OGDEV.NET
$EDM

F W §OFEEAN i MEEHE

» HDRVE 44 14 S I (Fk T-OpenGL)

+ Vertex Cache (OpenGL5ZHL)

v Slope (RHE) LR AL ML, (EHb TR Jer (1 B
v TR] BRI IS B TR R S

v BATTUSRM3DEE ()
v HAT FLSE3DEE (1)
v Z B4 ED3D N IRVE Y

+ Portal 24

v i =i
v 2R AL B] 25
v WP R IVE RO (ke LDE) Ok SR R

v JLAEIEONTine J5UimH

w AR R E R A 2 GRLER)
v R B R IVE R (Al

v CRESRCY BT i i

» MIDP2.. LA ()BT e

oML E

v DB PRI — RISk
v [HLF 15 NIRRT K

v AR T A A

v LB P PRI AR

v [P QAR B FLS

v CSUF R NPT 1 R

v CO Ny] kAR 0

NN INGCEICS

HOfIEE i ORRREA oAt HOESRE i OEEhAE HOEEEEET
e PR ﬂ
I A MG - —ANTGAEE
P S [Azure] W [765]

Terrain Tutorial

A TGA library
—TGAE

This library is introduced here in order to make this tutorial self-contained. The library is pretty simple,
handling only uncompressed images, RGBA or greyscale. No support for color palettes is provided. If you're
interested in a full-blown TGA library I would suggest a look at Paul Groves®" TGA loader. Check out his home
page.

http://home.clara.net/paulyg

KR XA B B T IXAE, AR TIN G R XA S5, RAEAE B R4 (11818, ROBASRFH A £ . A3C
FEUR M. SRR ShAE AT I TCAIK SR, TR IIRAE K Paul Groves™ TGA loader, FH& NI bl .

The functions in this library include loading and saving TGA images, colour reduction from RGB to greyscale,
and a screen grabber.

XA ER R A BRI B TOAIRI R, KPR, — N IR REHE L () T

TGA file structure
TGASC A4 1y

A TGA file has a header that consists of 12 fields. These are:

—ANTGARI AL 1248k, e AT

id (unsigned char)

colour map type (unsigned char) K2R

image type (unsigned char) {437

colour map first entry (short int) HiK%— AL

colour map length (short int) &ifald K i

map entry size (short int) EIAII}

horizontal origin (short int) /KVl2ah

vertical origin (short int) &M

width (short int) %%

height (short int) ¥

pixel depth (unsigned char){% =K1

image descriptor (unsigned char) %k

From all these fields we only really care about the image type, in order to find out if the image is
uncompressed and it is not color indexed, the width and height of the image, the pixel depth, and finally
the image descriptor that contains the image pixels.

A I L U, FATIE— OG0 1 FU BB 2K (image type) , o4 T R DR AR 410 9T BB A R R 51, F1 G e B
FFE S, BRI , i LR RIR RN R K1 = 2.

Some possible values for the image type are:

LT HE A IR A I

1 - colour map image

2 - RGB(A) uncompressed

3 - greyscale uncompressed

9 - greyscale RLE (compressed)

10 - RGB(A) RLE (compressed)

The only types that we"re dealing with here are 2 and 3. As for the pixel depth, it represents the number of

bits per pixel used, i.e. a greyscale image has 8 for pixel depth, where as a RGBA has 32.

ﬁﬂgé%%;@iz,:ﬁﬂ*1%%&”,X~J‘?1%%iﬁ”ﬁf§,Ei%‘é?ﬁﬁ‘f%(%ﬁﬂ% (375K 50, < P PRI AN 32 A0 T84, TTTRGBATSE A
= 32{7.

One note of interest is that a TGA stores the pixels in BGR mode, i.e. the red and blue components are
swapped, relative to RGB. This implies that we"ll have to swap them when we load or save the image.

X LR K SR TOARK 75 3R 1 5 U2 BOREZ, AT TRGBIE, ZL(AFIME (B /r B H A T AL o X ABHURFATLE SR it
LRI, AT E A E AL E

Now for some library details. The following status codes where defined:

TN E ST R .

TGA_ERROR_FILE_OPEN

TGA_ERROR_READING_FILE

TGA_ERROR_INDEXED_COLOR - when we"re presented with a color indexed file

TGA_ERROR_MEMORY

TGA_ERROR_COMPRESSED_FILE - when we"re presented with a compressed file

TGA_OK - This is what we want! XA AT 21

The following structure provides the necessary fields to hold the image information and pixels:
NS T B EOR AR AT EUR A B ME ER

typedef struct {

int status;

unsigned char type, pixelDepth;

short int width, height;

unsigned char *imageData;

}tgalnfo;

The following functions are available in the library:
I~ THI X 2% by B J2 b m] HE R

tgalnfo* tgalLoad(char *filename);

Parameters:

filename - the name of the image file

A4 - FERINARR

This functions returns a structure with all the image info and pixels. Pixels are stored in imageData, which
is an one-dimensional array with values from 0 to 255. In order to read this array correctly, we"ll need to
check the values of pixelDepth, width and height. The value of pixelDepth tells us which information is in
the array. There are 3 possible values with the following meaning:

KA MR Bl — A R A7 3 RS BRE 25 R . BB A7/ imageData ., ‘Bt —MEIK ORI 2551 — 44l AT
IEFIA R EOX A AL, A7 Z AT frpixelDepthft, SEJEFImEE . {EHpixelDepthi VrIRAMMATZ Fifi = AN REM 2 —:

8 - The image is greyscale, each array value corresponds to a pixels intensity. 8 - KR KIEN, BAMEEA
{EARFA N 5 32

24 - The image is RGB, each pixel requires 3 components of the array. The array should look like
R,G,B,R,G,B,... 24 - EIBUERGBAK N, BEMERTGEINAAY, BN ZZXFEHESIR, G, B, R, G, B

32 - An RGBA image, where each pixel requires 4 components. The array looks like R,G,B,A,R,G,B,A,... 32 - ¥
BIERGBAKE X, RFAME R T EI MLy, B RZ X FEHESIR, G, B, A, R, G, B, A

When calling this function is it always a good idea to check the value of the fieldstatus to see if there
were any errors.

DAL XA BB, —DEFRI ISR A fieldstatus i B A AT AR Bt

The next function allows us to save pixels as a TGA image

T AR RA G Z A AT R TCAR R

int tgaSave(char *filename, short int width, short int height, unsigned char pixelDepth, unsigned char
*imageData);

Parameters:

filename - The file name where we want to save the image (extension is required!).
width - The width of the image

height - The height of the image

pixelDepth - The number of bits per pixel, 8 for greyscale, 24 for RGB, and 32 for RGBA
imageData - The image pixels

S

filename - AT EMAAN M4 (FEY A

width - EGI0 5

height - EI& =%

pixelDepth - HAMEZE LKA, 8/EKEIE, 24/ERBIS, 32IRGBAKS =
imageData - & #4H%

This function returns a status code. TGA_OK means everything went smoothly.
B $ iR [Mlstatushit, TGA_OKist W] — 17k & i AR TR

The next function is provided so that we can save series of images. For instance, if the file name is "foo"
then the first time this function is called it will save an image as "foo0.tga", the second time "fool.tga",
and so on.

NN RREERAL T O/ AF— RV IR, B, WnRSCAF 44 02 =< Foo ™ < SR J5 55— I R B0 I I ORAF (¥ S48 & Foo0 . tga
“<, RJGHE kL fool. tgats, LIRS,

int tgaSaveSeries(char *filename, short int width, short int height, unsigned char pixelDepth, unsigned char
*imageData) ;

Parameters:

filename - The file name where we want to save the image (no extensions in here please).

width - The width of the image

height - The height of the image

pixelDepth - The number of bits per pixel, 8 for greyscale, 24 for RGB, and 32 for RGBA

imageData - The image pixels

As always, it is a good idea to check the return value of the function to see if the operation was completed
successfully. The next function allows you to take a screen shot and save it to a TGA image. With this
function it is possible to grab the entire viewport, or just a part of it. The syntax is as follows:
B8 — R, UFI S BURAS E BR BUR R MG B R e T — NS TRATAT DAPTURUS %2 P A7 A R TCA R 5 . IX /N BR
HOTRE AR, BN AL

int tgaGrabScreenSeries(char *filename, int x,int y, int width, int height);

Parameters:

filename - the image file name {4

X - The x component of the lower left corner of the image. &% Ffftixs it

y - The y component of the lower left corner of the image. K% Ffftys &
width - The width of the image. K% 1%

height - The height of the image. FI{ZM)%

The following code snipet illutrates how to capture the whole viewport (assuming a viewport from 0,0 to
w,h) , and only its top half.

NI R ARD B 7R T U R IMIBCEAN (ERAL I 2 M0, 0% 0w, h) , FIURAT— 2R 1 m E T
tgaGrabSeries("bla"”, 0,0,w,h);

tgaGrabSeries("bla"”, 0,h/2,w,h/2);

The code for the above function is:

F TR BR B AR TS T

int tgaGrabScreenSeries(char *filename,

int xmin,int ymin,

int xmax, int ymax) {

int w, h;
unsigned char *imageData;

w
h

= xmax - xmin;

= ymax - ymin;

imageData = (unsigned char *)malloc(
sizeof(unsigned char)

*W*h*4);

glReadPixels(xmin,ymin,xmax,ymax,
GL_RGBA,GL_UNSIGNED_BYTE, (GLvoid *)imageData);

return(tgaSaveSeries(filename,w,h,32, imageData));

The key is the OpenGL function glReadPixels. This function reads a rectangular area from the frame buffer
and stores it in an array (this array must have previously allocated memory). This function has the
following syntax:

XA PR HUK OB 72 OpenGLIK i KigIReadPixels, IXA R HIMIZEAF I —AMHEE , IF HALEREAEAE MR (BUR 0
R T WAFRD XA BREEE T

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid
*pixels);

Parameters:

x - the x component of the lower left corner of the requested area [XiH/c N1ALFRIFIXS 5

y - the y component of the lower left corner of the requested area [XIf/: T fAAKR Ky &

width - the width in pixels of the area XIRFI% %% /E

height - the height in pixels of the area XI5 254

format - determines which data we"re going to read. See bellow for some possible values.{%# X, AIfEE N
AT g

type - the data type of the data we're going to read. FRAITVERSEMEHEM

pixels - An array with the pixel information. The array data depends on the format and type. %dis 5 ibik
The format specifies if we"re getting RGBA data, or just the Green component. Some possible values are:
TR FEM AR T L, LA R

GL_RGB - Read the three color components

GL_RGBA - RGB + alpha channel

GL_GREEN - Read only the green component

GL_BGR, GL_BGRA - This format reads the same information as GL_RGB, and GL_RGBA, but returns the Blue
component first instead of the Red one.

NBote that GL_BGR and GL_BGRA were only introduced in OpenGL 1.2. As for type the value we want is:
GL_UNSIGNED_BYTE - each component is represented has a number between 0 and 255

This is the data type of each component in a TGA image.

XA JETCARMG B /3 A B B

This next function converts a RGB image to a greyscale image. The formula used was posted on the openGL.org
discussion groups some time ago.

T AN RECKROBIEMG A4 T 2K KBl OpenGL.org is g 21 LART M ix A A 5.

greyscale = 0.30 * R + 0.59 * G + 0.11 * B

This function returns the modified image information. Besides imageData, the fields pixelDepth and type are
also altered accordingly to reflect the new image type.

AR HGR MG SO 10 81 %45 KL, B T imageData, pixelDepthisl, A fri#fAR e T 8 (M G5 B T .

void tgaRGBtogreyscale(tgalnfo *info);

Parameters:

This last function releases the memory, so when using the image for a texture or a height map, the image can
be destroyed afterwards.

B A RERIL T WAE, PR AN GO m RS, PR B T DL T

void tgaDestroy(tgalnfo *info);

Parameters:
The next section presents the fully commented code for this library.

AT, TRATPREC AT R A IR AT o

AR B RIS TR A5 B2 F K, 0 AT] A 10 R B IR AN AT TG 2R

ToAEfvEiR ! |
=] | IEERER RN IR RRERER RN IO
TR RFL:
[2) 2EM L, sy (SEAKRERS K T4 e T I Yo
TP 22 A R HRGE) B e N RSN [At - Tt 0% e o —
VRESPR) T ZAEMAIL: |
[z} 2] i, eyt N R) % T %7k

AL

(2D 74—V RIS (¥4 A Tt Ak 1) 4 5 B30 11 R = sl)
FILHETT

() o 1 9 G P B B B BN B3 A AR B
BRI 5 P TR N A

(20 e b E A o0 B S R R R &,
eI A BUAE W it A 2 8k 5 |

) 2 5AH S RN CL M2 Lk AR

