Mathematics > Algebraic Geometry

Pfaffian quartic surfaces and representations of Clifford algebras

Emre Coskun, Rajesh S. Kulkarni, Yusuf Mustopa

(Submitted on 7 Jul 2011)

Given a nondegenerate ternary form $\$ \mathrm{f}=\mathrm{f}\left(\mathrm{x} _1, \mathrm{x} _2, \mathrm{x} _3\right) \$$ of degree 4 over an algebraically closed field of characteristic zero, we use the geometry of K3 surfaces and van den Bergh's correspondence between representations of the generalized Clifford algebra \$C_f\$ associated to \$f\$ and Ulrich bundles on the surface $\$ \mathrm{X} _\mathrm{f}:=\left\{\left\{w^{\wedge}\{4\}=f\left(\mathrm{x} _1, \mathrm{x} _2, \mathrm{x} _3\right) \backslash\right\} \backslash\right.$ subseteq $\backslash m a t h b b\{P\}^{\wedge} 3 \$$ to construct a positive-dimensional family of irreducible representations of \$C_f.\$
The main part of our construction, which is of independent interest, uses recent work of Aprodu-Farkas on Green's Conjecture together with a result of Basili on complete intersection curves in \$\mathbb\{P\}^\{3\}\$ to produce simple Ulrich bundles of rank 2 on a smooth quartic surface $\$ \mathrm{X}$ \subseteq \mathbb\{P\} ${ }^{\wedge} 3 \$$ with determinant $\$ \backslash m a t h c a l\{0\} _X(3) . \$$ This implies that every smooth quartic surface in $\$ \backslash m a t h b b\{P\}^{\wedge} 3 \$$ is the zerolocus of a linear Pfaffian, strengthening a result of Beauville-Schreyer on general quartic surfaces.

Comments: This paper contains a proof of the main result claimed in the erroneous preprint arXiv:1103.0529. We also extend this result to all smooth quartic surfaces
Subjects: Algebraic Geometry (math.AG); Rings and Algebras (math.RA)
MSC classes: 14J60, 14J28, 16G50
Cite as: arXiv:1107.1522 [math.AG] (or arXiv:1107.1522v1 [math.AG] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.AG
< prev | next > new | recent | 1107

Change to browse by: math
math.RA
References \& Citations

- NASA ADS

Bookmark (what is this?)

Submission history

From: Rajesh Kulkarni [view email]
[v1] Thu, 7 Jul 2011 21:16:29 GMT (25kb)

Which authors of this paper are endorsers?

