Mathematics＞Number Theory

Badly approximable vectors on a vertical Cantor set

Erez Nesharim
（Submitted on 31 Mar 2012 （v1），last revised 24 May 2012 （this version，v2））
For $\$ \mathrm{i}, \mathrm{j}>0, \mathrm{i}+\mathrm{j}=1 \$$ ，the set of badly approximable vectors with weight $\$(\mathrm{i}, \mathrm{j})$ $\$$ is defined by $\$ \operatorname{Bad}(\mathrm{i}, \mathrm{j})=\backslash\left\{(\mathrm{x}, \mathrm{y})\right.$ \in $\backslash \mathrm{R}^{\wedge} 2:$ lexists $\mathrm{c}>0$ \forall q lin $\left.\backslash \mathrm{N}, ~ \backslash ;\right\rangle ;$ $\left.\backslash \max \backslash\left\{q\left\|q x\left|\left\|^{\wedge}\{1 / i\}, q\right\| q y\right|\right\|^{\wedge}\{1 / j\} \backslash\right\}>c \mid\right\} \$$ ，where $\$\|x\| \$$ is the distance of $\$ x \$$ to the nearest integer．In 2010 Badziahin－Pollington－Velani solved Schmidt＇s conjecture which was stated in 1982，proving that \＄Bad（i，j）\cap Bad（j，i）\＄is nonempty．Using Badziahin－Pollington－Velani＇s technique with reference to fractal sets，we were able to improve their results：Assume that we are given a sequence $\$\left(\mathrm{i}_{\mathrm{L}} \mathrm{t}, \mathrm{j} \mathrm{t}\right) \$$ with $\$ \mathrm{i} _\mathrm{t}, \mathrm{j} _\mathrm{t}>0, \mathrm{i} \mathrm{t}+\mathrm{j} _\mathrm{t}=1 \$$ ．Then，the intersection of \＄Bad（i＿t，j＿t）\＄over all t is nonempty．

Subjects：Number Theory（math．NT）；Dynamical Systems（math．DS）
Cite as：arXiv：1204．0110［math．NT］ （or arXiv：1204．0110v2［math．NT］for this version）

Submission history

From：Erez Nesharim［view email］
［v1］Sat， 31 Mar 2012 15：52：37 GMT（12kb）
［v2］Thu， 24 May 2012 03：52：33 GMT（12kb）
Which authors of this paper are endorsers？

Download：

－PDF
－PostScript
－Other formats
Current browse context： math．NT
＜prev｜next＞ new｜recent｜ 1204

Change to browse by： math
math．DS
References \＆Citations
－NASA ADS
Bookmark（what is this？）

罗目國

Link back to：arXiv，form interface，contact．

