Mathematics > Number Theory

Lower bounds for sumsets of multisets in Z_p^2

Greg Martin, Alexis Peilloux, Erick B. Wong

(Submitted on 21 Jul 2011 (v1), last revised 31 Aug 2012 (this version, v3))

The classical Cauchy-Davenport theorem implies the lower bound $n+1$ for the number of distinct subsums that can be formed from a sequence of n elements of the cyclic group Z_p (when p is prime and $n<p$). We generalize this theorem to a conjecture for the minimum number of distinct subsums that can be formed from elements of a multiset in $\left(Z _p\right)^{\wedge} m$; the conjecture is expected to be valid for multisets that are not "wasteful" by having too many elements in nontrivial subgroups. We prove this conjecture in $\left(Z _p\right)^{\wedge} 2$ for multisets of size $p+k$, when k is not too large in terms of p.

Comments: 13 pages. The quantitative bound in Theorem 1.8 has been improved, and a new coauthor has been added. These statements are not unrelated

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.NT
< prev | next >
new | recent | 1107
Change to browse b math

References \& Citatic

- NASA ADS

Bookmark(what is this?)

Subjects: Number Theory (math.NT)
MSC classes: 11B13
Cite as: arXiv:1107.4392 [math.NT]
(or arXiv:1107.4392v3 [math.NT] for this version)

Submission history

From: Greg Martin [view email]
[v1] Thu, 21 Jul 2011 22:32:50 GMT (17kb)
[v2] Tue, 2 Aug 2011 20:16:02 GMT (17kb)
[v3] Fri, 31 Aug 2012 19:14:12 GMT (18kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

