it follows that
ω is closed. Since H1(Md,rs(X,G),C) = 0 by [AB], we conclude ω = df for a holomorphic
function f onMd,rs(X,G). But any such function f is constant, so ω = 0. �

We denote byMd,rs
Higgs(X,G) ⊆ Md

Higgs(X,G) the open locus of Higgs G–bundles (E, θ)
for which E is regularly stable. The forgetful map

(14) Md,rs
Higgs(X,G) −→Md,rs(X,G), (E, θ) 7−→ E,

is an algebraic vector bundle with fibers H0(X, ad(E)⊗KX) ∼= H1(X, ad(E))∗, so it is the
cotangent bundle ofMd,rs(X,G).

Corollary 4.3. The restriction of the algebraic tangent bundle

TMd,rs
Higgs(X,G) −→Md,rs

Higgs(X,G)

to the subvarietyMd,rs(X,G) ⊆Md,rs
Higgs(X,G) has no nonzero holomorphic sections.

Proof. The subvariety in question is the zero section of the vector bundle (14). Given a
vector bundle V −→ M with zero section M ⊆ V , there is a natural isomorphism

(15) (TV )|M ∼= TM ⊕ V

of vector bundles over M . In our situation, both summands have no nonzero holomorphic
sections, according to Proposition 4.1 and Proposition 4.2. �

LetMd,rs
conn(X,G) ⊆Md

conn(X,G) denote the open locus of holomorphic G–connections
(E,D) for which E is regularly stable.



DELIGNE–HITCHIN MODULI SPACE, II 9

Proposition 4.4. There are no holomorphic sections for the forgetful map

(16) Md,rs
conn(X,G) −→Md,rs(X,G), (E,D) 7−→ E.

Proof. The map (16) is a holomorphic torsor under the cotangent bundle ofMd,rs(X,G).
As such, it is isomorphic to the torsor of holomorphic connections on the line bundle

L −→Md,rs(X,G)

with fibers detH1(X, ad(E)); see [Fa, Lemma IV.4]. Since L is ample, its first Chern class
is nonzero, so L admits no global holomorphic connections. �

LetMd,rs
Hod(X,G) ⊆Md

Hod(X,G) denote the open locus of triples (λ,E,D) for which E
is regularly stable. The forgetful maps in (14) and (16) extend to the forgetful map

(17) Md,rs
Hod(X,G) −→Md,rs(X,G), (λ,E,D) 7−→ E,

which is an algebraic vector bundle. It contains the cotangent bundle (14) as a subbundle;
the quotient is a line bundle, which is trivialized by the projection pr in (4).

Corollary 4.5. The vector bundle (17) has no nonzero holomorphic sections.

Proof. Let s be a holomorphic section of the vector bundle (17). Then pr ◦ s is a holo-
morphic function onMd,rs(X,G), and hence constant. This constant vanishes because of
Proposition 4.4. So pr ◦ s = 0, which implies that s = 0 using Proposition 4.2. �

Corollary 4.6. The restriction of the algebraic tangent bundle

TMd,rs
Hod(X,G) −→Md,rs

Hod(X,G)

to the subvarietyMd,rs(X,G) ⊆Md,rs
Hod(X,G) has no nonzero holomorphic sections.

Proof. Use the decomposition (15), Proposition 4.1, and Corollary 4.5. �

5. Torelli theorems

Let X,X ′ be compact connected Riemann surfaces of genus ≥ 3. Let G,G′ be nontrivial
connected semisimple linear algebraic groups over C. Fix d ∈ π1(G) and d′ ∈ π1(G

′).

Theorem 5.1. IfMd′

Higgs(X
′, G′) is biholomorphic toMd

Higgs(X,G), then X ′ ∼= X.

Proof. Corollary 4.3 implies that the subvariety Md(X,G) is fixed pointwise by every
holomorphic C∗–action onMd

Higgs(X,G). All other complex analytic subvarieties with that
property have smaller dimension, due to Proposition 3.1. Thus we get a biholomorphic map
fromMd′(X ′, G′) toMd(X,G) by restriction. Using [BH], this implies that X ′ ∼= X . �

Theorem 5.2. IfMd′

Hod(X
′, G′) is biholomorphic toMd

Hod(X,G), then X ′ ∼= X.

Proof. The argument is exactly the same as in the previous proof. It suffices to replace
Corollary 4.3 by Corollary 4.6, and Proposition 3.1 by Corollary 3.2. �

Theorem 5.3. IfMd′

DH(X
′, G′) is biholomorphic toMd

DH(X,G), then X ′ ∼= X or X ′ ∼= X.

Proof. The argument is similar. Corollary 4.6 implies that the two subvarietiesMd(X,G)
andM−d(X,G) are fixed pointwise by every holomorphic C∗–action onMd

DH(X,G). All
other complex analytic subvarieties with that property have smaller dimension, due to
Corollary 3.3. Thus we get a biholomorphic map fromMd′(X ′, G′) to eitherMd(X,G) or
M−d(X,G) by restriction. Using [BH], this implies that either X ′ ∼= X or X ′ ∼= X . �
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