OGDEV.NET
$EDM

§OFEEAN

i MEEHE

v HDRYE s 114 S L (L F-OpenGL)
v Vertex Cache (OpenGLSZHL)
v Slope(RHK) VEZAE A, TEHUZIE B it S H
v TR] BRI IS B TR R S

LS M3DEECR)
K[13DEE( 1)
v Z )M 4EAED3D F[¥E YL

+ Portal 24

» HET R U7 A
v [ ZSERR A )20
v R R EE R B (kK R S REI R L

v JClEIZEOnTine J5LiH]
F AR R EE R B2 GRLECR T )
w R B R IVE 2 CoRALY

v CRESRCY BT i i

» MIDP2.. LA ()BT e

oML E

w [P B F R — S sk
v [T N R UEARTT K

AR BT A T R

w [T B NIRRT AR

v [ AU R BB IR

v CSUF R NPT 1 R

v CON W4T SEA A

v [ IMAX R 20N Sk BORE

§ o o ORRRRER §oEAwIt i E&TM i OEEhEE BB
.
WIREE: A A
|
S T A HHRE - W
K- [ Azure ] b [776]

Terrain Tutorial
Hi B AR

Computing Normals

RS

To apply lighting to a terrain, either using OpenGL lights, or simulating them, it is necessary to first
compute normals. A normal is a vector that defines how a surface responds to lighting, i.e. how it is lit.
The amount of light reflected by a surface is proportional to the angle between the lights direction and the
normal. The smaller the angle the brighter the surface will look.

T A G AT G AT R N 0penGLIDIG IR, BRA B EAT], IRAFRM LT 15k SIkE . vk — A ml i CT 3Rt
D R I AISE A8, B o 25 e L SR ) S DG i 5 6 g 1) R T (R BB LG . AN R T s Bl

Normals in OpenGL can be defined per face or per vertex. If defining a normal per face then the normal is
commonly defined as a vector which is perpendicular to the surface. In order to find a perpendicular vector
to a face, two vectors coplanar with the face are needed. Afterwards the cross product will provide the
normal vector, i.e. a perpendicular vector to the face.

OpenGL F I T LA SCRNESANTH mi ik . AL SCT THEER , IRA KAL) B B R A T X ANR . 4 T 23k BNmi
EAS I, TRERA LT . R e X vk ), AN EAS T )

So the first step is to compute two vectors coplanar to a face. Assuming the the faces are triangles defined
by points t1,t2,t3, then two possible vectors are:
T LA S AT SR P AN LT A i R = A B EL, 12,8358 X, ARSI AR [l i

vi=1t2 - tl
v2 =13 - tl
t2 vi t1

v2

3

With the two vectors, vl and v2, it is now possible to compute the cross product between them to find a
perpendicular vector to the face.
HTHA VIRV, IAEBATE AT LAV 5O, 4R 3 IEAS TR AN i)

Normal
Vector

v2



The equations bellow show the necessary steps to compute a normal vector v. The required opeartion is called
cross product, and it Is represented by "x".
TSR ER T EVE LV B — PR XA TR RIS HE M, AT e =R K

v =vl xv2

v = [vx,vy,vz] where,

VX = vly * v2z - vlz * v2y
vy = vlz * v2x - vIix * v2z

vz = vIX * v2y - vly * v2x

Another necessary step to obtain proper lighting is to normalise the vector, i.e. make it unit length.
OpenGL takes into consideration the length of the normal vector when computing lighting. Normalisation
implies first computing the lenght of the vector, and then dividing each component by the vectors length.

Ty AN AL D BERAT IE A DG ORI XA o, SR e R KRS . OpenGLAE TS R R IR i 75 2258 18 I AL ¥k
I 4 A A I R R B0 S U S e i R, AR 1) B A B0 B DAL A

The length of a vector is computed as:

[HRSNIDR NSV N/ W 7

|=\"vx'vx+w‘vy+vz*vz

Therefore the normalized vector nv is computed as:
E A, Uk [ 1) v SR AR G R
nv = [nvx,nvy,nvz] where,

nvx = vx /|
nvy =vy /1
nvz =vz /1

The main problem with assigning a normal per face is that the terrain looks faceted, i.e. the brightness of
each face is constant, and there is a clear difference between faces with differen orientations. In order to
get a smoother look normals should be computed per vertex, and not per face. When computing normals per
vertex it is necessary to take into account the faces that share the vertex. So for instance if using quads,
each vertex (excluding the corner and border vertices), is shared by four polygons. The normal at a vertex
should be computed as the normalised sum of all the unit length normals for each face the vertex shares.
Consider the following image:

Ay M T AR FH TR e doe R ) 10 RUf 2 e bk — e — 3Ry, RUAEAN T R PE AR AR 4, S LA 5 1) R T B R LA
WL IIXH] O TRRREINIOE, BATBIOREN TG SEAL, ARSIk . A S RGN, B
I B BB WS E P I, FrATRMIH e 284, AN TIE GHIERR s AT U2 UTBIL . X
AT R HNEZ AN %2 B A LSS AL RIAE R — (LS5 IR . A R

v34

In the above image, v represents the normal at the center vertex. Each vij represents a normal for each face
that shares the center vertex. So for instance v12 is the unit lenght normal for the bottom right face.

The vertex normal v is computed as the normalised sum of all vij vectors:
TR RVE GV TSR A T A Vi I i H — (L SR A
v = normalised(sum(v12, v23, v34, v4l))

where

vij = normalised(vi x vj) // normalised cross product

It is also posible to consider the eight neighbour vertices, instead of only four. This latter option will
probably look smoother in the general case.

T LA R8I (K T o I e IRIE T L — R IR B0 R W e

Note that when computing the normals a scale is assumed. If the application has performed non-uniform
scaling the normals will no longer be correct. If scaling the heights is required use the function
terrainScale provided in the terrain library. This function recomputes the normals. If the grid needs
scaling then use the function terrainDim to enlarge the terrain

RV RN R T — AN WURFEFAE T — AN IR R M4, IR AEL AT IR . WEIRATS T i, At
ST ok $cterrainScal ek i %8 . XA BRBCE B AL Tk WURMIS T B, TR 4B T terrainDimsg 8ok K .

AR H GBS AR IBAE B2 H I, W AT ] 1 ) 5 A I AN FRATTIE AR



AT VP !

B A

Copyright © 2004-2007 s BLEA (L) AT Al rights reserved.
OGDEV.NET -- PZIFaiE A M el #i# 1024><768




