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Abstract. In this paper, by using the concept of resolvents of a prime ideal
introduced by Ritt, we give methods for constructing a hypersurface which is
birational to a given irreducible variety and birational transformations between
the hypersurface and the variety. In the case of algebraic curves, this implies
that for an irreducible algebraic curve C, we can construct a plane curve which is
birational to C. We also present a method to find rational parametric equations
for a plane curve if it exists. Hence we have a complete method of parame-
terization for algebraic curves. The method is used to find a set of parametric
equations of the intersection curve of two space surfaces.
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1 Introduction

Rational algebraic curves are widely used in computer modeling and computer
graphics and it is recognized that both implicit and parametric representations
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1. Introduction

for rational curves have their inherent advantages: the parametric representa-
tion is best suited for generating points along a curve, whereas the implicit
representation is most convenient for determining whether a given point lies on
a specific curve [Sederberg & Anderson, 1984]. This motivates the search for a
means of converting from one representation to the other. In this paper, we give
a complete method of parameterization for algebraic curves in an affine space
of any dimension.

In [Abhyankar & Bajaj, 1988], a method for computing the genus of plane
curves is given, and if genus = 0, they also gave a method for computing the
rational parametric equations of the curve. A natural way for parameterizing a
space curve is first to find a plane curve which is birational to the space curve
and then a set of parametric equations for the space curve can be found if we
can find a set of parametric equations for the plane curve. In [Abhyankar &
Bajaj, 1989], this has been done for a special class of space curves, i.e., space
curves which can be represented by transversal intersection of two surfaces.

On the other hand, it is a well known result in algebraic geometry that an irre-
ducible variety is birational to a hypersurface [Hartshorne, 1977]. In particular,
an irreducible algebraic curve is birational to an irreducible plane curve. How-
ever, we need a constructive method for calculating that irreducible plane curve
to solve the general parameterization problem for arbitrary algebraic curves.
Such a constructive method implicitly exists in a classic book of Ritt [Ritt,
1954]. In this paper, based on Ritt’s concept of resolvents, we give algorithms
of constructing a hypersurface which is birational to a given irreducible variety.
Birational maps between the hypersurface and the variety can also be given.
Our algorithms for constructing resolvents are different from Ritt’s algorithm
in two aspects. First, the input of our algorithms is a set of generators of an
ideal, while the input of Ritt’s algorithm is an irreducible characteristic set of
a prime ideal. Second, our algorithms use Ritt–Wu’s decomposition algorithm
[Wu, 1984] or the Gröbner basis method [Buchberger, 1985].

In the case of algebraic curves, this implies that for an irreducible algebraic
curve C, we can construct a plane curve which is birational to C. Thus, to find
a set of parametric equations for C we only need to find a set of parametric
equations for the plane curve. Such an algorithm has been given in [Abhyankar
& Bajaj, 1988]. In this paper, we present a new algorithm which does not need
to compute the genus of the plane curve. Our method is based on the existence
of proper parametric equations for a plane curve.

The method is used to surface/surface intersection problem. The calculation
of intersection curves between general space surfaces is one of the important
problems in computer aided design. Algorithms for intersection problem have
been proposed using various elimination theories, e.g [Pratt & Geisow, 1986].
But by randomly eliminating some variables, the plane curve obtained is not
necessarily birational to the original space curve. By using the method in this
paper, we can find a plane curve which is birational to the intersection of two
space surfaces.
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2. Preliminaries

The implementation of the algorithms in this paper is based on Ritt–Wu’s
decomposition algorithm a detailed description of which can be found in [Wu,
1984] or in [Chou & Gao, 1990].

This paper is organized as follows. In section 2, we introduce some basic
notations and notions necessary for the rest of this paper. In section 3, we
present methods of constructing a resolvent for a prime ideal. In section 4,
we present our method of parameterization for a plane curve. In section 5, we
consider the applications to space curves.

2 Preliminaries

Let K be a computable field of characteristic zero and K[x1, ..., xn] or K[x]
be the ring of polynomials in the indeterminates x1, ..., xn. Unless explicitly
mentioned otherwise, all polynomials in this paper are in K[x].

Let P be a polynomial. The class of P , denoted by class(P ), is the largest
p such that some xp actually occurs in P . If P ∈ K, class(P ) = 0. Let a
polynomial P be of class p > 0. The coefficient of the highest power of xp in P
considered as a polynomial of xp is called the initial of P . For polynomials P
and G with class(P ) > 0, let prem(G;P ) be the pseudo remainder of G wrpt
P .

A sequence of polynomials ASC = A1, ..., Ap is said to be an ascending (ab.
asc) chain, if either r = 1 and A1 6= 0 or 0 < class(Ai) < class(Aj) for 1 ≤ i < j
and Ak is of higher degree than Am for m > k in xnk

where nk = class(Ak).

For an asc chain ASC = A1, ..., Ap such that class(A1) > 0, we define the
pseudo remainder of a polynomial G wrpt ASC inductively as

prem(G;ASC) = prem(prem(G;Ap);A1, ..., Ap−1).

Let R = prem(G;ASC), then we have the following important remainder for-
mula:

(2.1) JG−R ∈ Ideal(A1, ..., Ap)

where J is a product of powers of the initials of the polynomials in ASC and
ideal(A1, ..., Ap) is the ideal generated by A1, ..., Ap. For an asc chain ASC, we
define

PD(ASC) = {g | prem(g, ASC) = 0}.

For an asc chain ASC = A1, ..., Ap, we always make a renaming of the vari-
ables. If Ai is of class mi, we rename xmi as yi, other variables are renamed
as u1, ..., uq, where q = n − p. The variables u1, ..., uq are called the parameter
set of ASC. ASC is said to be an irreducible ascending chain if A1 is irre-
ducible, and for each i ≤ p Ai is an irreducible polynomial in Ki−1[yi] where
Ki−1 = K(u)[y1, ..., yi−1]/D where D is the ideal generated by A1, ..., Ai−1 in
K(u)[y1, ..., yi−1].
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3.Methods of Constructing Resolvents for Prime Ideals

Definition 2.2. The dimension of an irreducible ascending chain ASC =
A1, · · · , Ap is defined to be DIM(ASC) = n− p.

Thus DIM(ASC) is equal to the number of parameters of ASC. The fol-
lowing results are needed in this paper. A characteristic (ab. char) set of a
polynomial ideal D is an ascending chain ASC in D such that for all P ∈ D
prem(P, ASC) = 0.

Lemma 2.3. (Lemma 3.3, [Wu, 1984]) If ASC is an irreducible ascending chain
then PD(ASC) is a prime ideal with dimension DIM(ASC). Conversely, each
char set of a prime ideal is irreducible.

Lemma 2.4. (Lemma 3.4, [Wu, 1984]) Let ASC be an irreducible asc chain
with parameters u1, ..., uq. If Q is a polynomial not in PD(ASC), then we can
find a polynomial P in the u alone such that P ∈ ideal(ASC ∪ {Q}).
Lemma 2.5. Let ASC be an irreducible asc chain with parameters u1, ..., uq,
we can find an irreducible asc chain ASC ′ such that PD(ASC) = PD(ASC ′)
and the initials of the polynomials in ASC ′ are polynomials of the parameters
u.

Proof. Let ASC = {A1, ..., Ap} and Ii = int(Ai). By Lemma 2.4, for each i we
can find a polynomial Pi of yi and the u and polynomials Qk (k = 1, ..., i) such
that Pi =

∑i−1
k=1 QkAk + QiIi. We assume that Ai is of degree di in yi. Let

A′i = QiAi + (
∑i−1

k=1 QkAk)ydi
i , then ASC ′ = {A1, A

′
2, ..., A

′
p} is an asc chain

such that the initials of A′i are polynomials of the u. Note that the degrees of
A′i in yi are the same as the degrees of Ai in yi, then ASC ′ is also a char set
of PD(ASC), i.e., PD(ASC ′) = PD(ASC) and ASC ′ is irreducible by Lemma
2.3. .QED.

Let PS be a polynomial set. For an algebraically closed extension field E of
K, let

Zero(PS) = {x = (x1, ..., xn) ∈ En | ∀P ∈ PS, P (x) = 0}
Then we have the following Ritt–Wu’s decomposition algorithm.

Theorem 2.6. (Theorem 3.2, [Wu, 1984]) For a finite polynomial set PS, we
can either detect the emptiness of Zero(PS) or furnish an irredundant decom-
position of the following form

Zero(PS) = ∪l
i=1Zero(PD(ASCi))

where ASCi is an irreducible asc chain for each i ≤ l and there are no i 6= j
such that PD(ASCi) ⊂ PD(ASCj).

3 Methods of Constructing Resolvents for Prime Ideals

In this section, we shall give a constructive proof for the following theorem
[Hartshorne, 1977], i.e., give methods for constructing a hypersurface birational
to a given irreducible variety.
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3.Methods of Constructing Resolvents for Prime Ideals

Theorem 3.1. Any irreducible variety of dimension r is birational to a hyper-
surface in Er+1.

We first introduce the concept of resolvents. A prime ideal distinct from (1)
and (0) is called nontrivial. In what follows, we assume ID is a nontrivial prime
ideal in K[x1, ..., xn]. We can divide the x into two sets, u1, ..., uq and y1, ..., yp,
p + q = n, such that no nonzero polynomial of ID involves the u alone, while,
for j = 1, ..., p, there is a nonzero polynomial in ID in yi and the u alone. We
call the u a parameter set of ID.

Lemma 3.2. Use the notations as above. A char set of ID under the variable
order order u1 < ... < uq < y1 < ... < yp is of the form

(3.2.1) ASC = A1(u, y1), A2(u, y1, y2), ..., Ap(u, y1, ..., yp)

where Ai is a polynomial involving yi effectively and we also have ID = PD(ASC).

Proof. Let A1 be a polynomial of y1 and the u in ID with lowest degree in y1

and ID1 be the polynomials of y1, y2, and the u in ID whose degrees in y1 are
less than the degree of A1 in y1. ID1 is not empty, because by the definition of
the u there is a polynomial P of the u and y2 in ID and P is obviously in ID1.
It is also clear that all the polynomials in ID1 involve y2 effectively as A1 is of
lowest degree in y1. Let A2 be a polynomial in ID1 with lowest degree in y2.
Let ID2 ⊂ K[U, y1, y2, y3]∩ID such that the polynomials in ID3 are with lower
degrees in yi than Ai , i = 1, 2. Continuing this procedure, at last we obtain
an ASC. For any polynomial P ∈ ID, R = prem(P, ASC) is of lower degree
in yi than the degree of yi in Ai hence must be zero, i.e. ASC is a char set of
ID. We have proved ID ⊂ PD(ASC). For P ∈ PD(ASC), by (2.1) we have
JP ∈ Ideal(ASC) ⊂ ID where J is a product of powers of the initials of the
polynomials in ASC. Since the initials are not in ID and ID is a prime ideal,
we have P ∈ ID, i.e., ID = PD(ASC). .QED.

By Lemma 3.2, the parameter set of a prime ideal ID is also the parameter
set of a char set of ID.

Lemma 3.3. Let the notations be the same as above, then for a new variable
w, there exist polynomials M1, ..., Mp, G of the u, such that

(1) two distinct zeros of ID with the u taking the same values for which G
does not vanish give different values for Q = M1y1 + ... + Mpyp; and

(2) a char set of the prime ideal ID1 = Ideal(ID,w−Q) under the following
variable order u1 < ... < uq < w < y1 < ... < yp is of the form

(3.3.1) A(u,w), A1(u,w, y1), ..., Ap(u,w, yp)

where A is an irreducible polynomial in w and each Ai is linear in yi.

Proof. See p85, [Ritt, 1954]. .QED.

According to Ritt, we call the equation A = 0 a resolvent of ID. Note that
ID1 in Lemma 3.3 is also a prime ideal and the polynomials in ID1 which are
free of w are precisely the polynomials of ID.
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3.Methods of Constructing Resolvents for Prime Ideals

Theorem 3.4. Let ID be a prime ideal in K[u1, ..., uq, y1, ...yp] where the u
are the parameters of ID, and let A(u,w) = 0 be a resolvent of ID. Then
Zero(ID) is birational to the hypersurface Zero(A).

Proof. Use the same notations as Lemma 3.3. We define a morphism

MP1 : Zero(ID) → Zero(A)

by setting MP1(u1, ..., uq, y1, ..., yp) = (u1, ..., uq,M1y1 + ... + Mpyp) where the
Mi are the same as in Lemma 3.3. By (2) of Lemma 3.3, we can assume
Ai = Iiyi − Ui, i = 1, ..., p where Ii and Ui are polynomials of the u and w. By
Lemma 2.5, we can further assume that Ii are free of w. We define another
morphism

MP2 : Zero(A) → Zero(ID)

by setting MP2(u1, ..., uq, w) = (u1, ..., uq, U1/I1, ..., Up/Ip). Let I =
∏p

i=1 Ii,
then MP2 is well defined on D1 = Zero(A)−Zero(I). For a zero (u′, w′) in D1,
( u′, U1(u′, w′)/I1(u′, w′), · · · , Up(u′, w′)/Ip(u′, w′) ) is a zero of w −∑

i lmiyi,
i.e., MP1(MP2) is an identity map on D1. Since I and M are polynomials of
the u, Zero(ID) is birational to Zero(A). The birational transformations are
given by MP1 and MP2. .QED.

The following algorithm provides a constructive proof for Theorem 3.1.

Algorithm 3.5. Let PS = {p1, ..., ph} be a polynomial set in K[x]. The
algorithm decides whether V = Zero(PS) is an irreducible variety, and if it is,
finds an irreducible polynomial H such that V is birational to the hypersur-
face Zero(H). We also give birational maps between V and the hypersurface
Zero(H).

Step 1. By Theorem 2.6, we have an irredundant decomposition

Zero(PS) = ∪m
i=1Zero(PD(ASCi)).

V is an irreducible variety iff m = 1. If m = 1 goto Step 2; otherwise Zero(PS)
is not irreducible and the algorithm terminates.

Step 2. Let ASC1 = A1, ..., Ap. We make a renaming of the variables. If Ai is
of class mi, we rename xmi

as yi, the other variables are renamed as u1, ..., uq,
where q = n− p.

Step 3. Let lm1, · · · , lmp, w be new indeterminates and let ID = Ideal(PD(ASC1),
w − Q) where Q = lm1y1 + ... + lmpyp. ID is a prime ideal in K[u, lm, w, y]
with parameters u and lm. Let

(3.5.1) R(u, lm,w), R1(u, lm,w, y1), ..., Rp(u, lm,w, yp)

be a char set of ID. As the lm are indeterminates, by (1) of Lemma 3.3, Ri are
linear in yi.

Step 4. To construct (3.5.1), we first make a simplification. We replace lmi

by 0 in Q if Ai is linear in yi. we denote the new Q by Q′ and ID′ =
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3.Methods of Constructing Resolvents for Prime Ideals

Ideal(PD(ASC1), w − Q′). This is possible, because if Ai is linear in yi then
all other polynomials in ASC are free of yi and hence yi does no effect the
linearization of the other variables. If all Ai are linear in yi then V is birational
to the affine space Eq. Otherwise goto Step 5.

Step 5. By Theorem 2.6, under the variable order u < lm < w < y1 < · · · < yp

we have
Zero(ASC1 ∪ {w −Q′}) = ∪t

i=1Zero(PD(ASC ′i)).

We shall show below that there only exists one component in the above decom-
position, say Zero(PD(ASC ′1)), with the u and the lm as parameter set and
ASC ′1 is a char set of ID′. For convenience, we assume ASC ′1 is (3.5.1).

Step 6. By Lemma 2.5, we can assume that for each 1 ≤ i ≤ p, the initial Ii of
Ri involves the u alone. Let D = I

∏p
i=1 Ii where I is the initial of R, then D

is a polynomial of the u and the lm.

Step 7. Let a1, ..., ap be integers for which D becomes a nonzero polynomial in
the u when each lmi is replaced by ai, then for lmi = ai, i = 1, ..., p, (3.5.1)
becomes

(3.5.2) R′, R′1, ..., R
′
p

where R and R′ have the same degree in w, and yi occurs in R′i effectively.

Step 8. We shall prove below that R′ is an irreducible polynomial in w and
(3.5.2) is a char set of ID′′ = Ideal(PD(ASC1), w − a1y1 − ... − apyp). Hence
R′ is a resolvent of PD(ASC1) and Zero(R′) is birational to Zero(PS). The
birational transformations can be obtained as Theorem 3.4. .QED.

Proof of the Correctness for Algorithm 3.5. Only Step 5 and Step 8 need
proofs. In Step 5, let ASC1 = A1, ..., Ap, by (2.1) we have

Zero(ASC1) = Zero(PD(ASC1))
⋃
∪p

i=1Zero(ASC1 ∪ {int(Ai)})

where int(Ai) is the initial of Ai. By Lemma 2.4, there is a polynomial Ui

in the u and the lm such that Ui is in Ideal(ASC1 ∪ {int(Ai)}). Thus, in
Zero(ASC1, w−Q′) there is only one irreducible component, i.e. Zero(PD(ASC1), w−
Q′), on which the u and the lm are algebraic independent. Therefore ASC ′1 is
a char set of ID′. For Step 8, we only need to prove that R′ is irreducible in
w. Other results are obvious. If R′ is reducible in w, ID′′ will have a char set
T, T1, ..., Tp with T of lower degree g in w than R′ and Ti are linear in yi. We
can assume the initials of the Ti are free of w. If D is the product of those
initials, we have, for a generic zero of ID′′,

(3.5.3) yi =
Ci,g−1w

g−1 + ... + Ci,0

D

where the C are polynomials in the u. Let us consider the prime ideal ID′′′ =
Ideal(ID, v − lm1y1 − ... − lmpyp) in K[u, lm, v, y] for a new indeterminate v.
We will show that ID′′′ contains a nonzero polynomial P , free of the y, which is
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4.The Parameterization of Algebraic Curves

of degree no more than g in v. This contradicts to the fact that (3.5.1) is a char
set of ID as both w and v are new indeterminates. We consider the relations

vi = (lm1y1 + ... + lmpyp)i, i = 1, ..., g.

We replace the y by their expression in (3.5.3) and depress the degrees in w of
the second members to less than g, using the relation T = 0. We have such get
a set PS of g polynomials of the u, the lm, v, and w such that the polynomials
in PS are of degree less than g in w and of degree no more than g in v. Treating
w, w2, ..., wg−1 as independent variables in the polynomials in PS, we eliminate
them and get a nonzero polynomial Q in v and the u and the lm. Note the
special position of the vi in the polynomials of PS, Q is of degree no more than
g in v. This polynomial is in ID′′′ as ID′′ ∩ K[x] = ID′′′ ∩ K[x]. We have
completed the proof. .QED.

There are Modifications of Algorithm 3.5. They are different in Step 5.

Modification 3.6. In Step 5 of Algorithm 3.5, we can use the Gröbner basis
method instead of Theorem 2.6 to compute a char set of ID′ as follows. Let GB
be a Gröbner basis of Ideal(PS′) (PS′ = ASC1 ∪ {w −Q′}) in K(u, lm)[w, y]
in the purely lexicographic ordering w < y1 < · · · < yp (for the Gröbner basis
method, see [Buchberger, 1985]). As in K(u, lm)[w, y], ID = Ideal(PS′) defines
a zero dimensional prime ideal in K(u, lm)[w, y], then GB is also a char set of
Ideal(PS′) by [Chou & Schelter, 1989]. Alternatively, we can also calculate a
Gröbner basis GB of Ideal(PS′) in the pure lexicographic order u < lm < w <
y1 < · · · < yp and obtain a char set of ID′ from GB (see [Chou & Schelter,
1989]).

Remark. In practice, Algorithm 3.5 may be very slow, because by introducing
new variables lmi large dense polynomials could be produced in the procedure.
An idea to improve the efficiency is that we can randomly select p integers
a1, ..., ap and use Q′ = w−a1y1−...−apyp instead of Q = w−alm1y1−...−lmpyp

to compute the resolvent. We have the following modifications based on this
idea.

Modification 3.7. In Step 5 of Algorithm 3.5, we randomly select p inte-
gers a1, ..., ap and find a char set ASC of Ideal(PS ∪ {w − a1y1 − ... − apyp})
using Theorem 2.6 under the variable order u < w < · · · < yp. If ASC =
{A(u,w), A1(u,w, y1), ..., Ap(u,w, y1, ..., yp)} where Ai are linear in yi, then the
A = 0 is a resolvent of PD(ASC1). The success probability of the selection
of the integers should be one, because by Step 7 of Algorithm 3.5, the integer
sets which do not suit for the above purpose consist of an algebraic set of lower
dimension than p.

4 The Parameterization of Algebraic Curves

An irreducible algebraic curve is an irreducible variety of dimension one.

Definition 4.1. An irreducible algebraic curve C = Zero(PS) (where PS ⊂

8



4.The Parameterization of Algebraic Curves

K[x]) is called rational if there exist polynomials u1, ..., un, w of an indeterminate
t such that not all of ui/w, i = 1, ..., n, are constants in K and for ∀P ∈ PS,
P (u1/w, ..., un/w) ≡ 0. If such polynomials ui and w exist, we call

x1 = u1/w, · · · , xn = un/w

a set of parametric equations for the curve. The maximum of the degrees of ui

and w is called the degree of the parametric equations.

Theorem 4.2. For an irreducible algebraic curve C in An, we can find a plane
curve f(x, y) = 0 which is birational to C. The birational maps between C and
f = 0 can also be obtained.

Proof. By Lemma 3.2, the dimension of a prime ideal is equal to the number
of its parameters. Then an irreducible algebraic curve C has one parameter u1.
By Algorithm 3.5, the resolvent A(u1, w) = 0 of the prime ideal which defines
C is a plane curve. The birational maps between C and A = 0 can be obtained
similar as Theorem 3.4. .QED.

It is obvious that C is rational iff f(x, y) = 0 is rational. Furthermore, using
the birational maps between C and f = 0, we can find a set of parametric
equations for C (or f = 0) if a set of parametric equations for f = 0 (or C) is
given. Hence, we only need to find a set of rational parametric equations for
f(x, y) = 0.

Definition 4.3. A set of parametric equations x = ui/w for a curve C is called
proper if, except a finite number of points, for each point (x′1, ..., x

′
n) on C there

only exists one value t0 for t such that x′i = ui(t0)/w(t0), i = 1, ..., n.

By Lüroth’s theorem, a rational curve always has a set of proper parametric
equations [Walker, 1950].

Theorem 4.4. Let x = u(t)/w(t), y = v(t)/w(t) be a set of proper parametric
equations for a plane curve f(x, y) = 0. We assume gcd(u, v, w) = 1, then the
degree of f is equal to the degree of the parametric equations.

Proof. Let f be of degree d and the parametric equations be of degree d′. Let
ax+by−1 = 0 be the equation of a generic line where a and b are indeterminates.
The parametric values corresponding to the intersection points between the
curve and the line are the roots of the equation P (t) = au(t)+ bv(t)−w(t) = 0.
Since gcd(u, v, w) = 1, P (t) = 0 has no repeated roots for general values of a
and b. Thus P (t) = 0 has d′ distinct roots. By Bezout’s theorem [Walker, 1950],
the degree of f = 0 is equal to the number of the intersection points between
f = 0 and a generic straight line. Hence d ≤ d′. Since the parametric equations
are proper, d ≥ d′, i.e. d = d′. .QED.

Algorithm 4.5. Let PS be a finite set of polynomials in K[x]. The algorithm
decides whether C = Zero(PS) is a rational irreducible algebraic curve, and if
it is, finds a set of parametric equations for C.

Step 1. By Theorem 2.6, we have an irredundant decomposition

Zero(PS) = ∪m
i=1Zero(PD(ASCi))
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5.The Case of Space Curves

C is an irreducible algebraic curve iff m = 1 and ASC1 contains n − 1 poly-
nomials. If C is an irreducible curve goto Step 2. Otherwise, the algorithm
terminates.

Step 2. By Theorem 4.2, we can find a resolvent f(x, y) = 0 of degree d for C
and birational transformations between f = 0 and C.

Step 3. Let

(4.5.1) x = u(t)/w(t), y = v(t)/w(t)

where u(t) = udt
d + ... + u0, v(t) = vdt

d + ... + v0, and w(t) = wdt
d + ... + w0

for indeterminates ui, vi, and wi.

Step 4. Replacing x and y by u(t)/w(t) and v(t)/w(t) in f(x, y) = 0 and
clearing denominators, we obtain a polynomial Q of t whose coefficients are
polynomials of ui, vi and wi. Let the set of coefficients of Q as a polynomial of
t is HS = {P1, ..., Ph}.
Step 5. By Definition 4.1, f = 0 has a set of parametric equations iff HS has
a set of zeros such that the u/w and v/w, when the coefficients of u(t), v(t),
and w(t) are replaced by the zeros, are not constants in K. By step 6, we can
decide whether there exist such zeros of HS.

Step 6. Let DS1 = {uiwj − ujwi | i, j = 1, ..., d}, DS2 = {viwj − vjwi | i, j =
1, ..., d}. Then f = 0 is rational iff HD = Zero(HS)−(Zero(DS1)∪Zero(DS2))
is not empty, and if it is not empty, each zero of HD provides a set of parametric
equations for f = 0. .QED.

In step 6 of the above algorithm, we have to solve a system of algebraic
equations. There are many methods for doing this. We can use the method
based on Ritt-Wu’s decomposition algorithm [Wu, 1987] or the method based
on Gröbner bases method [Buchberger, 1985]. These methods are complete in
the field of complex numbers. If one wants to find real coefficients parametric
equations, we have to find the real zeros of a system of polynomials which can
be done by Collins’ CAD method [Collins, 1975].

5 The Case of Space Curves

Since space curves have applications in computer modeling, we pay special
attention to it.

5.1. A Refined Algorithm for Space Curve

Algorithm 5.1. Let PS be a polynomial set of indeterminates x, y, and z. The
algorithm decides whether C = Zero(PS) is an irreducible space curve, and if
it is, finds a plane curve which is birational to C.

Step 1. Using Theorem 2.6, we find an irredundant decomposition

Zero(PS) = ∪m
i=1Zero(PD(ASCi))
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5.The Case of Space Curves

where ASCi are irreducible asc chains. C is an irreducible space curve iff m = 1
and ASC1 contains two polynomials. If C is an irreducible space curve, then
goto Step 2, otherwise the algorithm stops.

Step 2. Without loss of generality, we assume x is the parameter of ASC1, then
ASC1 = A1(x, y), A2(x, y, z) (x < y < z).

Step 3. If A2 is linear in z, i.e. A2 = I2z−U2, C is birational to the plane curve
A1 = 0. Otherwise goto Step 4.

Step 4. If A1 is linear in y, according to the definition of asc chain, A2 is free
of y. Thus C is birational to Zero(A2). Otherwise goto Step 5.

Step 5. If there is no polynomial in PS ∪ {A1, A2} which is linear in some
variables, goto Step 6. Otherwise, let P be a polynomial in PS ∪ {A1, A2}
which is linear in, say x. Let Q be another polynomial in PS ∪ {A1, A2}. We
eliminate x from Q to obtain a non zero polynomial Q′ of y and z. By Step
1, such Q exists. Let Q1, ..., Ql be the irreducible factors of Q′, then one of
them, say Q1, must be in PD(ASC1) (i.e., prem(Q1, ASC1) = 0). Then C is
birational to Zero(Q1).

Step 6. This is the general case. For (i, j) = (1, 1), (1,−1), (−1, 1), (−1,−1), ...,
(∞,∞), by Theorem 2.6, under the variable order x < w < y < z we have

Zero(PS,w − iy − jz) = Zero(PD(ASC))

where ASC = R(x,w), R1(x,w, y), R2(x,w, y, z); if R1 is linear in y and R2 is
linear in z, goto Step 7. Since such pair of integers actually exists by Algorithm
3.5, this step will terminate after a finite number of steps.

Step 7. C is birational to Zero(R). The birational transformations can be
obtained similarly as Theorem 3.4. .QED.

Example 5.2. Let C be the curve defined by f = z2 + y3 − y2 − 1 = 0 and
g = z2 − y2 − x2 = 0. Find a plane curve which is birational to C.

By Theorem 2.6, under the variable order x < y < z, we have

Zero(f, g) = Zero(PD(ASC1))

where ASC1 = {A1 = y3 + x2− 1, A2 = z2− y2−x2}. Thus C is an irreducible
space curve. According to Step 6 of Algorithm 5.1, we chose two integers (1, 1)
and let h = w−y−z. By Theorem 2.6, under the variable order x < w < y < z,
we have

Zero(h, f, g) = Zero(PD(ASC2)) where
ASC2 = {B1, B2, B3} and
B1 = w6 − 3x2w4 + (8x2 − 8)w3 + 3x4w2 − x6

B2 = 2wy − w2 + x2

B3 = 2wz − w2 − x2

C is birational to H = Zero(B1). A birational map from C to H is (x, y, z) →
(x, y + z). A birational map from H to C is (x,w) → (x, w2−x2

2w , w2+x2

2w ). The
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5.The Case of Space Curves

curve C is not rational, because if C is rational then as the projection of C to the
xy-plane, A1 = y3 + x2 − 1 must also be rational. But A1 = 0 is a nonsingular
cubic curve which is known to be not rational.

5.2 The Surface/Surface Intersection Problem

Using Algorithm 5.1, we can find a plane curve which is birational to the
intersection of two space surfaces. Furthermore, we can find parametric equa-
tions for the intersection curves if possible. We consider three cases for the
intersection problem.

(i) implicit/implicit.

Let curve C be the intersection of two surfaces whose equations are

f(x, y, z) = 0 and g(x, y, z) = 0.

Using Algorithm 5.1, we can decide whether f = 0 and g = 0 define exactly
one irreducible curve, and if it is, find a plane curve which is birational to C.
Example 5.2 belongs to this case.

(ii) implicit/parametric.

Let curve C be the intersection of two surfaces whose equations are

f(x, y, z) = 0 and r(u, v) = (x(u, v), y(u, v), z(u, v)).

Let F (u, v) = f(x(u, v), y(u, v), z(u, v)), then there is a surjective rational map
from the plane curve F = 0 to C

(u, v) → (x(u, v), y(u, v), z(u, v)).

If we find a set of parametric equations for F = 0, we can also find a set of
parametric equations for C. But one point on C may correspond to many
points on F = 0. To find a plane curve which is birational to C, we can use
an idea in [Sederberg & Anderson, 1984]: we first use the elimination theory
(e.g., the method in [Sederberg & Anderson, 1984]) to find the implicit equation
g(x, y, z) = 0 for the surface represented by r(u, v) and then use Algorithm 5.1
to find a plane curve which is birational to C = Zero(f, g).

(iii) parametric/parametric.

Let curve C be the intersection of two surfaces whose equations are

r1 = (x1(u, v), y1(u, v), z1(u, v)) and r2 = (x2(t, w), y2(t, w), z2(t, w)).

Similar to case (ii), we can first find the implicit equations f(x, y, z) = 0 and
g(x, y, z) = 0 for the surfaces represented by r1(u, v) and r2(t, w) and then use
Algorithm 5.1 to find a plane curve which is birational to C = Zero(f, g).

The following example shows that in case (iii), C is not necessarily a rational
curve, though C is the intersection of two rational surfaces. Let f = y2 − x3 +
z, g = z − 1, then C is obvious birational to F = y2 − x3 + 1 = 0 which is not a
rational curve. But both f = 0 and g = 0 are obviously rational surfaces.

12
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