
The Annnb of Statistics 
1989,Vol. 17,No. 3, 949-979 

THE 1987 WALD MEMORIAL LECTURES 

A GENERALIZATION OF SPECTRAL ANALYSIS WITH 

APPLICATION TO RANKED DATA1 


Harvard University 

An analog of the spectral analysis of time series is developed for data in 
general spaces. This is applied to data from an election in which 5738 people 
rank ordered five candidates. Group theoretic considerations offer an analysis 
of variance like decomposition which seems natural and fruitful. A variety of 
inferential tools are suggested. The spectral ideas afe then extended to 
general homogeneous spaces such as the sphere. 

1. Introduction. Data sometimes come in the form of ranks or preferences: 
A group of people may be asked to rank order five brands of chocolate chip 
cookies. Each person tastes the cookies and ranks all five. This results in a 
ranking ~ ( l ) ,  7r(2), 7r(3), 7r(4), ~ ( 5 )  with ~ ( i )  the rank given brand i. The collec- 
tion of rankings makes up the data set. 

Elections are sometimes based on rankings. For example, the American Psy- 
chological Association asks its members to rank order five candidates for presi- 
dent. Voting in Cambridge, Massachusetts and in some Australian elections is 
also based on rankings. A careful analysis of the data from one election is 
presented in the next section. 

Here are some other examples of rank data sets: in testing a random number 
generator, people consider the relative order of k successive outputs [see Knuth 
(1981), page 611. This rapidly leads to a large collection of rankings. Monte Carlo 
evaluation of rules for entering variables in a regression equation leads to many 
rankings-the order of entering variables in successive runs. 

Most anyone who analyzes such data looks at  simple averages such as the 
proportion of times each item was ranked first (or last) and the average rank for 
each item. These are first order statistics: They are linear combinations of the 
number of times item i was ranked in position j. 

As will appear below, there are also natural second order statistics based on 
the number of times items i and if are ranked in positions j and j'. These come 
in ordered and unordered modes. For example the number of times items i and if 
are ranked either 12 or 21 is an unordered second order statistic. Similarly, there 
are third and higher order statistics of various types. 

A basic tenet of data analysis is this: If you've found some structure, take it 
out, and look a t  what's left. Thus to look a t  second order statistics it is natural 
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to subtract away the observed first order structure. This leads to a natural 
decomposition of the original data into orthogonal pieces. The decomposition is 
somewhat more complicated than standard analysis of variance decompositions 
because of the dependence inherent in the permutation structure: If item i is 
ranked first, item i' has to be ranked lower. 

Suppose there are n items to be ranked. Let S, denote the symmetric group 
on n letters. Data can be regarded as a function f on S,, with f ( ~ )  being the 
number of rankers choosing ranking a. Group theorists have developed a natural 
decomposition of the space of all functions into orthogonal subspaces which is 
invariant under relabeling of the underlying items. This yields the decomposition 

(1.1) f(.) = C%(.), 
P 

where p indexes the various subspaces and f ,  denotes the projection. 
This can be compared with the usual spectral analysis of time series which 

decomposes a function f on the group of integers mod N into its projections, 

f ( j )  = ~ f ( ~ ) ~ - 2 " ' * / ~  

Thus f is expressed as a linear combination of simple periodic functions. If a few 
of the f ik )  are large and the rest are small, f ( j )  has a simple description and 
approximation. 

The decomposition (1.1) has a similar interpretation. One difference is that 
the subspaces for the integers mod N are one-dimensional while the subspaces 
for the permutation group have higher dimension. The choice of basis leads to 
interesting problems which are here resolved using a device of Mallows. 

The next section presents a data analysis in some detail. The data involve 
both full and partially ranked data. Here, unordered pair effects are crucial to 
unraveling what becomes a simple, interpretable structure. 

The example introduces the basic invariant subspaces in an instructional way. 
Section 3 gives formal descriptions of the various types of partial rankings and of 
the needed representation theory. 

Section 4 addresses inferential issues. In the example, the respondents cannot 
reasonably be thought of as a sample and other considerations must be invoked 
to assess variability of the basic averages. Of course, sometimes multinomial (or 
Poisson,'.or normal) variability is believable and standard theory is also pre- 
sented and compared. 

Section 5 outlines the extension of spectral analysis to data with values in 
more general spaces. This includes the usual analysis of designed experiments. 
The extension permits all of the many considerations developed for time series 
and ANOVA to be brought to bear on ranked data. I t  also suggests some new 
analyses of classical designs. 

Other approaches. There have been several other approaches to analyzing 
permutation data. Purely data-analytic methods are outlined by Cohen and 
Mallows (1980) and Cohen (1982). Scaling techniques are discussed by Carroll 
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(1980). Methods based on metrics are described by Critchlow (1985), Feigin and 
Alvo (1986), Fligner and Verducci (1986) and Diaconis (1988). These extend 
earlier work by Mallows (1957). A host of models have been suggested, the Luce 
model [equivalently Plackett's (1975) model] being the best known. Several 
models are discussed here in Section 4. Batsell and Polking (1985) survey 
applications in marketing. The literature on these topics is large. Diaconis (1988), 
Chapter 9 contains a review and pointers to further literature. 

2. Data analysis. 

2A. First order analysis. The American Psychological Association (APA) is 
a large professional organization of academicians, clinicians and all shades in 

TABLE1 
American Psychological Association election data 

No. of votes No. of votes No. of votes No. of votes 
cast of this cast of this cast of this cast of this 

Ranking type Ranking type Ranking type Ranking type 

54321 29 43521 91 32541 41 21543 36 

54312 67 43512 84 32514 64 21534 42 

54231 37 43251 30 32451 34 21453 24 

54213 24 43215 35 32415 75 21435 26 

54132 43 43152 38 32154 82 21354 30 

54123 28 43125 35 32145 74 21345 40 

53421 57 42531 58 31542 30 15432 40 

53412 49 42513 66 31524 34 15423 35 

53241 22 42351 24 31452 40 15342 36 

53214 22 42315 51 31425 42 15324 17 

53142 34 42153 52 31254 30 15243 70 

53124 26 42135 40 31245 34 15234 50 

52431 54 41532 50 25431 35 14532 52 

52413 44 41523 45 25413 34 14523 48 

52341 26 41352 31 25341 40 14352 51 

52314 24 41325 23 25314 21 14325 24 

52143 35 41253 22 25143 106 14253 70 

52134 50 41235 16 25i34 79 14235 45 

51432 50 35421 71 24531 63 13542 35 

51423 46 35412 61 24513 53 13524 28 

51342 25 35241 41 24351 44 13452 37 

51324 19 35214 27 24315 28 13425 35 

51243 11 35142 45 24153 162 13254 95 

51234 29 35124 36 24135 96 13245 102 

45321 31 34521 107 23541 45 12543 34 

45312 54 34512 133 23514 52 12534 35 

45231 34 34251 62 23451 53 12453 29 

45213 24 34215 28 23415 52 12435 27 

45132 38 34152 87 23154 186 12354 28 

45123 30 34125 35 23145 172 12345 30 
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TABLE2 
Percentage of voters ranking candldate i in position j 

Rank 

Candidate 1 2 3 4 5 

between. The APA elects a president every year by asking each member to rank 
order a slate of five candidates. The elections are actively contested, not rituals 
to justify backroom choices. Coombs, Cohen and Chamberlain (1984) contains 
further background. 

There were about 50,000 APA members in 1980. About 15,000 members voted. 
Many members cast incomplete ballots, voting for their favorite q of five 
candidates, 1I q I 3. The 5738 complete ballots are tabulated in Table 1.This 
will be analyzed first. The incomplete ballots are analyzed a t  the end of this 
section. 

The columns of Table 1 index candidates. Entries in a column show where 
that candidate was ranked in the given permutation. Thus 29 members ranked 
candidate 5 first, candidate 4 second, candidate 3 third, candidate 2 fourth and 
candidate 1fifth. 

I t  is possible to learn something by looking a t  these 120 numbers-some of 
the counts are much larger than others. For many purposes, simple averages are 
useful summaries. Table 2 shows the percentage of voters ranking i in position j. 
Thus, candidate 3 is most popular, being ranked first by 28% of the voters. 
Candidate 3 also had some "hate vote." Candidate 1is strongest in the second 
position, has no hate vote and has a lower average rank than candidate 3. The 
voters seem indifferent on candidate 5. 

The APA, along with many other organizations, chooses a winner by the Hare 
system (also known as proportional voting). This works as follows: If one of the 
five candidates is ranked first by more than half the voters, they win. If not, then 
the candidate with the fewest first place votes is eliminated, each of the 
remaining candidates is reranked in relative order and the method is applied 
inductively. Candidate 1is the eventual winner here. 

Arrow's impossibility theorem implies that there are no completely unobjec- 
tionable procedures for combining preferences into a final choice. Fishburn (1973) 
reviews the pitfalls and benefits of the Hare system. 

Before delving further into the analysis, let's pause and ask where we are 
headed. The data in Table 1, along with the incomplete data analyzed below, 
suggest several natural questions: 

1. Does the first order analysis, reported above, capture the structure of the data 
in Table 1or is there further simple structure? 



- - - -  

SPECTRAL ANALYSIS FOR RANKED DATA 

TABLE3 
Decomposition of the regular representation 

Dim 120 1 16 25 36 25 16 1 

SS/120 2286 298 459 78 27 7 0 


2. How does the Hare system work for data with the observed structure? 
3. 	Is the partially ranked data similar to the marginal of the fully ranked data? 
4. 	 How should the partially ranked data be combined with the fully ranked data 

to elect a winner? 

2B. Higher order analysis. The data vector can be regarded as the function 
f(m) that assigns to m the number of people choosing ranking T. Thus 

= 29. Let M be the space of all real valued functions on the 
5 4 3 2 1 
fi 1 

symmetric group S,.This is a vector space under addition of functions. 
The usual inner product on M is defined by 

The space M decomposes uniquely into the direct sum of seven subspaces. These 
are shown, with their dimensions, in Table 3. A more formal description of the 
decomposition is given in Section 3. Hopefully, the following informal description 
will serve for now. 

The space Vl is the set of constant functions. This has one dimension. The 
space V2will be called the space of first order functions. To explain, consider the 
function m -t a,,( j ,  which is 1if m( j )  = i and 0 otherwise. This only depends on 
m through the value of one coordinate. A general first order function has the 
form 

C aij' in(j)a 
i, j 

To get a direct sum decomposition, the a,;must satisfy C a i j  = 0. The space V2 
has dimension 16. 

There are two types of second order functions: unordered and ordered. A 
typical unordered element is 41,29(,,1),,,,,, which is 1 if the unordered set 
{ ~ ( l ) ,~ ( 2 ) )= {1,2) and 0 othemse. The general, unordered, second order 
functions V, have the form 

with a,,,,j3 chosen so that V, is orthogonal to Vl @ V2.The ordered second order 
functions V, are made up of elements like 

a(,,i O ( r ( , ) ,  ,,(/)) where order matters. 
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They are defined to be orthogonal to V, $ V, @ V,. Similarly there are third and 
higher order subspaces. The final space V, is spanned by the function sgn a 
which is f1as a can be written with an even or odd number of transpositions. 

The subspaces V,  are defined through invariance considerations. In this 
example, the values of the rankings have a natural order, but the labels assigned 
to candidates are arbitrary. A ranking is really a mapping a from the set of 
candidate names to the set of ranking values. The symmetric group S5naturally 
permutes the set of candidate names. I t  thus acts on functions f by of evaluated 
a t  T being f ( ao ) .  

A subspace V c M is invariant under S5if f E V implies of E V. I t  seems 
natural to insist that basic descriptive units such as "first order functions" be 
invariant under irrelevant relabeling. I t  also seems natural that basic descriptive 
units be subspaces: If f and g are first order, functions like f /10  and f + g 
should be first order too. This suggests invariant subspaces of M as useful 
objects. 

The invariance discussed above has the group acting on the right, permuting 
candidate names. The symmetric group S5 also acts on the left, permuting 
ranking labels. There is a unique decomposition-the isotypic decomposition- 
into subspaces invariant under both rela'belings. This is the decomposition of 
Table 3. More refined decompositions require choosing a basis. This is discussed 
further below. 

Consider the data vector f as a function in M. I t  has a decomposition into its 
projections on the isotypic subspaces V,. The squared length of each piece is 
shown in the third row of Table 3. As usual, the largest contribution is from the 
projection onto the constants. The projection onto V, is sizable, but not as large 
as the projection onto V,. The projections onto higher order subspaces seem 
small by comparison. 

I t  is customary in comparing sums of squares to divide by the dimension of 
the subspace. This makes sense if it is thought that the projection is reasonably 
spread out between a natural system of coordinate vectors so that the sum of 
squares is a measure of noise. If, as in the present example, the projections are 
likely to be quite structured, lying close to a few interpretable vectors, dividing 
by dimension is likely to be deceptive. 

The relatively large sum of squares for V, also obtains for the partially ranked 
data (see Tables 8 and 9). This suggests a closer look a t  the projection of f 
onto V,. 

2C. Second order analysis. To aid interpretation, i t  is useful to present the 
first order summary of Table 2 in a form similar to the summaries of this section. 
This is Table 4 below which has entry i, j ,  the number of voters ranking 
candidate i in position j minus the sample size over 5, so rows (and columns) 
sum to zero. The entries have been rounded to integers. Table 4 is based on 
counts, not proportions. I t  is an affine function of Table 2. Thus, the same 
structure is apparent. The largest number, 461, indicates candidate 3 received 
most first place votes. The second largest number, 371, shows that candidate 1 
received most second place votes, etc. 
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TABLE4 
First order effects 

Rank 

Candidate 1 2 3 4 5 

The space V, of unordered pair effects is a 25-dimensional space of functions 
on S,. There does not seem to be a natural choice of basis. Mallows has suggested 
the following remedy. The easily interpretable second order functions are of the 
form 

That is, 1if candidates j and jfare ranked in position {i, i f )  in either order and 
0 otherwise. This 6 is thought of as a function of m for fixed {i, i f ) ,  { j ,  j f ) .  Each 
pair {i, i f) ,{ j ,  j f )  can be chosen in 10 ways, so there are 100 easily interpreted 
functions. Let f be the data vector and f its projection onto V,. Compute the 
inner product of the easily interpretable functions with f and look a t  these 
numbers. Geometrically, the interpretable functions project to 100 points in a 
25-dimensional space. The data vector projects to another point. If the data 
vector lies close to a few interpretable functions, we have a simple description. 
The inner products are shown in Table 5. For example the {1,2), {1,2_) entry, 
-137, is the inner product of Sil,,), (ncl,, ,,(z,j (as a function of m) with f(m), the 
projection of f onto V,. The inner product is defined by (2.1). 

TABLE5 
Second order, unordered effects 

Rank 

Candidate 
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The displayed second order effects have a simple structure. To understand it, 
consider the largest number in the table, 476, in row {1,3), column {1,2). This 
means there is a huge effect for ranking candidates 1and 3 in positions 1and 2. 
Similarly the last entry in row {1,3) shows a fair sized "hate vote." 

The last row, {4,5), shows a big effect for the pair of candidates 4 and 5, a t  
both ends. Now the table's structure falls into place. There are two groups of 
candidates, {1,3) and {4,5). The voters line up behind one group or the other. 
For pairs of opposite groups, like 1,4 or 1,5 or 3,4 or 3,5, there is the opposite 
effect; every few people like both or hate both, so the row entry begins and ends 

9 . 

This pattern makes perfect sense in the APA election. The APA divides into 
academicians and clinicians who are on uneasy terms. Voters seem to choose one 
type or the other, and then choose within; but the group effect 
predominates-recall that these second order effects are adjusted for individual 
popularity. In a similar scenario with the APA replaced by the IMS, one can 
imagine voters ranking the five candidates on some rough scale from statistician 
to probabilist and then "unfolding" a ranking about one end or the other. 

Candidate 2 seems to fall in the middle, perhaps closer to 4 and 5. Further 
comments and findings are in the last part of this section. Table 5 has been 
motivated data analytically. I t  also has a natural group theoretic motivation 
suggested by James. In the present context, a natural way to investigate 
unordered second order structure would be to form a matrix indexed by un-
ordered pairs, with the entry {i, i'), {j, j') the number of people ranking items 
{j, j') in position {i, i'). Now the symmetric group Sn x Sn acts on the rows and 
columns of this matrix. One can project onto the invariant subspaces. I t  can be 
shown, using the notation of Section 3, that Table 5 is precisely the projection of 
this matrix onto SnP2l2@ Sn-212, 

2D. Analysis of partially ranked data. A similar analysis is available for the 
voters who ranked q out of 5. These data are presented in Table 6. Again the 
columns index candidates, and a j under candidate i indicates that candidate i 
was ranked j th.  Zeroes or blanks indicate unranked candidates. For example, 
1022 members ranked candidate 5 first and left the others unranked. 

The subspace decompositions, dimensions, sums of squares and first and 
second ordered projections are set out in Tables 7, 8 and 9, respectively. For 
example, from Table 7, there are 5141 members who only ranked q == 1of the 5 
candidates. The data are thus a function f(i)-the number of people ranking 
candidate i first. The space of all such functions is denoted M411.There are two 
invariant subspaces in the isotypic decomposition. These are the constant func- 
tions and the functions summing to zero. These are denoted S 5  and S411 to 
conform to later notation. In each case, the sum of squares has been divided by 
the dimension of the space of functions. 

REMARKS.For q = 1, the projection onto S4p1merely amounts to subtract- 
ing the number of rankers divided by 5 from the original data vector. Thus 
candidate 3 is most popular and the rest of the pattern is the same as for the full 
data (compare with the first column of Table 4). 
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TABLE 6 

American Psychological Association election data 

q = l  q = 2  q = 3 q = 3 


No. of votes No. of votes No. of votes No. of votes 
Partial cast of this Partial cast of this Partial cast of this Partial cast of this 
ranking type ranking type ranking type ranking type 

TABLE7 

Spectral analysis for q = 1, n = 5141 


~ 4 =~ 1 SS @ S4y1 

Dim 5 1 4 

SS/5 1,057,195 16,384 


Candidate Projection 



P .  DIACONIS 

TABLE8 
Spectral analysis for q = 2, n = 2462 

~ 3 ~ ,1 S5~ 1 $ 2 ~ 4 ~ 1$ s3,2 $ ~ 3 ~ 1 ~ 1  

Dim 20 1 2 . 4  5 6 

S S / 2 0  15,154 4,268 7,781 652 


First order analysis Second order analysis 

Candidate Projection 1 Projection 2 Candidate Projection 

TABLE9 
Spectral analysis for q = 3, n = 2108 

~ 2 , 1 , 1 , 1= 575 $ 3 ~ 4 . 1$ 3 ~ 3 ~ 2  @ s2,1,1,1$ 3~3,131$ 2 ~ 2 3 2 ~ 1  

Dim 60 1 3 . 4  3 . 5  3 . 6  2 . 5  4 
S S / 6 0  1,234 123 243 20 8 2 

First order analysis Second order analysis 

Candidate 1 2 3 Candidate 12 13 14 

For q = 2 there is a slight difference in first order statistics. The second order 
statistics correspond to the pattern found for the complete data. As a notational 
point, the first order subspace is denoted 2S4,'. I t  is an eight-dimensional space 
consisting of two four-dimensional subspaces, one for most preferred and one for 
second place. 

For q = 3, the first order analysis seems different again, candidates 4 and 5 
being clearly preferred to 1and 3. The first column of the second order analysis 
matches up with the previously found pattern-a strong second order effect with 
(1,3) dominating (4,5). 
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Some differences between partially ranked ballots and fully ranked ballots are 
to be expected. People who only rank a few candidates probably choose favorites. 
People who rank everyone clearly also vote against specific candidates. 

As a final remark, note that the decomposition in Table 3 (fully ranked data) 
appears in present notation as 

2E. Summary. The data analysis reported above shows a consistent simple 
structure: There is a strong effect for choosing candidates {1,3) or {4,5), with 
candidate 2 in the middle. This effect is roughly of the same size and direction 
(ratio of sums of squares) for q = 2, 3 and 4. 

There is some difference between the first order effects: q = 1 is close to 
q = 5; q = 2,3 seem different. Several ad hoc significance tests not reported here 
reject the hypothesis that the marginal first order effect of fully ranked ballots 
match the first order margins for q = 1, 2 or 3. 

The next stage of analysis is to look at  other years and see if the strong two 
group effect is a consistent feature of APA elections. If so, this allows a solid base 
for investigating the Hare system and for building more detailed models. The 
data suggest models of the following sort: Arrange the five candidates as points 
on a line in some order. Regard each voter as a point on the line who orders the 
candidates by their distance. Carroll (1980) discusses such models. Alternatively, 
the data may be modeled as a mixture of two Mallows models centered a t  a 
central pennutation or its reversal. See Diaconis (1988), Chapter 6A. 

The preliminary sum of squares analysis simplified things considerably, elimi- 
nating a 36-dimensional space of ordered second order effects. An earlier attempt 
a t  analysis tabulated the 20 x 20 matrix with entry (i, if), ( j ,  j') the number of 
people ranking candidates i and if in positions ( j ,  j'). This was hard to look at  
and no obvious pattern emerged. 

Some further analyses of these data are in Section 4 which deals with 
inferential issues. 

3. Representation theory for partial rankings. Consider a list of n 
items. Let A = (A,, A,, . . . ,A,) be a partition of n.  A partial ranking of shape A 
is specified according to the following instructions: Choose your favorite A, items 
from the list but don't bother to rank within. Then choose your next, A,, 
favorite items from the list but don't rank within and so on. Partial rankings are 
written as a collection of subsets. For example, if A = (3,2, l), a typical partial 
ranking is 

so items 1,4,2 are ranked first and item 5 is ranked last. Underlining denotes an 
unordered row. 
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The partition with all parts equal to 1, denoted ln, defines complete rankings. 
The partition (q, n - q) defines the choice of a subset of q out of n. Such subset 
data arise in analysis of bettor's behavior in state lotteries-in California n = 49 
and q = 6. Choice of ordered subset of q out of n is indexed by n - q, lq.More 
general partial rankings are also in use, as in the q-sort data used in psychologi- 
cal studies. Examples and references are in Diaconis (1988), Chapter 5. An 
example is given a t  the end of this section. 

The number of partial rankings of shape A is n! /A,!A,! . . A,! Let XA denote 
the set of all such rankings. Let M' be the set of all real functions on partial 
rankings. This is a linear space of dimension n!/A,! . . A,! 

The symmetric group Sn takes one partial ranking into another as in the 
example 

1 4 2 41) 4 2 )  4 4 )

i ] = * )  4 6 )  

-

Thus, for f E M" ~f is defined at  x by .irf (x) = f(r-'(x)). 
I t  is often convenient to arrange partitiqns in decreasing order A = (A,, ...,A,), 

A, 2 A, 2 . . . ( 2  A,, A, + . . + A ,  = n. For example, data based on people's 
favorite and least favorite item on a list of n are naturally indexed by A = 1, 
n - 2,l .  I t  is clearly equivalent to data indexed by n - 2,1,1. In what follows, 
partitions are assumed to be decreasing. 

A subspace V of M  ~ invariant if s f E V implies af E V. A subspace is 
irreducible if it  does not contain a nontrivial invariant subspace. Two invariant 
subspaces V and Ware isomorphic if there is a 1-1 linear map L from V onto W 
such that aLf = Laf  for each f E V and T E S,. Thus isomorphic spaces are 
equivalent up to change of basis. 

An elementary theorem in representation theory implies that M A  decomposes 
into a direct sum of invariant irreducible subspaces. Elegant, elementary treat- 
ments of representation theory are given by Serre (1977) and Ledermann (1977). 
Diaconis (1988) develops representation theory for statistical applications. Theo- 
rems in Diaconis (1988) are numbered to match theorems in Serre (1977). The 
basic decomposition is in Serre (1977), Theorem 2. 

There is a well defined irreducible invariant subspace S' for each partition p 
of n. These can be defined as suitable subspaces of MY See James (1978) or 
Diaconis (1988), Chapter 8. As p varies over partitions of n, the S' exhaust all of 
the possible invariant irreducible subspaces in the sense that any invariant 
subspace of any M A  is isomorphic to a direct sum of 5"'s. In particular 

The notation means that M A  decomposes into a direct sum of invariant irre- 
ducible subspaces, with k(X, p) of these subspaces isomorphic to S'. 

The direct sum of all invariant subspaces isomorphic to a given S' is called 
the isotypic subspace belonging to the partition p. There is no standard notation 
for this subspace. We will denote it Vf. Thus, Vf = k(A, p)S'. 
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There is a simple method for computing the projection onto the isotypic 
subspace Vf. This involves the character table of the group. For each partition p 
of n, there is a well defined function x,(IT)-the character associated to p a t  the 
permutation T. Theorem 8 in Serre (1977) translates into the following. 

THEOREM1. Let h and p be partitions of n. Let f E M! The orthogonal 
projection of f onto the isotypic subspace Vf is the function 

with X, the character corresponding to p. 

The characters of the symmetric group are tabulated for n I 15. A variety of 
combinatorial algorithms for their computation is also available. See James and 
Kerber (1981), Chapter 4 and tables of Appendix 1. There is not at  present a 
usable "formula" for x,(a). Observe that the sum (3.1) is over S,. For large n ,  
different projection formulas are available. See Diaconis (1988), Chapter 8 and 
Diaconis and Rockrnore (1988). 

EXAMPLE1. S5.The computations of Section 2 are all carried out using 
formula (3.1) and the character table of S5(Table 10). To explain, the character 
X,(IT) is invariant under conjugation x , (v~q- l )  = X,(IT) and thus must only be 
tabulated for conjugacy classes. These only depend on the cycle type (number of 
fixed points, transpositions, etc.) in IT. For instance, the identity has cycle type 
15, SO the first column lists x,(id). This equals the dimension of the irreducible 
representation S' [Serre (1977), Theorem 21. The second column lists X, a t  a 
transposition, the third a t  a product of two 2-cycles, the fourth at  a 3-cycle, the 
fifth a t  the product of 2- and 3-cycles, the sixth at  a 4-cycle and the seventh at  a 
5-cycle. 

An interpretable function is projected onto an isotypic subspace using (3.1). 
Then, the inner product with the data f (x)  is computed to give a typical table 
entry. 

TABLE10 

Character table of S, 
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EXAMPLE 2. First order projections. The partition p = (n - 1 , l )  indexes 
what was called the first order projection. Here the character can be computed 
explicitly; see James (1978), page 26: 

xn-,, ,(a) = #(fixed points in T )  - 1. 

From this, an explicit form of the projection can be written down. For example, 
consider A = n - q, 19-the partition corresponding to ordered rankings of q 
out of n. The projection of f E M A  to. f E V, - l ? l  is 

with m(x, y )  the number of i such that xi = y,, 1 I i I q, and M(x, y) the 
number of i such that yi P {x,, . . . ,x,). 

EXAMPLE 3. An intuitive interpretation of the splitting. Consider simple 
choice data-1 out of n. The splitting is 

~ n - 1 , l= S n  $ s n - 1 , l .  

Here- f ( i )  E Mn-l , l  coynts how many people choose i. The decomposition is 

f = f + ( f  - f ) ,  with f = (f(1) + f(2) + +f(n))/n. 
Consider next choosing an unordered pair out of n. The splitting is 

~ n - 2 , 2= S n  $ s n - l , l  $ s n - 2 , 2 .  

Here the projection onto Snis the mean C f{i, j ) /n(n - 1). Use of Example 2 
shows that the projection onto Sn-l?' is equivalent to computing f(i) = 

C j f{i, j ) ,  1I i I n - 1. The projection onto Sn-2,2is what's left after the 
mean and popularity of individual items are subtracted out. 

As explained below, the splitting of ordered pair data is 
~ n - 2 , 1 , 1= s n  $ 2sn-1,l $ s n - 2 , 2  $ s n - 2 , 1 , 1  

Here the two copies of the space Sn-lllhave the interpretation of the effect of 
item i in first and second position for 1 < i I n 1.The s ~ - ~ , ~- projection is an 
unordered pair effect. The Sn-2~1~1is an ordered pair effect, after the mean, first 
order and unordered pair effects have been removed. 

YOUNG'SRULE. There is an elegant combinatorial rule for deciding which 
irreducible subspaces S' appear in the splitting of M" as well as their multiplici- 
ties k(A, p). Fix a part.ition A = (A,, A,, ...,A,), with A, 2 A, 2 . . 2 A, > 0 
and A, + . . +A, = n. Consider A, ones, A, twos, .. . ,A, r 's. Write these sym- 
bols in left justified rows, in all ways that are weakly increasing along a row and 
strictly increasing down columns. Thus, if n = 5 and A = (3,1, I), start with 
1,1,1,2,3 and arrange as 

1 , 1 1 2 3  1,1,1,2 1 ,1 ,1 ,3  1,1,1 1,1 ,1  
3 2 2 ,3  2 

3 
Partition 5 4 ,1  4,1 3,2 3 ,1 ,1  
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The partition determined by each arrangement has been written underneath. 
Here M3s1>' splits into S5$ 2S411$ S3,2$ S39','. 

Young's rule says that the irreducible S' appears in M-th multiplicity 
k(A, p)-the number of arrangements of A,-i's into shape p. Young's rule is 
proved in James (1978)' Chapter 14. 

The reader may compare with the decompositions given in the examples 
above and in Section 2. I t  is an instructive exercise to compute and interpret the 
decomposition of M "-$'> '. A computer program for computing k(A, p) is given '3 

in Remmell and Whitney (1984). 
One consequence of Young's rule which has an easy direct proof [Serre (1977), 

Section 2.41 is that for complete ranked data the multiplicity of S' equals its 
dimension. Thus S4>'is a four-dimensional representition appearing four times 
in the decomposition of M1,l3 '3 in Table 3. ' y l  

We turn next to a combinatorial rule for computing the dimension of SA. 

THEHOOK-LENGTH FORMULA. Consider a partition of n. Arrange n boxes 
in left justified rows with X i  boxes in row i. Thus, for X = (3,2, l),  the arrange- 
ment is 

Each box determines the length of a hook centered at  the box, going right and 
down as far as possible. Thus the second box in the first row determines the hook 
of length 3: 

The hook lengths are thus 

The hook-length formula says that the dimension of the irreducible representa- 
tion SAequals n! divided by the product of the hook lengths. Thus, hasS31211 

dimension 6!/5 3 3 = 16. 
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The formula is originally due to Frame, Robinson and Thrall. For an elemen- 
tary probabilistic proof, see Greene, Nijenhuis and Wilf (1979). For a fascinating 
application to determining the average length of the longest increasing subse- 
quence in a random permutation, see Logan and Shepp (1977) and Kerov and 
Vershick (1985). Diaconis (1988), Chapter 8 contains further discussion. 

There are many other formulas for the dimension of Sh.For small n, the most 
convenient is dim Sh= ~ ~ ( 1 )[Serre (1977), Theorem 31. 

A DIFFERENTEXAMPLE. TO conclude this section here is a fresh collection 
of examples where partially ranked data arise. In panel study data, and else- 
where, one considers many relatively short time series X,, X,, . . . ,X, with 
Xi = (Xi,, Xi,, . . .,Xi,) and Xip taking values in a finite set. For example, Xi 
might be the result of following the i th  person for p = 12 months and noting if 
they were employed or not. Biostatisticians and econometricians have developed 
a rich collection of techniques for analyzing such models. See Hsiao (1986) for a 
survey. 

One natural class of models has each Xi an independent multinomial process 
with parameters depending on i. This seems like a rich class of models for p 
small, even if n is large. 

The usual approach to testing such a model compares with the known law of 
an ancillary conditioned on a fixed value of a sufficient statistic. Here the 
sufficient statistic for the i th  person is T,-a vector recording the number of Xij 
taking each possible value. This gives a partition of p. 

Fix a partition A of p. The ancillary information specifies the locations where 
the different values occur. This gives a partial ranking of shape A.  Considering 
all N(X) Xi with a fixed partition X gives a function on these partial rankings. A 
test of the model can be based on this function: Under the null hypothesis, the 
function should look like N(A) balls dropped uniformly into p!/rXi! boxes. A 
test statistic can be defined (e.g., chi-square or the empty cell test) and results 
from different tests (as X varies) combined. Frydman and Singer (1985) carry out 
such a test in a binary setting and develop tests against Markov models. 

With or without testing, the function can be spectrally analyzed (as suggested 
here) in a search for understanding model failure. Diaconis and Smith (1988) 
carry out and discuss such an analysis. 

4. On inference. 

4A. Introduction. I t  is natural to ask how sure we are about main effects. If 
the data are a sample from a population, sampling variability gives a notion of 
noise. I t  is straightforward to bootstrap any of the analyses suggested in 
Sections 2 or 3. Alternatively, we may put a prior on the "true underlying 
population" and use Bayesian arguments. Both routes are discussed further 
below. 

For the voting example of Section 2, it does not seem reasonable to regard the 
voters as a sample. At the opposite extreme, the data may be regarded as a 
complete enumeration of a finite population. Then there is no inference problem. 



965 SPECTRAL ANALYSIS FOR RANKED DATA 

There is useful work to be done for summarization. Hoaglin, Mosteller and 
Tukey (1985), Chapter 1 contrast the inferential and summarization positions. 

Intermediate notions of variability are discussed below. Section 4B asks if we 
couldn't be finding patterns in noise. Section 4C refines this idea to a hierarchi- 
cal, conditional version, developing a conditional Monte Carlo procedure. Section 
4D shows how earlier considerations merge with conclusions drawn from expo- 
nential families through the summary statistics. This follows work of Martin-Lof 
quite closely. 

Section 4E carries out a classical normal analysis on the square roots of the 
counts. The final section compares the various approaches. 

4B. Patterns in noise. Consider the 5141 voters who ranked only one candi- 
date: 

Candidate I 1 2 3 4 5 

No. 895 88 1 1198 1145 10221 
These can be summarized as "3 and 4 are most popular, 2 and 1 least popular, 
with 5 in between." Of course, any five numbers fall into some pattern. One 
natural comparison asks how different cell counts are likely to be if 5141 balls are 
dropped at  random into five boxes. Here ,/-
 = 29, so the observed 
differences are larger than random variation. 

Of course, the voting process is nothing like dropping balls into boxes. 
Nonetheless, k29 seems like a useful number: At least we aren't making the 
mistake of interpreting patterns in noise. 

I t  is straightforward to compute similar estimates of variability for the kinds 
of linear functions and sums of squares considered in Section 2. Let X be a finite 
set. If N balls are dropped uniformly at  random into 1x1boxes, let Y, be the 
number in the x th  box. Let L (X)  be the set of all real valued functions on X. 
Regard {Y,) as a function in L(X). The following theorem gives the asymptotic 
distribution of the projection of Y,onto a subspace V c L(X). The elementary 
proof is omitted. 

THEOREM2. With notation as above, with increasing N: 

(i) For V c L(X)  a d-dimensional subspace of  L(X) orthogonal to the 
constants, the squared length of the projection of Y, onto V is approximately 
distributed as (N/IXI)~:,  with X: a chi-square variable having d degrees of 
freedom. 

(ii) For V as in ( i )  and g E V, ( g l Y )  is approximately distributed as a 
normal variable with mean zero and variance N llgll2/1X~. 

(iii) Projections into orthogonal subspaces are asymptotically independent. 

For example, Table 11 compares the observed and expected sums of squares 
for the seven isotypic subspaces of Table 3. The sums of squares have been 
divided by 120. 
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TABLE 11 

Sums of squares for completely ranked data of Table 3 


'Subspace 4s4* 5S3* 6 ~ 3 ,1. 1 5~2 .2 .I 4 ~ 2 , ' .1 . 1  ~ 11, ,1, 1, 1 

Dimension 16 25 36 25 16 1 
SS/l20 298.3 459.2 78.2 27.2 6.8 0.218 
ESS/12O 6.4 10.0 14.3 10.0 6.4 0.40 

TABLE 12 
Standard deviations for innerproducts in Tables 4-7 

First order + 20(16/5) + 18(48/5) + 30(96/5) 
Second order i35.1(10) + 32.5(30) + 53.6(60) 

REMARK.The projections onto 4S21 and are compatible with '3 ' 9 '  S's'l ' 1  ' 1 '  

uniformity. The projections onto 4S4l1 and 5S3l2 show a great deal of structure. 
The projection onto 6S3,'9' and perhaps 5S2s21' may merit further investigation. 

As a second example, Table 12 gives the standard deviation of the inner 
product of Y E L(X5-,, ,,) with any "easily interpretable" function 6 in the first 
order subspace qS5-111, or in the second order subspace (:is The squared 5 - 2 3 2 .  

length of 6 is shown in parentheses. Of course, these standard deviations are for 
the sample sizes that actually occurred in the APA data. For example, when 
q = 4 (fully ranked data), the standard deviation for the first order effects 
reported in Table 4 is 30. This provides one standard of comparison-the large 
observed differences are unlikely under uniform choice of the 5738 voters who 
ranked all candidates. 

REMARK.For ranked data of shape n - q, lQconsider the first order func- 
tion 6(x) = 1 if xi = j; 0 elsewhere. The first order subspace qSn-I,' 
has dimension q(n - 1). I t  follows from Example 2 that the projection 
of 6 onto qSn-I,1 is 8(x) = 1- l /n  if xi = j; - l /n  elsewhere. Thus 11811 = 

( n  - 1)!(1 - l /n)/(n - q)! This gives the entries in parentheses in the first row 
of Table 12. 

REMARK.The data vector in the APA example is sufficiently close to 
uniform that there is only a small difference between the uniform analysis 
suggested here and an analysis under multinomial variability. 

4C. On conditional uniformity. There is a more subtle use of the uniform 
distribution available by conditioning on observed low order statistics. Let X be 
a finite set and x = (x,, x,,. . . , x,) a vector of points in X. Let T(xl, x,, . . . , x,) 
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be a statistic. One interpretation of the phrase "the data can be summarized by 
T "  is that we are indifferent between two data sets with the same value of T. 
This gives a notion of variability for a second statistic U: Compute the condi- 
tional law of U given T = t under the uniform distribution on TP1(t). 

This idea is very close in spirit to proposals suggested by Martin-Lof (1970, 
1974, 1975). I t  is also close in spirit to the modern Bayesian approach to 
de Finetti's theorem on exchangeability. Lauritzen (1984) and Diaconis and 
Freedman (1984) contain extensive reviews of this work and its interconnections. 

In the present setting X = X,-the partial rankings of n items of shape 
h = (A,, ...,A,), T is the first order summary statistic-the projection of the 
data onto the r - 1copies of Sn-'9' in some fixed coordinate system. U is the 
second order summary. 

One way to investigate the variability of the second order effects is to 
generate a Monte Carlo sample from the uniform distribution conditional on the 
observed first order effects. A method for doing this is given by Diaconis and 
Gangolli (1987). A second method for approximate generation is described in 
Section 4D below. 

A conditionally uniform sample provides a test of higher order structure. In 
the example, the variability is essentially the same as the unconditional variabil- 
ity reported in Section 4B. Besides this, the second order structure seems 
sufficiently clear without a test. 

VOLUMETESTING. If voters rank uniformly, the resulting function has a 
multinomial distribution. There is another notion of uniformity which has a 
direct appeal. This regards f ( n ) as being chosen a t  random from among all 
functions with a given sum. Thus, f has a Bose-Einstein distribution. This 
distribution arises as the marginal distribution if a uniform distribution is put on 
the underlying multinomial probabilities. Diaconis and Efron (1985) developed 
this point of view for contingency table testing. I t  does not seem so easy to 
simulate this kind of variability at  present. 

4D. Related exponential families. The first and second order statistics in- 
troduced above can be thought of as estimates of parameters in a model. This 
permits sampling theory or Bayesian methods to give confidence intervals and 
tests for the need of higher order terms. Moreover, Martin;Lof has pointed out 
that the conditional uniform approach of Sections 4B and 4C, which seems 
useful from the summarization view, translates into calculations within the 
model. 

As in Section 4C, let X be a finite set and x = (x,, .. . ,x,) a vector of points 
in X. Let T,(x)= (l/N)C:, T(x,) be a statistic. Here is a fundamental mathe- 
matical fact borrowed from statistical mechanics. The conditional uniform distri- 
bution over all N-tuples y,, . . . ,y, with T,(y) = t is approximately the same as 
the law of Y,, Y,, .. . ,YN where are independent and identically distributed 
with law 

(4.1) &(y ) = ~ ( 8 )  C(0) a normalizing constant, 
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and 8 contained in a Euclidean space of the dimension of t chosen to satisfy 

(4.2) E{T(Y)) = t .  
This result is called the equivalence of ensembles-the rnicrocanonical ensem- 

ble (conditionally uniform) is approximately the same as the macrocanonical 
ensemble (i.i.d. through the matching exponential family). 

Regularity conditions and rigorous statement have been suppressed above. 
The result has some delicate aspects. For example, if the statistic T can take 
irrational values, the data can be recovered from TN(x) (the statistics we deal 
with have values in the integers). The sense of the approximation must also be 
specified. Rigorous versions can be found in Martin-Lof (1970), Lauritzen (1984), 
Lanford (1971) and Diaconis and Freedman (1980,.1984, 1987, 1988). These last 
authors give references to related papers. I t  must be said that much remains to 
be done in rigorizing things and the present discussion should be regarded 
speculatively. 

In the examples here, X = X,-the partial rankings of n items of shape 
A = (A,, . . .,A,), T is the first order summary statistic-the projection onto the 
(r  - 1) copies of Sn-ll1in some fixed coordinate system. The parameter space is 
all of IW(r - l ) (n - l )  and the family is well parametrized [see Diaconis (1988), 
Lemma 1,Chapter 91. The 8 satisfying (4.2) is the maximum likelihood estimate 
in this family. As Fisher (1922) pointed out, the projection TN is an efficient 
estimate for the mean value parameter in this family. 

Models of the form (4.1) for ranked data have been suggested by Holland and 
Silverberg [see Silverberg (1980)l. Verducci (1982, 1987, 1989) gives an imagina- 
tive investigation of such models and their submodels, as well as efficient 
algorithms for calculating C(0) and 8. Diaconis (1988), Chapter 9 contains an 
extensive discussion and more careful pointers to the literature. 

Classical theory is available to investigate .8;The main interest here is on 
notions of variability for the observed values of TN and higher order statistics. 

To fix ideas, consider the problem of determining the law of the second order 
statistics UN(x) reported in Table 5 under the uniform distribution conditional 
on the first order statistics of Table 4. 

One route through the computations estimates 8 and then the distribution of 
the second order statistics under Pa.For samples of the size considered here, the 
distribution will be well approximated by a normal law with mean EB(U(X)) 
and covariance matrix Varg(U(X)). For small n,  these can be obtained by 
directly summing over X,. For larger n, the Metropolis algorithm is recom- 
mended [see Harnmersley and Hanscomb (1964), Chapter 91. 

In the example, a first order model was fitted using the algorithm in Verducci 
(1989). The variability for the second order analysis is essentially the same as in 
Section 4B above. 

The above discussion does not do justice to the program outlined by Martin- 
Lijf. He develops an analog of Fisher's exact test and an asymptotically equiva- 
lent parametric version with a reasonably tractable chi-square approximation. 
Testing if the second order effects are real did not seem warranted in the 
example (they are clearly huge). I t  would be of interest to test if ordered second 
order and higher order effects have been foolishly neglected. 
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Martin-Lof offers a coding theory explanation of his basic test statistic as the 
decrease in the number of bits needed to specify the data when the regularities 
detected by the test are taken into account. 

4E. A normal theory analysis. For data which are a sample from a larger 
population, classical approaches to estimating main effects and variability are 
available. One straightforward route uses the Poisson approximation and then 
square roots to stabilize the variance. For large mean parameters, the Poisson is 
approximately normal so all the tools of analysis of variance are applicable. 

In more detail, let S, be the permutation group on n letters. Introduce 
random variables {Y,), ,s,, with Y, Poisson distributed with parameter XB(r). 
Here C,, s!(n) = 1 and X > 0 are parameters. As is'well known [see, e.g., Rao 
(1965), page 2311, for AB(7r) large, is approximately normal, with mean 
\imand variance :. 

A linear analysis of the transformed, fully ranked data is presented in Table 
13. 

TABLE13 
Square roots of fuUy ranked data. q = 4, n = 5738 

Ml.l.1.1.1 = ~6 @ 4 ~ 4 ~ 1  $ 6~3,1,1 @ ~1,1 ,1 ,1 ,1@ 5 ~ 3 ~ 2  $ 5S2,2,1@ 4 ~ 2 ~ 1 ~ 1 ~ 1  

Dim 120 1 16 25 36 25 16 1 
SS/120 5311 146 212 25 9 4 0 

First order effects (ad.= i2.2) 

Rank 

Candidate 1 2 3 4 5 

1 -4.9 20.8 12.7 -8.6 -20.0 
2 -25.1 -2.2 15.1 17.5 -4.7 
3 27.0 -13.8 -24.3 -3.2 14.4 
4 2.7 -11.6 -1.1 -0.4 10.4 
5 1.0 6.8 -2.4 -5.4 -0.1 

Second order effects(s.d.= i3.9) 

Rank 


Candidate 12 13 14 15 23 21 25 34 35 45 

12 -8.7 -0.7 1.2 8.1 6.2 1.7 0.8 0.2 -5.7 -3.1 
13 29.1 -5.0 -11.4 -12.7 -7.8 -11.4 -9.8 6.6 6.2 16.3 
14 - 11.9 1.8 8.0 2.2 0.1 6.6 5.2 -4.5 2.7 - 10.0 
15 -8.5 3.9 2.2 2.4 1.5 3.1 3.9 -2.2 -3.2 -3.1 
23 -2.3 3.8 1.0 -2.6 1.8 -1.2 1.7 -3.2 -2.5 3.4 
24 10.6 -0.8 -3.7 -6.2 -1.4 -5.1 -4.2 0.2 1.9 8.5 
25 0.3 -2.4 1.4 0.8 -6.6 4.5 1.8 2.8 6.2 -8.7 
34 - 16.9 0.8 4.9 11.2 1.1 1.4 6.4 0.8 -2.6 - 15.0 
35 -10.0 0.3 5.6 4.1 4.9 3.3 1.7 -4.2 -1.1 -4.7 
45 18.1 -1.8 -9.2 -7.2 0.2 -10.1 -7.4 3.5 -2.0 16.6 
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REMARK1. The overall picture gleaned from the square roots is the same as 
from the untransformed data. In the first order effects (projection onto 4S4s1) 
candidate 3 is most popular, but has some hate vote, etc. The sum of squares 
shows a large unordered pair effect. The second order structure seems the same: 
candidates 1and 3 versus 4 and 5. 

REMARK2. The benefit of square roots is that all the numbers in a table 
have the same variability. The s.d.'s follow from the lengths of the projections 
given in Table 12: 2.2 = d m ; 3.9 = m.Under the assumptions, 
they are appropriate measures of variability for each table entry. Of course, they 
are only valid marginally; the correlations associated with 100 entries and 25 
degrees of freedom are still present. 

REMARK3. TWOproblems with the square root analysis: The square roots 
are hard to interpret. Also, for this data set, sampling variability seems far- 
fetched. 

REMARK4. The variance stabilizing transformation has the amazing prop- 
erty that all variables have variance :. I t  seems statistically natural to put a 
parameter a2 in place of :. This can then be estimated from the projections on 
the higher order subspaces. This way of thinking leads to analysis associated to 
generalized linear models (GLIM) which works directly with variations of Pois- 
son likelihood. McCullagh and Nelder (1983) or Efron (1986) give useful treat- 
ments. I have not tried out this approach. 

REMARK5. If square roots are admitted as useful transformations, why not 
logs or nonparametric functions chosen to give best fits to linearity. The ACE 
algorithm [Breiman and Friedman (1985)l and generalized additive models 
[Stone (1985) and Hastie and Tibshirani (1986)l offer convenient technology for 
trying out such an analysis. 

4F. Final comments. There is much to be said for an analysis based on 
directly interpretable averages which can be related to other information and 
covariates. This is the main appeal of spectral analysis. 

The conditional uniformity assumption introduced in Sections 4B and C is a 
frail straw man. I t  allows conclusions like "if votes were randomly allocated, 
these differences would be surprising." Since there is no reason to think people 
vote randomly, this cannot hold much force beyond protecting us from finding 
patterns in noise. 

The classical approach-sampling variability-is treated in Section 4E. I t  can 
be valid and useful but it is easily abused. Data are often not reasonably 
regarded as a sample from a population of interest. On the other hand, the 
sampling analysis is equivalent to the conditional uniform analysis through 
consideration of Section 4D above. 

Ranked data have a built-in high dimensionality which is not apparent in the 
example used here. If 10 items are ranked, it is rare that there will be a sample of 
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sufficient size to give good estimates of individual ranking frequency. Low- 
dimensional models may be the only viable route to comparison and analysis. 

The inferential developments in Sections 4A-E are a central part of statistics. 
In the example, the various k numbers don't go much beyond what one gets by 
direct inspection of the tables to see the general size of the numbers and how 
they compare. I t  is reassuring when several different routes through the maze 
lead to similar answers. The comparison of observed and expected sum of squares 
summarized in Table 11 does suggest some further structure is present in the 
S3*l*'and spaces. This can be seen by going back to the original data in S21211 

Table 1: The two largest counts 186 and 172 suggest an interaction between 
candidates 1,2 and 3 that has not been explored. 

5. General spectral analysis. The techniques oY the previous sections are 
natural extensions of analysis of variance and spectral analysis of time series. 
More generally, let X be a finite set. Let G be a finite group operating 
transitively on X. Let L (X)  be the space of all functions on X with values in IW 
(or C). This is a vector space on which G acts linearly as a group of transforma- 
tions [gf(x) = f(g-'x)]. Serre (1977), Theorem 1asserts that L(X)  decomposes 
into a direct sum of invariant irreducible subspaces 

Let f (x)  be a data set (the number of times x appears in the sample). Spectral 
analysis is the projection of f onto the invariant subspaces and the approxima- 
tion of f by as many pieces as required to give a reasonable fit. 

In time series, X is the integers mod n, L (X)  is all complex functions. The 
space L (X)  splits into n one-dimensional irreducibles, the j t h  being spanned by 
x -, e2"ijx/n. The projection is summarized by the discrete Fourier transform, 

Examining the spectrum f i  j )  is a familiar activity. 
In analysis of variance X labels the underlying units involved in the experi- 

ment and G is an appropriately chosen group of symmetries. For example, for 
data in a two way array, with I rows, J columns and no repeated observations, 
X = {(i, j): 1I i I I, 1Ij I J).The group S, x SJ operates transitively on X 
by (7,  q)(i, j )  = ( ~ ( i ) ,q( j)). L (X)  can be taken as the real valued functions on 
X. I t  decomposes as 

The projections are the usual grand mean, row effects, column effects and 
residuals. 

Spectral analysis has also been applied for data on 22-the group of binary 
n-tuples (test scores, panel study data)-by Bahadur (1961). Another classical 
example is harmonic analysis of data on the sphere. Geodesists regularly analyze 
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such data in a basis of spherical harmonics. Here, the straightforward extension 
from finite to compact is needed. Then L ( X ) is replaced by the continuous 
functions and the direct sum (5.1) may be infinite, but each V, is finite dimen- 
sional. Diaconis (1988), Chapter 8 contains further discussion and references. 

There are also interesting problems in noncompact cases. For example, con- 
sider a set of studies of height and weight, each producing its own 2 x 2 
covariance matrix. Nelder (personal communication) has described an ongoing 
study which currently has over 2000 such matrices. One is then in the business of 
analyzing data on the space of 2 X 2 positive definite symmetric matrices. This is 
a homogeneous space for GL,. The set of all polynomial representations decom- 
poses into a direct sum like (5.1) [see, e.g., James (1961) or Constantine (1963)l. 
Understanding low order terms seems like a worthwhile project. Similar analysis 
can be undertaken for data consisting of many line& in the plane under the action 
of the Euclidean group. 

A second direction for generalization involves other orthonormal bases. There 
has been some work on spectral theory using Radamacher functions and the like. 
A more promising direction involves consideration of a Markov chain on the set 
X. The eigenfunctions of the transition matrix may offer a scientifically interest- 
ing spectral decomposition. This arises in the association schemes used to 
analyze designed experiments. Bailey (1985) is a useful review. 

One cannot hope to go much beyond groups. Almost all naturally occurring 
orthogonal functions are connected to a group. Almost all explicitly diagonaliz- 
able Markov chains arise from random walks on groups. Finally, it is the desire 
for invariance under relabeling that makes spectral analysis natural. 

The data-analytic approach suggested here proposes a set of linear functions 
or averages which have a good track record in applied problems. These can lead 
to novel analyses, even in well studied areas. Here are two examples. 

In two-way ANOVA, the group S, x S, does not use the ordering of the rows 
or columns. Suppose the rows are months of the year, the columns are violent 
crimes and the entries are average crime rate. The group 2, x Sj also operates 
transitively by (x, q)(i, j )  = (i + x, q( j)). The space splits (over the complex 
numbers) as 

with xi the one-dimensional representations appearing in classical spectral 
analysis and SJ-'>' the first order subspaces of Sections 2 and 3 above. 

Fortini (1977) has given several examples of the group invariant approach 
illuminating classical analyses of designed experiments such as balanced incom- 
plete blocks. Diaconis (1988), Chapter 8D gives an exposition of Fortini's results. 

As a second example, it would be interesting to push through the inferential 
ideas of conditional uniformity, with the associated exponential families, in the 
classical time series context. The models are nonstandard and underscore the 
fact that the usual spectral estimates are not efficient estimates for parameters 
in any of the usual models. 
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Connections between ANOVA and time series as well as noncornrnutative 
extensions of the spectral representation of processes have been discussed by a 
number of authors. Hannan (1965) sketched out the ideas building on an early 
brief mention by James (1957). This has been carried forward in the mathemati- 
cal arena by Yaglom (1961) and Ylinen (1986). 

The point of view taken in the present paper is a generalization of the 
data-analy tic hunt for periodicity. There is another tradition centered about 
components of variance, random effects and continuous spectra. This has been 
clearly discussed by Tukey (1961) and developed in a far ranging way by Bailey 
and Speed and their coworkers. Speed (1987) is a convenient reference. 

A still richer possibility allows the variability of each f(x) to vary and 
correlate. Then the problem can be approached by modern multivariate tech- 
niques as developed by the Danish school. Anderson (J987) or Perlman (1987) 
give a recent discussion. 

The examples presented here show that linear analysis can be instructive. 
Modern statistics heads in nonlinear directions such as projection pursuit, 
recursive partitioning and ACE. All of these build on linearity: Projection 
pursuit fits a nonlinear function to the most informative linear projection; 
recursive partitioning fits linear models locally; ACE transforms to linearity. All 
of these ideas are applicable to the linear spectral analyses suggested here. 
Diaconis (1988), Chapter 8 gives references and discussion for a host of other 
innovations in ANOVA and time series methods (Bayesian methods, shrinking, 
robustness, missing data). All are worth carrying over to a genuine application. 

APPENDIX 

On symmetry characterizations of the isotypic decomposition. Let G 
be a group, H a subgroup, X = G/H the associated homogeneous space and 
L ( X )  the space of all functions into the complex numbers. The space L (X)  
decomposes into a direct sum of irreducible invariant subspaces. These can be 
grouped together into isomorphism classes to give the isotypic decomposition. 
There is one isotypic subspace Vx for each irreducible character X. The splitting 
is denoted 

L ( X )  = a3 vx. 
See Serre (1977), Theorem 8. This decomposition is computationally convenient. 
The projection of f E L(X) into fx E Vx is given by 

When X = G (so H = id) there is a simple characterization of the isotypics: A 
subspace V in L(X) is a direct sum of isotypic irreducibles if and only if it  is 
invariant under the action of G on both sides. In other words, G x G acts on 
functions by (s, t)  f (u)  = f(s-'ut). The Vx are the minimal invariants under this 
action. This follows from the development below. 

In the context of fully ranked data, this two-sided invariance amounts to 
considering only information that doesn't depend on the names of the items or 
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the order. This is sometimes natural: Consider an ESP experiment in which a 
psychic describes where a sender is standing on five occasions. A judge takes the 
five descriptions, visits the actual standing places and matches descriptions and 
places. With n judges, this gives n permutations. I t  seems natural to look a t  
two-sided invariant analysis. 

Usually, invariance is only natural on one side. Then, the decomposition is 
supplemented by projections onto known vectors which use the ordering as in 
Section 2. 

I t  is worth recording a relation between Mallows' device, as used in Section 2, 
and group invariance. Let a,, ,(s) be 1if sy = x and 0 elsewhere. There are the 
easily interpretable functions. The analysis of Section 2 projected a function f 
on G into one of the V,  and then reported an 1x1x 1x1matrix N-the inner 
product of the projection with each ax,,(.). 

The 1x1 X I XI matrix Mxy = C f (s)6,, ,(s) has a direct data-analytic interpre- 
tation. Also, i t  is the Fourier transform of f at  the representation L(X)  of G. 
The group G x G acts on M by (s, t)M,, = M,-I,, ,-I,. I t  can be shown using 
(Al) above, that the projection of M onto the G x G invariant subspace V, @ Vx 
equals the matrix N described above. 

A class of examples where isotypics are easy to describe arises when the pair 
(G, H) form a Gel'fand pair. Then each invariant irreducible subspace is unique 
so the isotypics and one-sided invariant decompositions coincide. Gel'fand pairs 
are characterized by this property. For a host of examples, references and other 
characterizations, see Letac (1981) or Diaconis (1988), Chapter 3G. 

A natural Gel'fand pair occurs for partially ranked data with people choosing 
an unordered committee of k out of n. Then G = Snand H = SkX SnPk(the 
subgroups permuting the first k items among themselves and the last n - k 
items among themselves). In the notation of Section 3, L(X)  = Mk,n-k  and 

For partially ranked data, as in Section 3, X = n - k, k is the only example 
yielding a Gel'fand pair. Sax1 (1981) determines all subgroups of Sn yielding 
Gel'fand pairs. 

One approach to characterizing the isotypic decomposition by invariance 
considerations uses End,(L(X)), the linear maps +: L( X)  -, L(X)  that com- 
mute with the action of G, 

For finite groups, f is a function on cosets. Because G acts transitively, + is 
determined by its action on H, say, 

Acting by h E H, we see c(hx) = c(x) is required and any choice of coefficients 
satisfying this gives a suitable 9. Lifting c(x) back to a function on G [by 
c(xh) = c(x) as well], we see there is a 1-1 correspondence between bi-invariant 
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functions c on G and maps @, E End(L(X)), given by 

The following lemma characterizes isotypic subspaces as minimal invariants 
under G and the @,. 

LEMMAAl. Let G be a finite group, H a subgroup, X = G/H and L(X )  the 
complex functions on X. Let V c L(X)  be a subspace. Then V is invariant 
under G and all @ E EndG(L(X))if and only if V is a direct sum of isotypic 
subspaces. 

PROOF. Choose a basis for L (X)  such that G acts as block diagonal matri-
ces, one block for each irreducible representation. Schur's lemma [Serre (1977), 
Proposition 41 implies that any $I E EndG(L(X))only maps isomorphic pieces 
among themselves. I t  follows that any such 9 preserves isotypic pieces. Con-
versely, maps permuting isomorphic representations are in EndG, so any G 
invariant V contains all isomorphic copies of any irreducible it contains. 

There is a geometrical description of invariance under EndG which has a 
direct, combinatorial flavor. I t  is stated here for partially ranked data, but 
similar results can be obtained in any circumstance where the H \ G/H double 
cosets have a nice description. Recall that H X H acts on G by (h,, h,)s = 

hT1sh,. The orbits of this action are called double cosets. The indicator func-
tions of these double cosets form a basis for the H bi-invariant functions that 
appear in (A2) above. 

I t  follows that a subspace V is invariant under EndG if and only if it  is 
invariant under convolving.by the indicators of double cosets. 

Consider the symmetric group S, with a Young subgroup S,. Here A = 

(A,, A,, ...,A,) is a partition of n. The homogeneous space X = S,/S, can be 
represented as the space of partial rankings: arrangements of {1,2,. . .,n) into 
groups of size A,, A,, ...,A,, where order within a group doesn't matter and 
order between groups does matter. A matrix valued function D: X x X into 
r x r matrices, with row and column sums (A,, A,, ...,A,) can be defined as 

This is a measure of the discrepancy between the partial rankings x and y. I t  
satisfies some useful properties. 

LEMMAA2. The discrepancy D defined in (A3) satisfies: 

(i) D(x, y) = D(sx, sy) for x, y E X, s E S,. 
(ii) D(x, x )  = Diag(A,, A,, ...,A,). 

(iii) D(x, y) = D(y, x )~ .  
(iv) If x # hy for some h E S,, D(id, x) # D(id, y), so D(id, x) determines 

the double coset containing x. 
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(v) Let D be a fixed matrix with nonnegative integer entries having row and 
column sums A,, A ,, ...,A,. 

n;=,A ~ !  
# {x: D(id, x )  = D) = =& N( D ).nijoij! 

(vi) n-Tr(D(x, y)) is a G invariant metric on X. 

PROOF.Claims (i)-(iii) are obvious. Claim (iv) is argued in James and Kerber 
(1981), page 101. For claim (v), an x with xl having Dl, elements in common 
with (1,2,. ..,A,), Dl, elements in common with {A, + 1,...,A, + A,) and so 

on can be chosen in R;='=, ways. The next row of x can be chosen in( A:i) 

nr~ = l  ways and so on. This product equals the right side of (A4). 

For claim (vi) n - D(x, y) = 0 if and only if /xinyil = X i  for all n; symmetry 
comes from 3. The triangle inequality follows from the triangle inequalities 
for X i  - /xinyil for all i. This is well known; see, e.g., Diaconis (1988), Chapter 
6D, Example 1or Critchlow (1985). 

The discrepancy D allows a geometric description of EndG invariance. Con-
sider f E L(X). Given a fixed matrix D, let 

with N(D) defined by (A4) above. Thus GD replaces f by its average over all y 
a t  discrepancy D. The remarks above may be summarized as follows. 

PROPOSITION.Let X = SJS,,. An Sn invariant subspace V c L ( X )  is a 
direct sum of isotypic subspaces if and only if V is invariant under all averages 
qb, defined in (A5). Isotypics are the minimal invariants. 

REMARK.For A = (1,1,. ..,1) and S,,= {id), the matrices D are permuta-
tion matrices and cp, invariance is equivalent to invariance under Snacting on 
the right. For A = (k, n - k)  it can be shown that for any s E S,, s-' E SAsSA. 
This implies that left Sninvariant subspaces are automatically invariant under 
convolution by S,, bi-invariant functions. Here, the discrepancy is equivalent to 
the metric k - Ixl nyll. 

For more general A,  the combinatorial interpretation given here, while not 
totally transparent, seems like a good start a t  interpretation of the isotypic 
subspaces. It is instructive, even in the case of Gel'fand pairs. 

Checking (A5) will be vastly easier if the following conjecture holds: There are 
two distance matrices Dl, D2 such that if (A5) holds for Dl, D2 it holds for all D. 
This seems plausible because most algebras are generated by two elements. 
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