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Given an isotropic random vector $X$ with log-concave density in 
Euclidean space $\Real^n$, we study the concentration properties of 
$|X|$. We show in particular that: \[ \P(|X| \geq (1+t) \sqrt{n}) \leq \exp(-c 
n^{1/2} \min(t^3,t)) \;\;\; \forall t > 0 ~, \] for some universal constant $c>0
$. This improves the best known deviation results above the expectation 
on the thin-shell and mesoscopic scales due to Fleury and Klartag, 
respectively, and recovers the sharp large-deviation estimate of 
Paouris. Another new feature of our estimate is that it improves when 
$X$ is $\psi_\alpha$ ($\alpha \in (1,2]$), in precise agreement with the 
sharp Paouris estimates. The upper bound on the thin-shell width $\sqrt
{\Var(|X|)}$ we obtain is of the order of $n^{1/3}$, and improves down to 
$n^{1/4}$ when $X$ is $\psi_2$. Our estimates thus continuously 
interpolate between a new best known thin-shell estimate and the sharp 
Paouris large-deviation one.  
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