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TORELLI THEOREM FOR THE
DELIGNE-HITCHIN MODULI SPACE, II

INDRANIL BISWAS, TOMAS L. GOMEZ, AND NORBERT HOFFMANN

ABSTRACT. Let X and X’ be compact Riemann surfaces of genus at least three. Let
G and G’ be nontrivial connected semisimple linear algebraic groups over C. If some
components M@y (X, G) and ME, (X', G’) of the associated Deligne-Hitchin moduli
spaces are biholomorphic, then X’ is isomorphic to X or to the conjugate Riemann
surface X.

1. INTRODUCTION

Let X be a compact connected Riemann surface of genus g > 3. Let X denote the
conjugate Riemann surface; by definition, it consists of the real manifold underlying X
and the almost complex structure J% := —Jx. Let G be a nontrivial connected semisimple
linear algebraic group over C. The topological types of holomorphic principal G—bundles
E over X correspond to elements of m1(G). Let Mg, (X, G) denote the moduli space of
semistable Higgs G—bundles (E,0) over X with E of topological type d € m(G).

The Deligne—Hitchin moduli space [Si3] is a complex analytic space M (X, G) associ-
ated to X, G and d. It is the twistor space for the hyper-Kéhler structure on M%iggs(X ,G);
see [Hi2l §9]. Deligne [De] has constructed it together with a surjective holomorphic map

ML (X,G) —» CP' = CU {oo}.

The inverse image of C C CP! is the moduli space M¢_,(X, G) of holomorphic principal
G-bundles over X endowed with a A—connection. In particular, every fiber over C* C CP!
is isomorphic to the moduli space of holomorphic G—connections over X. The fiber over
0 € CP! is M, (X, G), and the fiber over oo € CP' is My (X, G).

In this paper, we study the dependence of these moduli spaces on X. Our main result,
Theorem 5.3 states that the complex analytic space M (X, G) determines the unordered
pair {X, X'} up to isomorphism. We also prove that M. (X, G) and M ,(X, G) each
determine X up to isomorphism; see Theorem [5.1] and Theorem

The key technical result is Proposition B.1l, which says the following: Let Z be an
irreducible component of the fixed point locus for the natural C*-action on a moduli

space M, (X, G) of Higgs G-bundles. Then,
dimZ < (g —1) - dim¢ G,

with equality holding only for Z = M%(X, G).
In [BGHLJ, the case of G = SL(r, C) was considered.
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2. SOME MODULI SPACES ASSOCIATED TO A COMPACT RIEMANN SURFACE

Let X be a compact connected Riemann surface of genus g > 3. Let G be a nontrivial
connected semisimple linear algebraic group defined over C, with Lie algebra g.

2.1. Principal G—bundles. We consider holomorphic principal G-bundles E over X.
Recall that the topological type of E' is given by an element d € 7 (G) [Ral; this is a finite
abelian group. The adjoint vector bundle of E is the holomorphic vector bundle

ad(E) := E x%g
over X, using the adjoint action of G on g. FE is called stable (respectively, semistable) if
(1) degree(ad(Ep)) <0 (respectively, <0)

for every maximal parabolic subgroup P & G and every holomorphic reduction of structure
group Ep of E to P; here ad(Ep) C ad(E) is the adjoint vector bundle of Ep.

Let M?(X,G) denote the moduli space of semistable holomorphic principal G-bundles
E over X of topological type d € m(G). It is known that M%(X,G) is an irreducible
normal projective variety of dimension (g — 1) - dim¢ G over C.

2.2. Higgs G—bundles. The holomorphic cotangent bundle of X will be denoted by K.
A Higgs G-bundle over X is a pair (F, 0) consisting of a holomorphic principal G-bundle
E over X and a holomorphic section

0 c H(X,ad(F) ® Kx),

the so-called Higgs field [Hill, [Sil]. The pair (E, 0) is called stable (respectively, semistable)
if the inequality (II) holds for every holomorphic reduction of structure group Ep of E to
a maximal parabolic subgroup P & G such that § € H°(X,ad(Ep) ® Kx).

Let Mfyi,,s(X, G) denote the moduli space of semistable Higgs G-bundles (E,6) over
X such that E is of topological type d € mi(G). It is known that M, (X, G) is an

irreducible normal quasiprojective variety of dimension 2(g — 1) - dim¢ G over C [Si2]. We
regard M?(X,G) as a closed subvariety of M, (X, G) by means of the embedding

MUX,G) — Mip,(X,G), E — (E,0).
There is a natural algebraic symplectic structure on M, . (X, G); see [Hil, BR].

2.3. Representations of the surface group in G. Fix a base point zyp € X. The
fundamental group of X admits a standard presentation

g
m(X,20) = (a1,...,a4,b1,...,04] Ha,-biai_lbi_l =1)

which we choose in such a way that it is compatible with the orientation of X. We identify
the fundamental group of G with the kernel of the universal covering G — G. The type
d € m(G) of a homomorphism p : m (X, z9) — G is defined by

Zﬁz —1 - 7T1(G) c @

i Em

for any choice of lifts o, 5; € G of p(a;),p(b;) € G. This is also the topological type
of the principal G-bundle E, over X given by p. The space Hom® (1 (X, z0), G) of all
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homomorphisms p : m (X, z9) — G of type d € m;(G) is an irreducible affine variety over
C, and G acts on it by conjugation. The GIT quotient

Mg (X,G) = Hom®(7m (X, 20),G) |G

doesn’t depend on z. It is an affine variety of dimension 2(¢g — 1) - dim¢ G over C, which
carries a natural symplectic form [AB| [Go]. Its points represent equivalence classes of
completely reducible homomorphisms p. There is a natural bijective map

Mg{ep(Xa G) — M%iggs(Xv G)
given by a variant of the Kobayashi-Hitchin correspondence [SiI]. This bijective map is
not holomorphic.

2.4. Holomorphic G—connections. Let p : E — X be a holomorphic principal G-
bundle. Because the vertical tangent space at every point of the total space E is canonically
isomorphic to g, there is a natural exact sequence

0 Exg—TE-% pTX — 0

of G-equivariant holomorphic vector bundles over E. Taking the G-invariant direct image
under p, it follows that the Atiyah bundle for E

At(E) := p(TE)° C p,(TE)
sits in a natural exact sequence of holomorphic vector bundles
(2) 0 — ad(E) — At(E) 2 TX — 0

over X. This exact sequence is called the Atiyah sequence. A holomorphic connection on
E is a splitting of the Atiyah sequence, or in other words a holomorphic homomorphism

D:TX — At(E)

such that dpo D = idyx. It always exists if £ is semistable [At], [AzBi]. The curvature of
D is a holomorphic 2—form with values in ad(FE), so D is automatically flat.

A holomorphic G—connection is a pair (E, D) where F is a holomorphic principal G-
bundle over X, and D is a holomorphic connection on E. Such a pair is automatically
semistable, because the degree of a flat vector bundle is zero.

Let M2 (X,G) denote the moduli space of holomorphic G—connections (FE, D) over
X such that E is of topological type d € m(G). It is known that M%_ (X, G) is an
irreducible quasiprojective variety of dimension 2(g — 1) - dim¢ G over C.

Sending each holomorphic G—connection to its monodromy defines a map

(3) M

conn

(X’ G) — Mg{ep(Xa G)

which is biholomorphic, but not algebraic; it is called Riemann—Hilbert correspondence.
The inverse map sends a homomorphism p : w1 (X, x9) — G to the associated principal
G-bundle E,, endowed with the induced holomorphic connection D,.
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2.5. A—connections. Let p : E — X be a holomorphic principal G-bundle. For any
A € C, a A—connection on E is a holomorphic homomorphism of vector bundles

D:TX — At(E)

such that dpo D = \-idry for the epimorphism dp in the Atiyah sequence (2)). Therefore,
a O—connection is a Higgs field, and a 1-connection is a holomorphic connection.

If D is a A-connection on E with X # 0, then A™!D is a holomorphic connection on E.
In particular, the pair (E, D) is automatically semistable in this case.

Let M%_4(X,G) denote the moduli space of triples (\, E, D), where A € C, E is a holo-
morphic principal G-bundle over X of topological type d € m1(G), and D is a semistable
A—connection on Ej; see [Si2]. There is a canonical algebraic map

(4) pr=pry : Mijeq(X,G) — C, (A, E, D)~ A,
Its fibers over A = 0 and A = 1 are M}, (X,G) and MZ (X, G), respectively. The

Riemann—Hilbert correspondence (B)) allows to define a holomorphic open embedding
J=x 1 € X My (X, Q) = Mioa(X,G), (A p) = (A, B, AD,)
with image pr~*(C*). This map commutes with the projections onto C*.

2.6. The Deligne—Hitchin moduli space. The compact Riemann surface X provides
an underlying real C*° manifold Xz, and an almost complex structure Jx : T Xg — T Xg.
Since any almost complex structure in real dimension two is integrable,

X = (Xg, —Jx)
is a compact Riemann surface as well. It has the opposite orientation, so
(5) Mip (X, G) = Mzd, (X, G).

The Deligne—Hitchin moduli space M$ (X, G) is the complex analytic space obtained by
gluing M ,(X, G) and M;%,(X, G) along their common open subspace
Miioa(X, G) €= € % Mi, (X, G) = € x Mt (X, G) =5 M5y (X,G)

where the isomorphism in the middle sends (A, p) to (1/A, p); see [Si3} IDe]. The projections
pry on M (X, G) and 1/prg on M;%, (X, G) patch together to a holomorphic map

MEL(X,G) —» CP' = C U {o0}.
Its fiber over any A € C* is biholomorphic to the representation space (), whereas its

fibers over A = 0 and A = oo are M. (X, G) and /\/lﬁidggs(Y, (), respectively.

3. FIXED POINTS OF THE NATURAL C*~ACTION
The group C* acts algebraically on the moduli space M%iggS(X , ), via the formula
(6) t-(E,0) = (E,t0).

The fixed point locus M, (X, G)© contains the closed subvariety M%(X,G).

Proposition 3.1. Let Z be an irreducible component of My, (X, G)“". Then one has
dimZ < (g —1) - dimc G,
with equality holding only for Z = M4(X, Q).
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Proof. Let (F,0) be a stable Higgs G-bundle over X. Its infinitesimal deformations are,
according to [BR), Theorem 2.3], governed by the complex of vector bundles

(7) 00 = ad(E) 29 ad(BE) 0 Ky =: C!
over X. Since (F,#) is stable, it has no infinitesimal automorphisms, so
H(X,C*) = 0.

The Killing form on g induces isomorphisms g* = g and ad(E)* = ad(E). Hence the
vector bundle ad(F) has degree 0. Serre duality allows us to conclude

H*(X,C*) = 0.
Using all this, the Riemann—Roch formula yields
(8) dimH'(X,C*) = 2(g—1) - dimc G

From now on, we assume that the point (£, 0) is fixed by C*, and we also assume 6 # 0.
Then (E,0) = (E,t0) for all t € C*, so the sequence of complex algebraic groups

1 — Aut(F,0) — Aut(F,Cl) — Aut(Ch) =C* — 1

is exact. Because (F,0) is stable, Aut(F, 0) is finite. Consequently, the identity component
of Aut(E, C#) is isomorphic to C*. This provides an embedding

C* — Aut(FE), t— o,

and an integer w # 0 with ¢;(0) = t* -0 for all t € C*. We may assume that w > 1.
Choose a point ey € E. Then there is a unique group homomorphism

t:C"— G
such that ¢;(eg) = eg - ¢(t) for all ¢ € C*. The conjugacy class of ¢ doesn’t depend on ey,
since the space of conjugacy classes Hom(C*, G)/G is discrete. The subset
Ey :={ec€ E:pe)=e-1(t) forallt € C'}
of E is a holomorphic reduction of structure group to the centralizer H of ((C*) in G. Let

9) g =Pon

nel

denote the eigenspace decomposition given by the adjoint action of C* on g via ¢.
Let N € Z be maximal with gy # 0. Let P C G be the parabolic subgroup with

Lie(P) = @gn Cg.
n>0
Since H C G has Lie algebra gg, it is a Levi subgroup in P. Choose subgroups
(CHYCcrcBCPCG
such that 7" is a maximal torus in H C G and B is a Borel subgroup in G. Let
a : T — C* and o :C"—T
be the resulting simple roots and coroots of G. We denote by (_, ) the natural pairing

between characters and cocharacters of T'. Let «; be a simple root of G with («;, ) > 0,
and let § be a root of G with (3,¢) = N. Then the elementary reflection

s;i(B) = B—{(B,a))q;
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is a root of G, so (s;(8),+) < N; this implies that (3, ;) > 0. The sum of all such roots
g with (5,t) = N is the restriction x|r of the determinant

det

(10) X : P — Aut(gy) — C*

of the adjoint action of P on gy. Hence we conclude (x|r, ;) > 0 for all simple roots a;
with (a;,¢) > 0. This means that the character x of P is dominant.
The decomposition (@) of g induces a vector bundle decomposition

ad(E) = P En x" g,
neL
Since C* acts with weight w on the Higgs field 8 by construction, we have
(11) 0 € H(X, (Ex x" g,) ® Kx).

In particular, § € H°(X,ad(Ep) ® Kx) for the reduction Ep := Eg x# P C E of the
structure group to P. The Higgs version of the stability criterion [Ra, Lemma 2.1] yields
degree(Ey ngN) <0
since P acts on det(gy) via the dominant character y in (I0). Now Riemann-Roch implies

the following:
(12) dimH (X, Ey x" gy) > (g —1)-dimc gy > 0.
The complex C* in () is, due to ([II), the direct sum of its subcomplexes C?® given by

C? = Ey x"yg, 240), (B x" gpiw) @ Kx =: C}.

Thus the hypercohomology of C'* decomposes as well; in particular, we have
H'(X,C*) = PH'(X,C}).
nez
In the last nonzero summand C%;, we have C3, = 0 and hence
dimH'(X,C%) = dimH" (X, By x" gy) > 0
due to (I2). Since g = g_,, via the Killing form on g, Serre duality yields in particular
dim H'(X, CJ) = dimH' (X, C* ).

Taken together, the last three formulas and the equation (8) imply that

dim H' (X, C2) < %dimHl(X, ) = (g—1)-dime G.

But H'(X, Cg) parameterizes infinitesimal deformations of pairs (Fpg, ) consisting of a
principal H-bundle Fy and a section 6 as in (II); see [BRl Theorem 2.3]. This proves
that
dimZ < (g —1)-dimc G

for every irreducible component Z of the fixed point locus My (X,G)S such that Z
contains stable Higgs G—bundles (F, ) with 6 # 0.

The non-stable points in M{j,,.(X, G) correspond to polystable Higgs G-bundles (E, §).
Polystability means that £ admits a reduction of structure group E, to a Levi subgroup
L ; G of a parabolic subgroup in G such that # is a section of the subbundle

ad(EL) QR Kx C ad(E) ® Kx
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and the pair (Fyp,0) is stable. Let C' C L be the identity component of the center, and let
¢ C [ be their Lie algebras. Then Er,c := E/C is a principal (L/C)-bundle over X, and

ad(Ep) = (¢ ® Ox) © ad(ELc)
since [ = ¢ @ [I, [], where the subalgebra [I, ] C [is also the Lie algebra of L/C. We have
diHI(c G — dlIII(C L Z 2 dlmC C

because maximal Levi subgroups in G have 1-dimensional center and at least one pair of
opposite roots less than G; the other Levi subgroups can be reached by iterating this.

Now suppose that C* fixes the point (F,6). Then (Ep,0) = (EL,t0) for all t € C*. But
the action of Aut(Fy) on the direct summand ¢® Ox of ad(E}) is trivial, since the adjoint
action of L on ¢ is trivial. So 6 lives in the other summand of ad(EL), meaning

0 € HO(X, ad(EL/c) ® Kx) .

The Higgs (L/C)-bundle (EL ¢, 0) is still stable and fixed by C*; we have already proved
that the locus of such has dimension < (¢g—1)-dim¢(L/C). The abelian variety M%(X, C)
acts simply transitively on lifts of Ep ¢ to a principal L-bundle Ep, so these lifts form a
family of dimension g - dim¢ C'. Hence the pairs (Ep,#) in question have at most

(9—1)-dimc(L/C) +g-dimcC < (g — 1) - dimc G

moduli. This implies that dimZ < (g — 1) - dim¢ G for each non-stable component
Z of the fixed point locus, since there are only finitely many possibilities for L up to

conjugation. U
The algebraic C*—action (6) on M%iggs(X ,G) extends naturally to an algebraic C*—

action on M (X, @), which is given by the formula

(13) t-(\ E,D):= (t\ E,tD).

A point (A, E, D) can only be fixed by this action if A = 0, so Proposition B3] yields the
following corollary:

Corollary 3.2. Let Z be an irreducible component of M% 4(X,G)*". Then one has
dimZ < (g —1) - dim¢ G,
with equality only for Z = M4 (X, G).

The algebraic C*—action ([I3) on M%_,(X,G) extends naturally to a holomorphic C*~
action on M@, (X, G), which is on the other open patch Mg%, (X, G) given by the formula

t-(\E,D):=(t"'\E,t7'D).
Applying Corollary to both M (X, G) and Myz%, (X, G), one immediately gets
Corollary 3.3. Let Z be an irreducible component of M%y (X, G)E". Then one has
dimZ < (g —1) - dim¢ G,
with equality only for Z = MY X,G) and for Z = M~4(X,G).
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4. VECTOR FIELDS ON THE MODULI SPACES

A stable principal G-bundle E over X is called reqularly stable if the automorphism
group Aut(F) is just the center of G. The regularly stable locus

MES(X,G) € MUX,G)
is open, and coincides with the smooth locus of M%(X, G); see [BH, Corollary 3.4].
Proposition 4.1. There are no nonzero holomorphic vector fields on M**(X, Q).
Proof. This statement is contained in [Fal Corollary IIL.3]. O
Proposition 4.2. There are no nonzero holomorphic 1-forms on M**(X, Q).

Proof. The moduli space of Higgs G—bundles is equipped with the Hitchin map

rank(G)
Mitiges(X,G) — €D H(X, K™)

Higgs
i=1

where the n; are the degrees of generators for the algebra Sym(g*)¢; see [Hill § 4], [La].
Any sufficiently general fiber of this Hitchin map is a complex abelian variety A, and

0:A--= M¥(X G), (E,0) — E,

is a dominant rational map. This rational map ¢ is defined outside a closed subscheme of
codimension at least two; see [Fal, Theorem II.6].

Let w be a holomorphic 1-form on M%(X, G). Then ¢*w extends to a holomorphic 1-
form on A by Hartog’s theorem. As any holomorphic 1-form on A is closed, it follows that
w is closed. Since H'(M%(X,G),C) = 0 by [AB], we conclude w = df for a holomorphic

function f on M%™(X, ). But any such function f is constant, so w = 0. O
We denote by Mfffgsgs(X, G) € M, (X, G) the open locus of Higgs G-bundles (£, 6)

for which FE is regularly stable. The forgetful map

(14) Mg (X, G) — M*™(X,G),  (E,0) — E,

is an algebraic vector bundle with fibers H(X, ad(F) ® Kx) = H!(X, ad(E))*, so it is the
cotangent bundle of M%™(X,G).

Corollary 4.3. The restriction of the algebraic tangent bundle
TMd,rs (X, G) N Md,rs (X, G)

Higgs Higgs

to the subvariety M4™(X,G) C Mﬁfggs(X, G) has no nonzero holomorphic sections.

Proof. The subvariety in question is the zero section of the vector bundle (I4]). Given a
vector bundle V' — M with zero section M C V', there is a natural isomorphism

(15) Ty =ETMaV
of vector bundles over M. In our situation, both summands have no nonzero holomorphic
sections, according to Proposition E.I] and Proposition 4.2l O

Let M%5 (X, G) € M

i (X, G) denote the open locus of holomorphic G—connections
(E, D) for which E is regularly stable.
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Proposition 4.4. There are no holomorphic sections for the forgetful map
(16) MEE (X, G) — M*™(X,G),  (E,D)— E.
Proof. The map (I8]) is a holomorphic torsor under the cotangent bundle of M%S(X, G).
As such, it is isomorphic to the torsor of holomorphic connections on the line bundle
L — M¥™(X, Q)

with fibers det H' (X, ad(F)); see [Fal, Lemma IV.4]. Since £ is ample, its first Chern class
is nonzero, so L admits no global holomorphic connections. O

Let M%S/(X,G) C M 4(X,G) denote the open locus of triples (A, E, D) for which E
is regularly stable. The forgetful maps in (I4]) and (I€) extend to the forgetful map

(17) MER(X,G) — M*™S(X,G),  (\,E,D)+ E,
which is an algebraic vector bundle. It contains the cotangent bundle (I4]) as a subbundle;
the quotient is a line bundle, which is trivialized by the projection pr in ().

Corollary 4.5. The vector bundle (') has no nonzero holomorphic sections.

Proof. Let s be a holomorphic section of the vector bundle (I7). Then pr o s is a holo-
morphic function on M%*(X, G), and hence constant. This constant vanishes because of
Proposition 4l So pr o s = 0, which implies that s = 0 using Proposition [Z.2] O

Corollary 4.6. The restriction of the algebraic tangent bundle

TME(X, G) — MH(X,G)
to the subvariety M4™(X,G) C MﬁZZ(X, G) has no nonzero holomorphic sections.
Proof. Use the decomposition ([IH]), Proposition 4] and Corollary [£.5 0

5. TORELLI THEOREMS

Let X, X’ be compact connected Riemann surfaces of genus > 3. Let G, G’ be nontrivial
connected semisimple linear algebraic groups over C. Fix d € m(G) and d’ € m(G').

Theorem 5.1. If M{. (X', G") is biholomorphic to M (X, G), then X' = X

Higgs Higgs

Proof. Corollary implies that the subvariety M%(X, Q) is fixed pointwise by every
holomorphic C*-action on M., (X, G). All other complex analytic subvarieties with that

property have smaller dimension, due to Proposition[3.1l Thus we get a biholomorphic map
from M (X', G") to M?(X, G) by restriction. Using [BH], this implies that X’ = X. O

Theorem 5.2. If M (X', G') is biholomorphic to M$ (X, G), then X' = X

Proof. The argument is exactly the same as in the previous proof. It suffices to replace
Corollary 3] by Corollary 6] and Proposition B by Corollary O

Theorem 5.3. If M (X', G") is biholomorphic to ME (X, G), then X' =2 X or X' = X,

Proof. The argument is similar. Corollary BL6implies that the two subvarieties M4(X, G)
and M~4(X,G) are fixed pointwise by every holomorphic C*-action on M%,(X,G). All
other complex analytic subvarieties with that property have smaller dimension, due to
Corollary B3l Thus we get a biholomorphic map from M® (X', G') to either M%(X, G) or
M~4(X,G) by restriction. Using [BH], this implies that either X’ = X or X' = X. 0O
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