Mathematics > Algebraic Geometry

Test ideals via a single alteration and discreteness and rationality of \$F\$-jumping numbers

Karl Schwede, Kevin Tucker, Wenliang Zhang

(Submitted on 20 Jul 2011 (v1), last revised 9 Oct 2011 (this version, v2))
Suppose $\$(\mathrm{X}, \backslash \mathrm{Delta}) \$$ is a log-\$1bQ\$-Gorenstein pair. Recent work of M . Blickle and the first two authors gives a uniform description of the multiplier ideal $\$ 1 \mathrm{~mJ}(\mathrm{X} ; \backslash$ Delta $) \$$ (in characteristic zero) and the test ideal $\$ \backslash$ tau $(\mathrm{X} ; \backslash \mathrm{Delta}) \$$ (in characteristic $\$ p>0 \$$) via regular alterations. While in general the alteration required depends heavily on \$1Delta\$, for a fixed Cartier divisor \$D\$ on $\$ \mathrm{X} \$$ it is straightforward to find a single alteration (e.g. a log resolution) computing $\$ \backslash m J(X ;$ Delta + Vambda D)\$ for all $\$ \backslash l a m b d a ~ \ g e q ~ 0 \$. ~ I n ~ t h i s ~ p a p e r, ~$ we show the analogous statement in positive characteristic: there exists a single regular alteration computing \$ltau(X; \Delta + \lambda D)\$ for all $\$ 1$ lambda \backslash geq $0 \$$. Along the way, we also prove the discreteness and rationality for the \$F\$-jumping numbers of \$1tau(X; \Delta+ Vambda D)\$ for $\$$ llambda \geq $0 \$$ where the index of $\$ \mathrm{~K} _\mathrm{X}+$ \Delta\$ is arbitrary (and may be divisible by the characteristic).

Comments:	6 pages, added Remark 3.4 (explaining a further generalization of the discreteness results) and several other minor improvements. To appear in Mathematical Research Letters
Subjects:	Algebraic Geometry (math.AG); Commutative Algebra (math.AC)
MSC classes:	14F18, 13A35, 14B05, 14E15
Journal reference:Mathematical Research Letters, vol 19 (2012), no. 01, 191- -197 Cite as:\quadarXiv:1107.4059 [math.AG] (or arXiv:1107.4059v2 [math.AG] for this version)	

Submission history

From: Karl Schwede [view email]
[v1] Wed, 20 Jul 2011 18:41:37 GMT (12kb)
[v2] Sun, 9 Oct 2011 18:09:19 GMT (12kb)

