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Accuracy, Scope, and Flexibility of Models
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Traditionally, models are compared on the basis of their accuracy, their
scope, and their simplicity. Simplicity is often represented by parameter
counts; the fewer the parameters, the simpler the model. Arguments are
presented here suggesting that simplicity has little place in discussions of
modeling; instead, the concept of flexibility should be substituted. When
comparing two models one should be wary of the possibility of their dif-
ferential flexibility. Several methods for assessing relative flexibility are
possible, as represented in this special issue of the Journal of Mathematical
Psychology. Here, the method of cross-validation is applied in the com-
parison of two models, a linear integration model (LIM) and the fuzzy-logi-
cal model of perception (FLMP), in the fitting of 44 data sets concerning the
perception of layout seen among three panels with the presence or absence of
four sources of information for depth. Prior to cross-validation the two
models performed about equally well; after cross-validation LIM was statisti-
cally superior to FLMP, but the overall pattern of fits remained nearly the
same for both models. � 2000 Academic Press

THEORIES, MODELS, AND PERCEPTS: ACCURACY, SCOPE, AND SIMPLICITY

Across the practice of science in general, one finds suggestions concerning the
goals of scientific theories. A good theory, among other things, should be more
accurate, broader in scope, or simpler than its competitors (Kuhn, 1977; Thagard,
1990). Similarly, across cognitive science one finds suggestions that a good model
should be descriptively adequate, general, and only as complex as is necessary
(Jacobs Grainger, 1994). Finally, to complete a set of near parallels, in the field of
perception a perceptual system should be well attuned to external affairs, it should
operate smoothly in different environments with different stimuli, and it has often
been said that it should prefer ``goodness'' in a form over less simple alternatives.
Thus, in all three domains there is a concern with accuracy, which seems to have
a well-defined basis, or at least a well-measured one; with scope, which would seem
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to have a logical basis, but is nonetheless ill-defined; and with simplicity, which
often seems to have little more than an aesthetic basis. If one were to rank the
importance of these goals, I am sure most theorists and researchers in each domain
would agree that accuracy is most important, then scope, then simplicity. The
extent of discussion of these in each field, however, probably follows the reverse
order: Accuracy raises few hackles; scope and simplicity, on the other hand, are
often fraught with conflict.

Scope and the Problem of Demarcation

The major problem with the idea of scope is that of demarcation: What lies
within the legitimate domain of a theory, a model, or anything else, even percep-
tion? What lies outside? If one could find firm boundaries to such a domain, one
might calculate area or volume or perhaps simply count the number of entities
within it. Any of these could serve as measure of scope and then be used to compare
theories, models, or whatever one was concerned with. However straightforward
this idea may seem, it does not work well in practice. The structure of conceptual
domains, of whatever kind they be, has been the major focus in a field of study
called categorization. Traditional approaches to categorization have looked to the
idea of necessary and sufficient features, defining the boundaries of domains or
categories. If such features exist, an item lies within the category of interest; if not,
it does not. Within psychology over the past 20 years (Rosch 6 Lloyd, 1978) and
within philosophy over the past 45 years (Wittgenstein, 1953), however, there has
been growing dissatisfaction with this approach. Instead, boundaries are now best
thought to be fuzzy, even indeterminant. The foci of inquiry have been on examples
within a domain, sometimes called exemplars; on domain centers, sometimes called
prototypes; and on the shifting nature of similarity within a category, sometimes
called family resemblance (see Smith, 1990, for a review). With the idea of fuzzy
boundaries the notions of demarcation and scope become problematic. It may be
that the only way to compare relative scopes is in situations where the domain of
one category appears to lie entirely within the domain of another.

Given that this special issue of the Journal of Mathematical Psychology is on
model comparison, let me give a hypothetical example concerning models. The
comparison of the scope of two models involves those data sets that two models do
and do not fit well. If Models A and B fit several sets about equally well, but Model
B fits other data sets better, then Model B can be said to have more scope. Such
a situation is suggested in the left panel of Fig. 1, where the scope of the reasonable
fits by Model A is nested within that of Model B. Thus, Model B is the broader
model. If, on the other hand, the data sets fit well by each model are not nested,
as suggested in the right panel of Fig. 1, then comparison becomes much more dif-
ficult. The region of fit where A is superior to B may be smaller than that where
B is superior to A, but it might be judged as more important. Moreover, even the
situation of nested domains is subject to revision; before declaring Model B the
superior model, the researcher must try to search for cases in which Model A is
superior to Model B. This is probably best done by simulation.
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FIG. 1. Venn diagrams of the hypothetical scope of two models. The left panel shows nested
domains for the two models, and the right panel shows nonnested domains. In the context of this
discussion the relationships of the models LIM and FLMP might be analogous to those of Models A
and B.

Simplicity, the Problem of Counting, and Other Issues

The concept of simplicity is even more slippery than that of scope. Interestingly,
its discussion is much older in the field of perception than in mathematical model-
ing. Moreover, its problems may serve to elucidate the issues at stake. Mach (1906)
discussed percepts as following a principle of economy, and Wertheimer
(1920�1967) and Koffka (1935) gave us the idea of pragnanz, or of the goodness and
simplicity of form. Midcentury interest in information theory led Hochberg and
McAlister (1953) and Attneave (1954, 1982) to try to quantify goodness and
simplicity. This line of inquiry culminated in the work of Leeuwenberg (e.g., 1971,
1982; see also Restle, 1979; Cutting, 1981). Leeuwenberg applied some ideas from
algorithmic information theory (e.g., Chaitin, 1977; Komolgorov, 1968; see also
Grunwald, 2000) to fashion his notion of a simplicity metric; that is, the represen-
tation of a preferred percept among many corresponds to a statement of the
shortest length.

Consider the top figure in the left panel of Fig. 2. How does one perceive it? The
interpretation in Configuration A of two similar panels, one behind the other, is
almost universally preferred over the two alternative interpretations shown. Indeed,
in a brief demonstration study done for this article, given the top figure 89 of 112
subjects chose Configuration A. It is also simpler than the others. In the spirit of
Leeuwenberg, one coding might be

IA=4(S, ,90) applied to [x1y1, x2 y2] %90=8, (1)

where IA is the information load of Configuration A (its simplicity metric);
(S, ,90) is the sequence of operations for drawing a line segment S and then
rotating the direction of the pen's path through ,90 (or a right angle drawn to the
right); 4 is a statement of iteration that this set of operations is done four times,
closing the figure; [x1y1] is the starting location for drawing the first square from
the upper-left corner; [x2y2] is that for the second square (again, upper-left
corner); and %90 is the initial angle for drawing the first pen stroke (directly to the
right). By Leeuwenberg's approach the information load for this array might be 1
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FIG. 2. One hundred twelve undergraduates were shown the ambiguous figures at the top of both
panels and asked to interpret what they saw. Given the three options at the left, 89 chose Configuration
A, 19 chose Configuration B, and only 4 chose something like Configuration C. Leeuwenberg (1971),
among others, would claim this is because Configuration A is simpler. But simplicity metrics are
problematic. These viewers preferred Configuration D (97 of 112) over Configuration E (15 of 112), even
though the latter can be coded as simpler.

(the statement of iterations)+2 (the drawing primitives)+5 (the four initial
coordinates and one initial direction for the drawings)=8.

One alternative interpretation of the display shown in Configuration B is the
concatenation of a square with an inverted L-shaped hexagon. Such a figure might
be coded:

IB=4(S, ,90) applied to [x1 y1%90],

and [(2(S, ,90), 2(s, ,90), (s, ,270), (s, ,90)] applied to [x2 y2%90]=19 (2)

where the first line of (2) is almost the same as in (1) and the second line
contains the new symbol s for a shorter segment half the length of S and ,270 for
a right angle drawn to the left. The information load for this display might be 6 (for
the square in the first line)+13 (for the hexagon)=19. Clever choices of primitives
and clever schemes of rewriting this statement might reduce the load, but because
the redundancy of squares creates a relatively compact code, it seems unlikely that
the load could be reduced to 8. And indeed only 19 of 112 subjects chose this
configuration. Finally, another interpretation of this figure is as the occlusion by the
front square of a figure with a serrated edge beneath the occluding contour shown
in Configuration C. I will not attempt to code this interpretation, but simply rely
on intuition that it would not have an information load as low as 8 or even 19; and
only 4 of the 112 subjects chose this version.

On other theoretical accounts, these two nonpreferred alternatives would be
discussed in terms of accidental and nonaccidental properties (Witkin 6 Tenenbaum,
1983). That is, the abutment of edges in the first nonperceived case would seem to
be an accident of the selection of forms and their position, not likely to occur
through any means except by special intervention of a designer. Similarly, in the
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second, the concealment of differences between the two objects and the nonconceal-
ment of their similarities also would seem to be the result of intervention rather
than accident. This kind of explanation invokes a likelihood principle (Helmholtz,
1867�1925; Hochberg, 1982) rather than a simplicity principle (Leeuwenberg 6

Boselie, 1988). Leeuwenberg's approach, however, only takes into account the
length of the logical statement necessary to write a code of the figure. Notice that
these codes represent models of what could be perceived and the model for two
squares has the fewest parameters.

Work in philosophy and in perception, however, has shown that simplicity
metrics are problematic. Goodman's (1972) critique focused on the universe of
primitives chosen to code a verbal statement. Here we can generalize to visual
forms as in Fig. 2. The problem is that there is no universal alphabet of form com-
ponents in vision. Thus, there are no domain-specific constraints on the choice of
primitives. With a cagey choice of primitives one can show equal simplicity for any
pair of figures or even greater simplicity for almost any figure over another. For
example, if one allowed squares and L-shaped hexagons as primitives, the first two
interpretations in Fig. 2 would have the same information load and would be
equally simple. Thus, the outcome of any information load (or counting of
primitives) is dependent on what primitives are allowed. The most principled
applications of this approach to simplicity to perception are those with primitives
chosen from another field, such as physics (Restle, 1979).

Most critically, however, Hochberg (1986) argued that simplicity often does not
even predict what is seen. Consider the figure in the top-right panel of Fig. 2.
Configuration D might be coded

ID=[2(S, ,90), 2(s,,45), (s, ,90)] applied to [x1y1%90]

and 4(S, ,90) applied to [x2y2 %90]=17, (3)

where the length s has been adjusted a bit. Configuration E might be coded

IE=[2(S, ,90), 2(s, ,45), (s, ,90)] applied to [x1y1, x2y2] %90=13. (4)

Although, by this construction, Configuration E is simpler, only 15 chose E while
97 chose D. One might quibble with this analysis and suggest that each perceived
figure must be written separately. This would readjust some of the information
loads: IA=12 and IB=19, with Configuration A retaining its advantage over B and
ID=22 and IE=17, with Configuration E now being the simpler. But this kind of
patchwork will not solve all problems.

For example, imagine a rotating wire-frame cube seen in perspective. It is multi-
stable. One interpretation is the simplest, a true cube in rotation. One can easily
imagine a Leeuwenberg code for such a figure. But often perceivers, particularly
more experienced ones, prefer to see a prismatic six-sided figure that continually
changes shape as it rotates. No simplicity metric can account for this phenomenon;
it seems to be a clear exception to the notion that perception prefers simpler
objects. Moreover, it provides fodder for a discussion of whether we should even
prefer simpler theories or simpler models.
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With these ideas about scope and simplicity from outside the considerations of
modeling, let me now turn to the task at hand�using this larger framework for
understanding some tensions in choosing among models. In experimental psycho-
logy and in many other fields one's style of experimentation and evaluation can
proceed on two fronts. The first and most common is simple hypothesis testing.
Data are generated and patterns are tested against the null hypothesis. Although it
is standard fare in our field, not everyone is pleased with this approach (see, for
example, Shrout, 1997); many claim that the null hypothesis is always wrong,
regardless of what experimental hypothesis one might cherish. Second, and much
more pertinent to this special issue, one can compare two models. This frees one
from the vagaries of null hypothesis testing, but the inferential road is not always
smooth.

THE FLEXIBILITY OF A MODEL

The standard conceptualization in our field, I would claim, is that shown in the
top of Fig. 3. We start with the data given to us from our experiments. Concep-
tually we divide the data into a patterned portion and a portion that is residual of
that pattern. We typically call the latter noise. The pattern is carved out of the data
by the model, and the residual noise is measured as the lack-of-fit. When two
models, say Models A and B, are fit to the data, the model with the smallest
residual is typically declared the winner. Thus, if noise; is smaller than noise: , then
we say that Model B fits better. Typically, care is taken that the two models are
comparable. In particular, it is often said one should compare models with the same
number of parameters. Counting parameters is typically thought to yield something
akin to a measure of simplicity; the simpler model is the one with fewer parameters.

Given this view, there is an inherent tension between scope and simplicity. One
the one hand, the experimenter wants his or her model to fit, and fit well, as many
different data sets as possible. This, of course, could be done simply by adding more
and more parameters. On the other hand, the experimenter wants his or her model

FIG. 3. The top panel shows a simplified view of a problem of induction in science, partitioning
data into pattern and noise. We measure the goodness of fit of the model by the size of the noise; the
less noise, the better the fit. However, a more complicated view proposed here suggests that all models
incorporate some of the noise into the fit, leaving less noise as residual. When two models are compared,
the classical approach only measures the residual noise not fit by the models. I claim that the goal of
this special issue of the Journal of Mathematical Psychology is the discussion methods for considering
both types of noise. (This figure shows the two types of noise to have a zero-sum relation, but this is
a simplification that may not be the case.)

8 JAMES E. CUTTING



to be as simple as possible. This typically means that the number of parameters
should be limited. Conceived in this manner, scope will always trade off with
simplicity.

I claim, however, that a concern with this scope�simplicity trade-off is ill-
considered. Simplicity is not a useful issue in this context; instead we should
consider flexibility. Models can be differentially flexible, one accommodating more
noise in data when it should not. The classic example of this concerns nested
models, where the parameters of one model are a subset of those in another. The
model with the greater number of parameters will necessarily fit data better than its
simpler, derivative mate. The case I will consider later in this article, however,
concerns nonnested models with the same number of parameters.

How I conceive of flexibility is shown at the bottom of Fig. 3, an unofficial
elaboration of the received view. When, for example, Model A is fit to a set of data,
I claim it partitions the noise. Some of the noise (noise(1&:)) will be fit by the
model, incorporated into its pattern; other noise (noise:) will be left as residual.
Since different models carve different patterns out of the data, the noise will be
partitioned differently by the two models. The more flexible model will absorb more
noise into its pattern and fit the data better. Thus, if Model B is more flexible than
Model A, Model B will always have an advantage in model comparisons because
noise(1&;) , a measure of its flexibility in a particular context, is larger than
noise(1&:) . The goal of this special issue is to present techniques developed in
various disciplines to penalize a more flexible model appropriately, in proportion to
its flexibility relative to the other model. According to Fig. 3, this should be some-
thing like [noise(1&;)&noise(1&:) ] for a given data set.

A CASE STUDY IN THE COMPARATIVE ACCURACY, SCOPE,
AND FLEXIBILITY OF TWO NONNESTED MODELS

There is a sense in which this symposium was my fault, or at least my fault that
it occurred in the context of psychology. Thus, let me provide some background. I
am a part-time psychophysicist interested in the visual perception of real-world
phenomena. This makes me a global psychophysicist in the tradition of Gibson
(1950). By habit, I manipulate relatively complex variables in both factorial and
regression designs, and I search for the relative utility of multiple sources of infor-
mation in a single perceptual task. Although the study of the comparative utility of
multiple sources of information is common in the fields of decision making
(Kahneman, Slovic, Tversky, 1982), social psychology (Nisbett 6 Ross, 1980), and
speech perception (Liberman, Cooper, Shankweiler, 6 Studdert-Kennedy, 1967
Massaro, 1988), it has until relatively recently not been common in the field of
visual perception. The reason for this may be the influence of the later work of
Gibson (1979), with his emphasis on invariants, or one-to-one correspondences
between information in the visual array and states of the physical world. Gibson
proposed that single sources of information (invariants) could account for each
percept. If this were true there would be little need to consider multiple sources and
how they are integrated. On this view, they simply are not. But it seems to me this
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idea is wrong; perception normally appears to function on the basis of multiple
sources of information. To be sure, invariants have been found, but they probably
number less than two dozen. With an army of researchers focused on their
discovery for 20 years one might have thought they would be easier to find. Thus,
I claim invariants are likely to be insufficient in number to account for the bulk of
perception (Cutting, 1993).

This current state in the field of visual perception, and its focus on unitary
sources of information, is a bit ironic. The oldest endeavors in psychology, and
indeed among the oldest endeavors in all of science, are in trying to understand
how we perceive depth and the relative layout of objects around us. Euclid (Burton,
1945), Leonardo (Richter, 1883), Helmholtz (1867�1925), Carr (1935), and the
earlier Gibson (1950) are still very much worth reading in this regard and all listed
many contributing sources of information. Moreover, virtually every contemporary
textbook dealing with the perception of space, be it a general introduction to
psychology or one specific to the field of perception, lists five or more sources,
typically called cues to depth. One such list (Cutting Vishton, 1995; Cutting, 1997)
includes occlusion, height in the visual field, relative size, relative density, aerial
perspective, accommodation, convergence, binocular disparities, and motion
perspective. Others include shadows, texture gradients, linear perspective, accretion
and deletion of texture, kinetic depth, and gravity. Thus, if all of these were
taken as independent, there are at least 15 sources of visual information about
depth.

When lecturing on this material, I have been struck by questions from the more
discerning students: ``Which of these sources is more important?'' and ``How do
these sources go together?'' Despite millennia of thinking about these issues,
centuries of listing information sources, and decades of intensive research, these two
questions were largely unaddressed. Thus, through surveying the literature, we
made some attempt at answering the first query (Cutting 6 Vishton, 1995), and
through research we began investigating the second (Bruno 6 Cutting, 1988;
Cutting, Bruno, Brady 6 Moore, 1992; see also Landy, Maloney, Johnston, 6

Young, 1995).
Addressing the issue of information integration is not particularly easy in the

area of depth and layout perception. For example, if as many as 15 information
sources are considered, all listed above, a complete factorial design would
necessitate at least 215 (or about 32,000) stimuli. Moreover, if one were really inter-
ested in potential interactions one should use 315 (or about 14 million) stimuli. In
the latter case, viewing one token of each of these stimuli would take about 30
years. And even if the complete design were run with a number of observers and
an analysis of variance carried out, there would be 70,000 interactions to inspect,
some 3,500 of which might be statistically reliable by chance.

Thus, we began less grandly. Bruno and Cutting (1988) generated an array of
stimuli containing three square panels in depth. We then orthogonally manipulated
four sources of layout information�relative size, height in the visual field, occlusion,
and motion perspective among those panels�yielding 24, or 16 stimuli. That is, each
source of information either was or was not present (but see Massaro, 1988).
Employing 10 naive observers we conducted three experiments, two of indirect
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scaling (where observers compared all possible pairs of stimuli, and the half-matrix
of those relative judgments was then used as input to a scaling algorithm) and one
of direct scaling (where observers produced numbers for each stimulus they felt
corresponded to the magnitude of the variable investigated, in this case depth). The
indirect scaling involved a preference judgment task (which of the two stimuli
revealed more exocentric depth or distance among the three panels) and a
dissimilarity judgment task (how dissimilar the two stimuli were in the depth that
they revealed). Case V Thurstonian scaling (e.g., Dunn-Rankin, 1983) takes
preference judgments and produces a one-dimensional solution measured in terms
of standard deviations, and the scaling results reveal a good fit. Metric and
nonmetric multidimensional scaling (e.g., Shepard, 1980) procedures take the
dissimilarity ratings and convert them into solutions of N dimensions, as chosen by
the investigator. The better the fit in the fewer dimensions, the more confident one
can be that the solution captures the patterns in the data. We found that a one-
dimensional solution fit the data quite well. These scale values for the 16 stimuli
were then used as dependent measures in a regression analysis, and we found that
the presence or absence of the four sources of information accounted for 920 of
the variance in the scaled data. Finally, the direct scaling task asked observers to
rate the depth seen in each of the stimuli, using a scale from 1 to 99. Regression
analyses on the values of the 16 stimuli yielded results similar to those of the
indirect methods; results were linear and apparently additive.

Massaro (1988) was unconvinced by our claims of additivity and he asked us for
our direct scaling data. We obliged, and he tested the linear integration model, or
LIM against his fuzzy-logical model of perception (FLMP, Massaro, 1987). He
found that the data of five of our observers were better fit by LIM, and five were
better fit by FLMP. Cutting and Bruno (1988) replied, suggesting in part that the
data of the two indirect scaling tasks revealed different patterns. However, later
analyses proved to generalize Massaro's (1988) claim: Regardless of which of the
three tasks was examined, the data of half of the subjects were better fit by LIM
and half by FLMP (although not always the same halves).

This lack of resolution festered in our minds. We were interested, in large part,
because this was the first case we knew of in which two nonnested models with the
same number of parameters were compared with an indeterminate outcome.
Cutting et al. (1992) then reported a new set of studies focused on trying to falsify
the notion of additive integration (LIM). First, we argued that the original stimulus
set offered four uncorrelated information sources, all combinations equal in
frequency, and that the lack of correlation within the set might have fostered
perceptual independence (Ashby 6 Townsend, 1986; Garner, 1966; Nosofsky, 1991)
and hence additivity in judgments. Thus, we created several sets of stimuli with
correlated information sources. Second, we argued that linearity in judgments could
have been an artifact of the range and frequency of the stimuli (Parducci, 1964,
1975). Were the stimulus set to be anchored with many more stimuli at one end
than the other, judgments might reflect range and frequency considerations. Thus,
we created stimulus sets with prominent anchors. Interestingly, neither of these
manipulations was effective in changing direct scaling judgments, which remained
quite linear.

11A CASE STUDY IN MODEL COMPARISON



More importantly, we also fit the data of 44 subjects to the two models, LIM and
FLMP. The linear model seems like simplicity itself,

D=S+H+O+P+B, (5)

where D equals perceived distance, in this case a number (a direct scaling judg-
ment) from 1 to 99 representing the amount of depth seen in a given display;
S, H, O, and P are the relative contributions (weights) of relative size, height in the
visual field, occlusion, and motion perspective to the judgments, when present in
the stimulus; and B is a background variable that includes the flatness of the com-
puter monitor, reflections from it, and anything else in the experimental situation.
Thus, LIM is a simple statement that perceived depth is the sum of the contribu-
tions of each source of information, with no interactions. FLMP, on the other
hand, is a multiplicative model and does not appear nearly so simple,

D=SHOPB�[SHOPB+(1&S)(1&H)(1&O)(1&P)(1&B)], (6)

where the parameters have exactly the same meaning as in LIM, but with
additional constraints: The data are transformed and the weights constrained so
that 0.0 <D, S, H, O, P, B<1.0. In addition (1-S) rather than S, for example, is
the weight when relative size information is absent from a particular stimulus. Thus,
FLMP in this context is a statement that perceived depth is enhanced by each
source to the degree that the other sources do not contribute. Although this model
can approximate additivity quite well, it really shines when certain nonlinearities
occur. Massaro and Friedman (1990) have shown that this model is isomorphic
with a Bayesian model. Notice that these two models are nonnested (that is,
one is not contained within the other) and that both have five parameters��
S, H, O, P, B.

Cutting et al. (1992) found that, of the 44 participants, the data of 23 were better
fit by LIM and the data of the other 21 were better fit by FLMP. Since the general
approach of Massaro has been to assume that the data of all subjects should be fit
by the same model, we sought some resolution. But a clear resolution was still not
at hand, if one was possible. This general deadlock provoked us to investigate the
properties of the models and how they fit data. At issue were our impressions that,
despite the fact that both models had the same number of parameters, somehow
FLMP was more flexible. Thus, we undertook a series of simulation studies.

We first generated two families of data sets. One expressed exponential functions,
D=na�4a, where a could take values from 0.01 to 100, n is the number of sources
in a given stimulus, and 4 is the number of possible sources of information present.
The other expressed psychometric functions, D=e(a+nb)�[1+e(a+nb)], where
e=2.718, n is the number of sources of information in a given stimulus, and a and
b are the two parameters for a logit function. We fit both models to each data set
and found that within the area covered by the exponential functions, FLMP fit the
data better than LIM in 800 of the cases and that within the area covered by the
psychometric functions, FLMP fit better in 960of the cases. Moreover, when LIM
provided a better fit it did so by a narrow margin, often only in the third significant
figure of the loss function but when FLMP provided a better fit it typically did so
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by a very wide margin, often in the first significant figure. This is a powerful set of
results in favor of FLMP; exponential and psychometric functions are exactly the
kinds of functions that one would generally wish to capture in these types of
experiments. Harkening back to the earlier discussion, FLMP clearly has more
scope than LIM and the pattern shown in the left panel of Fig. 1 seemed applicable.
But we worried; FLMP still did not seem as simple as LIM, and it seemed too
flexible.

Next, we fit the two models to random data, a procedure commonly used to
benchmark multidimensional scaling algorithms (De Leeuw 6 Stoop, 1984 Klahr,
1969; Levine, 1978; Wagenaar 6 Padmos, 1971). However good the first set of
results seemed in support of FLMP, the second set seemed equally bad: FLMP fit
610 of the random data sets better than LIM. Although Myung and Pitt (1997)
seemed to endorse the spirit of this analysis, Massaro and Cohen (1992) suggested
that these ``fits'' were irrelevant and uninterpretable since most were unacceptably
large, and Li, Lewandowski, and DeBrunner (1996, p. 361) regarded this procedure
as ``inelegant.'' I agree with both criticisms. Nonetheless, this result seemed
important in reflecting the relative flexibility of FLMP compared to LIM. We felt
that a model that performed better than another in fitting random data, however
badly, was doing something beyond what a psychological model should do. Here
was what we thought to be unwarranted scope due to excess flexibility. If LIM was
considered Model A in Fig. 3, and FLMP was Model B, what were the relative
sizes of noise(1&:) and noise(1&;)?

We struggled with how to account for this phenomenon and conducted a third
set of simulations. Taking a linear set of data, we added increments of noise. Of
course, with perfectly linear data LIM will always fit better, but with increases in
noise added to the data FLMP began to fit a larger and larger proportion of the
simulated data sets. Thus, in the context of our particular design of 16 stimuli,
when a value between \0.11 randomly generated in a flat distribution was added
to linear scores between 0.30 and 0.70, FLMP fit the data better than LIM more
than 500of the time. Myung and Pitt (1997) performed the reverse operation,
adding random noise to functions generated from FLMP, and LIM never overtook
FLMP. Such results suggest that FLMP is considerably more flexible than LIM.

What to do? Cutting et al. (1992) made two suggestions. First, we suggested that
FLMP should be penalized by the degree to which it fit random data. Thus, we
found that the data of 23 viewers were better fit by LIM by consideration of the
random simulations and fits of the two models, we would have expected only 390,
or the data of 17.2 viewers, to have a better fit by LIM. By binomial expansion, this
still did not yield a reliable difference (z=1.63, p>0.10). Gratifyingly, the core idea
of a flexibility penalty turned out to be correct, as shown in these proceedings of
the symposium.

Second, we thought that FLMP's greater flexibility might derive from its lack of
simplicity, measured by description length. We had borrowed this idea from the
interesting, if not completely convincing, analyses of Leeuwenberg (1971, 1982) as
discussed above. Our understanding of minimum description length as it has
developed in theoretical computer science, however, was flawed; Grunwald (2000)
gives a tutorial. Moreover, Massaro and Cohen (1992) pointed out that if all of the
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data were z-transformed, the appearance of FLMP would be much simpler than
LIM. Not knowing of developments in the methodology of model comparison, this
stopped us dead in our tracks.

REVISITING THE CASE STUDY

The symposium proved enormously stimulating. Four routes to the general
comparison of models were considered. Grunwald (2000), aside from correcting my
misunderstanding of the principle of minimum description length, further convinced
me that in the context of comparing psychological data this method is still devel-
oping and may not soon prove fruitful. The other three approaches, however,
seemed to offer more hope and avoid Goodman's (1972) problem of measuring sim-
plicity by counting primitives. First, with respect to how one might correctly
generate an appropriate penalty term for a more flexible model, Bozdogan (2000)
was perhaps most convincing in his consideration of his informational complexity
criterion (ICOMP) and the correlational structure of parameter estimates.
However, because time was short in preparing this article, it was necessary to
forego this type of analysis of our data. Second, Wasserman (2000) presented the
outlines of the Bayesian approach to model comparison, amplifying the work of
Myung and Pitt (1997). This, too, initially seemed promising because I had thought
that our simulations of model fits to random data could be used as a priori
probabilities. However, pursuing the logic of the analysis, I soon realized that this
too would not be straightforward.

I found great solace, however, in the ideas of cross-validation presented by
Browne (2000). Here was a scheme that seemed useful and also extremely similar
to what I had already done with my colleagues. Rather than have FLMP and LIM
fit all of our viewers' data, I would fit them to half the data, then use the weights
obtained to fit the other half of the data with no free parameters. If FLMP were
an overly flexible model, its fits to the residual half of the data should be relatively
worse than those of LIM. This method effectively pits the magnitudes of noise(1&:)

against noise: and noise(1&;) against noise; .

Approach and Method

Since we had generally obtained only 10 observations per stimulus per viewer, it
initially seemed possible to compare all possible halves of the data, using the fixed
order in which the data accumulated during the experimental session (there are
only somewhat more than 200 possible data halves). However, the constraints of
the statistical package most easily available to me (the NONLIN and DATA
modules of SYSTAT; Wilkinson, 1990) proved too inflexible to let this be done
easily. Thus, I separated the data for each viewer into first vs second halves by the
order in which they accumulated. These were chosen, in part, to maximize differ-
ences in the half data sets due to any possible practice effects, although previous
statistical analyses had shown no simple effects.

I next found asymmetries in the fits for the first half carried onto the second half
and vice versa. That is, the sum of least squares (SOLS) of the fits of the parameter
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values from the first halves of the data in fitting the second halves did not predict
the fits of the values from the second halves of the data in fitting the first. Thus, I
performed the analyses both ways, and I report the means of the two initial fits and
the means of the two fits using parameter values from the other halves (see Browne,
2000). As was done by Cutting et al. (1992), I fit both models (LIM and FLMP)
to the data from all 44 viewers. I first obtained fits to each half of the data, second
used the values of those parameters to fit the other half of the data and then
averaged the two original SOLS values to obtain a first summary fit and the two
parameter-free SOLS values to obtain a second summary fit.

Results

The first set of results was consistent with results reported by Cutting et al.
(1992): The mean of fits of the two halves of the data revealed that the data of 23
viewers were better fit by LIM and 21 by FLMP. This is the same proportion found
by Cutting et al. (1992). The relative fits of the models to those data from 40 of the
viewers retained the ordering reported by Cutting et al. (1992) for their entire data
sets (LIM<FLMP or FLMP<LIM in both the original fits and in the new
analyses conducted here); the fits to two of the subjects' data previously favoring
LIM now favored FLMP, and the fits of two others previously favoring FLMP
now favored LIM. The relative fits of the two models to the data sets are shown
as a scatter plot in the left panel of Fig. 4. Those points above the diagonal
represent those subjects' data better fit by LIM; those below it by FLMP. Notice

FIG. 4. The relative fits of two models, LIM and FLMP, to the depth-judgment data of 44 subjects
reported by Bruno and Cutting (1988) and Cutting et al. (1992). The left panel shows the mean fits to
the two halves of data those for 23 viewers were better fit by LIM and those of 21 by FLMP. The right
panel shows the fits after cross-validation, using the parameter weights from one half of the data to fit
the other. Although the data of 30 viewers were better fit by LIM and only 14 by FLMP, the general
impression is that both models fit the data reasonably well and about equally well.
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again that when FLMP provides a better fit, it often does so by a relatively wide
margin, as reported by Cutting et al. (1992) and by Myung and Pitt (1997).

The second set of results involved the flexibility penalty assessed through cross
validation. That is, if FLMP has the capability of absorbing variance in the data
beyond merely fitting the data, then the fits with fixed weights to other halves of
the data should be relatively worse than that for LIM. In general, this is what
happened: After cross-validation, the data of 30 of the viewers were better fit by
LIM and the data of only 14 by FLMP (z=2.265, p<.012). The relative fits of the
models to 35 of the viewers retained their ordering after cross-validation, the
relative fits to the data of 8 viewers reversed from favoring FLMP to favoring LIM,
and the fits for the other viewer reversed from that favoring LIM to FLMP. The
comparative fits of the two models after cross-validation are shown in the right
panel of Fig. 4. Notice that the cross-validation penalties seemed to make the
relative fits more symmetric around the diagonal.

In keeping with this insight, consider an analysis of variance on the group of fits,
before and after cross-validation. There was a reliable interaction of model fit before
and after cross-validation (F(1,43)=11.9, p<.001). That is, the mean SOLS values
before cross-validation were 0.1358 and 0.1274 for LIM and FLMP, respectively;
their values after cross-validation were 0.2136 and 0.2176, respectively. This shows
that the cross-validation procedure reliably changed the relative fits of the two
models, reinforcing the importance of this symposium to psychological modeling.
Nonetheless, with differences only in the third significant digits of the loss function,
the results of the cross validation analysis also suggest that the models fit the data
about equally well.

CONCLUSION: ACCURACY, SCOPE, AND FLEXIBILITY OF MODELS

The purpose of this paper has been to offer new, empirical information about and
perhaps a new perspective on modeling. Traditionally we have been interested in
the accuracy, the scope, and the simplicity of models. Although accuracy is well
measured, scope is less so, and simplicity may not even be a useful concept in
modeling; just as it has proven problematic in perception. Thus, instead of
considering simplicity, I suggest we focus on flexibility.

This new focus is warranted, I claim, by the results presented here. Two non-
nested models, FLMP and LIM, were fit to 44 psychological data sets; 23 of these
comparative fits favored LIM and 21 favored FLMP. Thus, there was no decisive
winner; both had roughly equal accuracy. These models also have the same number
of parameters, and thus by traditional standards they are equally simple. However,
FLMP proved to have considerably larger scope than LIM in fitting psychometric
and exponential functions. Thus, with essentially equal accuracy, equal simplicity,
and unequal scope, one might prefer FLMP. Yet one factor seemed to mitigate this
conclusion. FLMP fit random data better than LIM, suggesting that FLMP might
have unwarranted flexibility. How might one compare models, properly penalizing
a more flexible model? This symposium offered examples, and these methodological
techniques for comparing models should become much more widely known, under-
stood, and used by psychologists. There are now several ways in which a more
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flexible model can be properly penalized. Here, I used cross�validation, but
ICOMP (Bozdogan, 2000) or a Bayesian approach (Wasserman, 2000) could also
have been used.

The outcome here was that, quantitatively, FLMP was sufficiently penalized that
LIM now yielded a statistical but small superiority in its fits to the individual data
sets. But this result raises a new tension concerning the measurement of accuracy.
Through the methods of cross-validation, the accuracy of fits for LIM to these data
sets is superior to that of FLMP. I am reluctant, however, to claim success in
breaking the deadlock between LIM and FLMP. Scrutiny of the results shown in
Fig. 4 after cross-validation reveals that they are essentially the same. From the
residuals it seems clear that both models fit the data reasonably equally and
reasonably well (see Massaro, 1998, for further discussion). Thus, when differential
flexibility of two models has been neutralized (by cross-validation or any other
technique), and the accuracy of one model shown to be reliably greater than the
other (LIM better than FLMP), the outcome can still be indecisive.

We are left, then, with a choice between the two situations suggested in Fig. 1.
If one interprets the outcome of this exercise in cross-validation as is apparent in
the right panel of Fig.�4��that the sets of fits are essentially equal and equally
good��then the situation shown in the left panel of Fig. 1 holds. That is, one should
conclude that FLMP is the better model because, given equal accuracy in this
domain and neutralized differences in flexibility, FLMP has greater scope than
LIM. However, if one accepts the statistical outcome of the cross-validation��that
the data of 30 of the 44 subjects are better fit by LIM��then the situation shown
in the right panel of Fig. 1 holds, with the area of concern the small section of the
Venn diagram where Model A is superior to Model B. That is, one should conclude
that, after differential flexibility is neutralized, LIM is preferred to FLMP in this
particular case, despite the greater scope of FLMP.
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