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Abstract

We present a novel Bayesian topic model for
learning discourse-level document structure.
Our model leverages insights from discourse
theory to constrain latent topic assignments in
a way that reflects the underlying organiza-
tion of document topics. We proposgkmbal
model in which both topic selection and order-
ing are biased to be similar across a collection
of related documents. We show that this space
of orderings can be elegantly represented us-
ing a distribution over permutations called the
generalized Mallows model Our structure-
aware approach substantially outperforms al-
ternative approaches for cross-document com-
parison and single-document segmentation.
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ternative approaches for segmentation and cross-
document comparison.

For example, consider a collection of encyclope-
dia articles about cities. The first constraint captures
the notion that a single topic, such as Architecture,
is expressed in a contiguous block within the docu-
ment, rather than spread over disconnected sections.
The second constraint reflects our intuition that all
of these related articles will generally mention some
major topics associated with cities, such as History
and Culture, and will often exhibit similar topic or-
derings, such as placing History before Culture.

We present a Bayesian latent topic model over re-
lated documents that encodes these discourse con-
straints by positing a single distribution over a doc-
ument'sentire topic structure. This global view on
ordering is able to elegantly encode discourse-level
properties that would be difficult to represent using

In this paper, we introduce a novel latent topic moddbcal dependencies, such as those induced by hid-
for the unsupervised learning of document structurelen Markov models. Our model enforces that the
Traditional topic models assume that topics are rasame topic does not appear in disconnected portions
domly spread throughout a document, or that thef the topic sequence. Furthermore, our approach
succession of topics in a document is Markoviarbiases toward selecting sequences with similar topic
In contrast, our approach takes advantage of twardering by modeling a distribution over the space
important discourse-level properties of text in deef topic permutations.

termining topic assignments: first, that each docu- Learning this ordering distribution is a key tech-
ment follows a progression of nonrecurring cohernjcal challenge in our proposed approach. For this
ent topics (Halliday and Hasan, 1976); and segurpose, we employ thgeneralized Mallows model
ond, that documents from the same domain tengl permutation distribution that concentrates proba-
to present similar topics, in similar orders (Wraypility mass on a small set of similar permutations.
2002). We show that a topic model incorporatit directly captures the intuition of the second con-
ing these long-range dependencies outperforms &jtraint, and uses a small parameter set to control how
T e s ikely individual topics are to be reordered.

We evaluate our model on two challenging

1Code, data, and annotations used in this work are availab|
at http://groups.csail.mit.edu/rbg/code/mallows/



document-level tasks. In tldignmenttask, we aim  Modeling Ordering Constraints Sentence order-

to discover paragraphs across different documenitsg has been extensively studied in the context of
that share the same topic. We also consideistite  probabilistic text modeling for summarization and
mentationtask, where the goal is to partition eachgeneration (Barzilay et al., 2002; Lapata, 2003;
document into a sequence of topically coherent se¢faramanis et al., 2004). The emphasis of that body
ments. We find that our structure modeling approacbf work is on learning ordering constraints from
substantially outperforms state-of-the-art baselinedata, with the goal of reordering new text from the
for both tasks. Furthermore, we demonstrate the infame domain. Our emphasis, however, is on ap-
portance of explicitly modeling a distribution overplications where ordering is already observed, and
topic permutations; our model yields significantlyhow that ordering can improve text analysis. From
better results than variants that either use a fixed aihe methodological side, that body of prior work is
dering, or are order-agnostic. largely driven by local pairwise constraints, while

we aim to encode global constraints.

2 Related Work _
3 Problem Formulation

Topicand Content Models  Our work is grounded our d t structure | . bl be f
in topic modeling approaches, which posit that la- ur document structure learning problem can be for-

tent state variables control the generation of wordgr."’ll'zecI as follows. We are given a corpus Bf
In earlier topic modeling work such &stent Dirich- related documents. Each document expresses some

let allocation (LDA) (Blei et al., 2003 Griffiths and SPbSIet of a common set of tgﬁ'cs- we assign &
Steyvers, 2004), documents are treated as bagssérl’ge topic to each paragraphincorporating the

words, where each word receives a separate tod?@t'on that paragraphs are internally topically con-

assignment; the topic assignments are auxiliary varﬁ—'_Stent (Hall'da¥ a_n? Hafaq, 1976). T(.) cag)ture'lt)hz
ables to the main task of language modeling. iscourse constraint on topic progression describe

in ion 1, we require th i ignmen

More recent work has attempted to adapt the con- Sgcto » We require that topic assignments be
) . . contiguous within each documeht. Furthermore,

cepts of topic modeling to more sophisticated repre-

) ) we assume that the underlying topic sequences ex-
sentatlor_ws than.a bag of words; they use these "Bibit similarity across documents. Our goal is to re-
resentations to impose stronger constraints on top&c0 ver atopic assignmentor each paragraph in the
assignments (Griffiths et al., 2005; Wallach, 2006é0rpus subject to these constraints

Purver et al., 2006; Gruber et al., 2007). These . L .
.~ Our formulation shares some similarity with the
approaches, however, generally model Markovian . .
: o : standard LDA setup, in that a common set of topics
topic or state transitions, which only capture lo- . .
. . s assigned across a collection of documents. How-
cal dependencies between adjacent words or blocks . , ) . )
ever, in LDA each word’s topic assignment is con-

within & document.  For instance, content mod: itionally independent, following the bag of words
els (Barzilay and Lee, 2004; Elsner et al., 20078. y P ' 9 9

. iew of documents. In contrast, our constraints on
are implemented as HMMs, where the states co[- ) . e
. . o . how topics are assigned let us connect word distri-

respond to topics of domain-specific information

" . . butional patterns to document-level topic structure.
and transitions reflect pairwise ordering prefer-

ences. Even approaches that break text into oD~ Model

tiguous chunks (Titov and McDonald, 2008) as-

sign topics based on local context. While thes®Ve propose a generative Bayesian model that ex-
locally constrained models can implicitly reflectplains how a corpus ob documents, given as se-
some discourse-level constraints, they cannot caguences of paragraphs, can be produced from a set
ture long-range dependencies without an explosioof hidden topic variables. Topic assignments to each

of the parameter space. In contrast, our model ca *Nore that - i v 0 other levels of
. . - ote that our analysis applies equally 1o other levels ex
tures the entire sequence of topics using a compagt, granularity, such as sentences.

representation. As a V?SU|t, we can eXp”CitIY and sThat is, if paragraphs and; are assigned the same topic,
tractably model global discourse-level constraints. every paragraph between them must have that topic.



paragraph, ranging from 1 t&, are the model's Lebanon and Lafferty, 2002; Meila et al., 2007),
final output, implicitly grouping topically similar which exhibits two appealing properties in the con-
paragraphs. At a high level, the process first selectext of this task. First, the model concentrates proba-
the bag of topics to be expressed in the documeritility mass on some “canonical” ordering and small
and how they are ordered; these topics then detgrerturbations of that ordering. This characteris-
mine the selection of words for each paragraph. tic matches our constraint that documents from the

For each documentwith N, paragraphs, we sep- same domain exhibit structural similarity. Second,
arately generatelaag of topicst; and atopic order- its parameter set scales linearly with the permuta-
ing 4. The unordered bag of topics, which containgion length, making it sufficiently constrained and
N, elements, expresses how many paragraphs of tiractable for inference. In general, this distribution
document are assigned to each of ig¢opics. Note could potentially be applied to other NLP applica-
that some topics may not appear at all. Varialje tions where ordering is important.

is constructed by takingv; samples from a distri- . . .
. oy Wd. P . Permutation Representation  Typically, permuta-
bution over topicg-, a multinomial representing the

robability of each topic beina expressed Sharintions are represented directly as an ordered sequence
P y P g exp ' 8f elements. The GMM utilizes an alternative rep-

7 between documents captures the intuition that cer- . , )
) . . . resentation defined as a vectot, . .. ,vx_1) of in-
tain topics are more likely across the entire corpus. . . . X
. . . : . version countsvith respect to the identity permuta-
The topic ordering variabler; is a permutation

over the numbers 1 througki that defines the order ion (L, ..., K). Termvj counts the '.“.meer of times

. ) : . a value greater thapappears beforgin the permu-

In which topics appear in the document. We dra tation* For instance, given the standard-form per-
from thegeneralized Mallows modeh distribution . ' 9 P

. o . m ion(31524 =2 n r
over permutations that we explain in Section 4.1. A utatio _(3 g . ) v2 _because 3and 5 appea
. . ) . ) efore 2; the entire inversion count vector would be
we will see, this particular distribution biases the

. ) ) 120 1). Every vector of inversion counts uniquely
permutation selection to be close to a single cen = .. : )

) . . . identifies a single permutation.
troid, reflecting the discourse constraint of prefer-
ring similar topic structures across documents.  The Distribution The GMM assigns proba-

Together, a document’s bag of topitg and or- bility mass according to the distance of a
dering m; determine the topic assignmesny, for given permutation from the identity permutation
each of its paragraphs. For example, in a corpudl,..., K}, based ori{ — 1 real-valued parameters
with K = 4, a seven-paragraph documehwith  (py,...px_1).> Using the inversion count represen-
tg = {1,1,1,1,2,4,4} andny; = (243 1) would tation of a permutation, the GMM’s probability mass
induce the topic sequeneg = (244 1111). The function is expressed as an independent product of
induced topic sequenag can never assign the sameprobabilities for each;:

topic to two unconnected portions of a document,

thus satisfying the constraint of topic contiguity. GMM(v | p) = e 2P
As with LDA, we assume that each topids as- ¥(p)
sociated with a language modgl. The words of a =l —pju;
paragraph assigned to topicare then drawn from = H m7 1)
that topic’s language modél},. g=1 "N

Before turning to a more formal discussion of the . o . .
. : : where;(p;) is a normalization factor with value:
generative process, we first provide background on

the permutation model for topic ordering. 1 — o (E—j+1)p;
Vi(ps) = —
4.1 TheGeneralized Mallows Model i(p}) 1—e P

A central challenge of the approach we take is mod- 4The sum of a vector of inversion counts is simply that per-
: C priba . . mutation’s Kendall'sr distance to the identity permutation.
eling the distribution over possible topic permuta- 5In our work we take the identity permutation to be the fixed

tions. For this purpose we use the genera!ized Madentroid, which is a parameter in the full GMM. As we explain
lows model (GMM) (Fligner and Verducci, 1986; later, our model is not hampered by this apparent restrictio




Due to the exponential form of the distribution, re- 3. Draw the topic ordering distribution parame-
quiring thatp; > 0 constrains the GMM to assign tersp; ~ GMMg(po,1p) for j = 1to K — 1.

highest probability mass to eaeh being zero, cor- These parameters control how rapidly probabil-
responding to the identity permutation. A higher ity mass decays for having more inversions for
value forp; assigns more probability massipbe- each topic. A separajg for every topic allows

ing close to zero, biasingto have fewer inversions. us to learn that some topics are more likely to

The GMM elegantly captures our earlier require- be reordered than others.

ment for a probability distribution that concentrates 4. For each documenttwith N, paragraphs:

mass around a global ordering, and uses few param- D b f tonics. b linav
eters to do so. Because the topic numbers in our (@) oraw a bag ot topics by sampiing/Nq
times from Multinomia(r).

task are completely symmetric and not linked to any

extrinsic observations, fixing the identity permuta- (b) Draw a topic orderingry by sampling a
tion to be that global ordering does not sacrifice any vector of inversion counts; ~ GMM (p).
representational power. Another major benefit of (c) Compute the vector of topic assignments

Fhe GMM .is it; mempership in the e.xponen'FiaI fam- 2, for documentl’s paragraphs, by sorting
ily of distributions; this means that it is particularly
amenable to a Bayesian representation, as it admits
a natural conjugate prior:

t,4 according tar,.’

(d) For each paragraphin documentd:
i. Sample each word,, ; according to
GMMo(p; | vj.0,v0) ox elPatao=logvspi)lvo — (9) the language model of: wg,; ~

L o o Multinomial(d., ).
Intuitively, this prior states that over, prior trials, P

the total number of inversions wagv; . This dis-
tribution can be easily updated with the observed
to derive a posterior distributich. The variables that we aim to infer are the topic as-
signmentsz of each paragraph, which are deter-
mined by the bag of topiasand orderingr for each

We now fully specify the details of our model. Wedocument. Thus, our goal is to estimate the marginal
observe a corpus db documents, each an ordereddistributions oft andr given the document text.
sequence of paragraphs, and a specification of awe accomplish this inference task through Gibbs
number of topicsk’. Each paragraph is representedampling (Bishop, 2006). A Gibbs sampler builds
as a bag of words. The model induces a set of hi¢y Markov chain over the hidden variable state space
den variables that probabilistically explain how theyhose stationary distribution is the actual posterior
words of the corpus were produced. Our final deof the joint distribution. Each new sample is drawn
sired output is the distributions over the paragraphsrom the distribution of a single variable conditioned
hidden topic assignment variables. In the followingon previous samples of the other variables. We can
variables subscripted with 0 are fixed prior hyperpa«collapse” the sampler by integrating over some of
rameters. the hidden variables in the model, in effect reducing
the state space of the Markov chain. Collapsed sam-
pling has been previously demonstrated to be effec-
tive for LDA and its variants (Griffiths and Steyvers,
2004; Porteous et al., 2008; Titov and McDonald,

2. Draw a topic distributionr ~ Dirichlet(ro), 2008). Our sampler integrates over all but three sets
which expresses how likely each topicistoap-
pear regardless of position. _ "Multiple permutatl_onS can contrlbgte tothe proba_bllltyaof
single document’s topic assignmeuts if there are topics that
®Because each; has a different range, it is inconvenient do not appear it,. As a result, our current formulation is bi-
to set the prior hyperparameters, directly. In our work, we ased toward assignments with fewer topics per document. In
instead fix the mode of the prior distribution to a valsewhich  practice, we do not find this to negatively impact model perfo

ey — 1 _ K—j+1
works out to setting; o = o517 — SR =T mance.

I nference

4.2 Formal Generative Process

1. For each topié, draw a language modé), ~
Dirichlet(fy). As with LDA, these are topic-
specific word distributions.




of hidden variables: bags of topits orderingsm, Equation 3 and 4 will be used again to compute the
and permutation inversion parameters After a conditional distributions of the hidden variables.
burn-in period, we treat the last samplestoénd We now turn to a discussion of how each individ-
7 as a draw from the true posterior. ual random variable is resampled.

Document Probability As a preliminary step, Bagof Topics First we consider how to resample
consider how to calculate the probability of a single, ;, the ith topic draw for documend conditioned
document’s wordsw, given the document’s para- on all other parameters being fixed (note thisdg
graph topic assignments;, and other documents the topic of theith paragraph, as we reorder topics
and their topic assignments. Note that this probaisingm,):

bility is decomposable into a product of probabil-

ities over individual paragraphs, where paragraph’g(tdyi =t]..)

with different topics have conditionally independent X P(tai =t|t_(q4),70)P(Wa | ta, 7a, W_a,2—q,60)
word probabilities. Letw_,; andz_, indicate the N(t_44),t) + 70
words and topic assignments to documents other [t (aq)| + Ko
thand, andW be the vocabulary size. The proba- ’

P(Wd | Z,W_d,a(]),

bility of the words ind is then: wheret, is updated to refleat;; = ¢, andz, is de-
terministically computed by mapping; and 74 to
P(wq |z, w_g,00) actual paragraph topic assignments. The first step

K reflects an application of Bayes rule to factor out the
= H/ P(wq | Za,0k)P(0k | 2,W_4,00)d0r  term forw,. In the second step, the first term arises
k=1 0k out of the DCM, by updating the parametegswith

K observationst_ 4 ;) as in equation 4 and dropping
- H DCM({wa,; : za; = k} constants. The document probability term is com-
k=1 puted using equation 3. The nety; is selected
| {w_a; : 2—q: = Kk}, 60), (3) by sampling from this probability computed over all

where DCM:) refers to theDirichlet compound POSSible topic assignments.

multinomial distribution, the result of integrat- Ordering The parameterization of a permutation
ing over multinomial parameters with a Dirichlet - 55 5 series of inversion valuesreveals a natural
prior (Bernardo and Smith, 2000). For a Dirichletyay to decompose the search space for Gibbs sam-

prior with parameters: = (a1, ..., ), the DCM  pjing. For a single ordering, eaeh can be sampled
assigns the following probability to a series of 0b1‘ndependently, according to:

servationsx = {z1,...,z,}:

Pwj=wv]|...)

N W . J

DCM(x | o) = P(lej %) H I;(N(X’Z) i ai), o P(v; =v | p;)P(Wq | ta, Ta, W_d,2—q,60)
[y T(eg) 3 Tl + 22 09) = GMM; (v | p;j) P(Wq | 24, W—d, 24, 00),

yvhereN(x_,i) refers to th_e number of times yvord wherer is updated to refleat; = v, andz, is com-
i appears inx. Here,T'(-) is the Gamma function,

o ) puted according ta; andwy. The first term refers
a generalization of the factorial for real numbersto the jth multiplicand of equation 1; the second is

Some algebra shows that the DCM'’s posterior probc—Omputeol using equation 3. Termis sampled ac-
ability density function conditioned on a series Ofcording to the resulting probabilities

observationyy = {y1,...,y,} can be computed by

updating eachy; with counts of how often word GMM Parameters For eachj = 1t0 K — 1, we
appears iry: resamplep; from its posterior distribution:
DCM(x | y, @) P(pj |..2)

:DCM(X|Q1+N(y31)7aaW+N(y7W)) _
(4) —GMMO Pj




where GMWV, is evaluated according to equation 2Tasks and Metrics We study performance on the
The normalization constant of this distribution is untasks of alignment and segmentation. In the former
known, meaning that we cannot directly computeéask, we measure whether paragraphs identified to
and invert the cumulative distribution function tobe the same topic by our model have the same sec-
sample from this distribution. However, the distri-tion headings, and vice versa. First, we identify the
bution itself is univariate and unimodal, so we cariclosest” topic to each section heading, by finding
expect that an MCMC technique suchslise sam- the topic that is most commonly assigned to para-
pling (Neal, 2003) should perform well. In practice,graphs under that section heading. We compute the
the MATLAB black-box slice sampler provides a ro-proportion of paragraphs where the model’s topic as-
bust draw from this distribution. signment matches the section heading’s topic, giv-
ing us arecall score. High recall indicates that
paragraphs of the same section headings are always

Data Sets We evaluate our model on two data set§€ing assigned to the same topic. Conversely, we
drawn from the English Wikipedia. The first setc@n find the closest section heading to each topic,
is 100 articles about large cities, with topics suctpy finding the section heading that is most com-
as History, Culture, and Demographics. The se¢lOn for the paragraphs assigned to a single topic.
ond is 118 articles about chemical elements in th¥é/e then compute the proportion of paragraphs from
periodic table, including topics such as Biologicafhat topic whose section heading is the same as the
Role, Occurrence, and Isotopes. Within each coféference heading for that topic, yieldingpaeci-
pus, articles often exhibit similar section orderingsSion score. High precision means that paragraphs
but many have idiosyncratic inversions. This struc@ssigned to a single topic usually correspond to the
tural variability arises out of the collaborative natureS@me section heading. The harmonic mean of recall
of Wikipedia, which allows articles to evolve inde-2and precision is the summaFyscore

pendently. Corpus statistics are summarized below. Statistical significance in this setup is measured
with approximate randomizatio(Noreen, 1989), a

Corpus | Docs | Paragraphd Vocab | Words nonparametric test that can be directly applied to
Cities 100 6,670 41,978| 492,402 nonlinear metrics such as F-score. This test has been
Elements| 118 2,810 18,008| 191,762 used in prior evaluations for information extraction
and machine translation (Chinchor, 1995; Riezler
In each data set, the articlesbisy section head- and Maxwell, 2005).
ingsinduce a reference structure to compare against. For the second task, we take the boundaries at
This reference structure assumes that two parahich topics change within a document to be a
graphs are aligned if and only if their section headsegmentation of that document. We evaluate us-
ings are identical, and that section boundaries pring the standard penalty metri¢s and WindowD-
vide the correct segmentation of each documeritf (Beeferman et al., 1999; Pevzner and Hearst,
These headings are only used for evaluation, and a2802). Both pass a sliding window over the doc-
not provided to any of the systems. uments and compute the probability of the words
Using the section headings to build the referencat the ends of the windows being improperly seg-
structure can be problematic, as the same topic mayented with respect to each other. WindowDiff re-
be referred to using different titles across differenguires that the number of segmentation boundaries
documents, and sections may be divided at differingetween the endpoints be correct as Well.
levels of granularity. Thus, for the Cities data set, we Our model takes a parameté& which controls
manually annotated each article’s paragraphs withtae upper bound on the number of latent topics. Note
consistent set of section headings, providing us ahat our algorithm can select fewer thantopics for
additional reference structure to evaluate against. Bach document, st does not determine the number

this clean section headingset, we found approxi- 8statistical significance testing is not standardized and us

mately 18 topics that were expressed in more thagly not reported for the segmentation task, so we omit these
one document. tests in our results.

6 Experimental Setup




of segments in each document. We report resultSMM parameterg to always be zero. Both variants
using bothK' = 10 and 20 (recall that the cleanly still enforce topic contiguity, and allow segments
annotated Cities data set had 18 topics). across documents to be aligned by topic assignment.

Baselinesand Modd Variants We consider base- Evaluation Procedures For each evaluation of
lines from the literature that perform either align-our model and its variants, we run the Gibbs sampler
ment or segmentation. For the first task, wdrom five random seed states, and take the 10,000th
compare against theidden topic Markov model iteration of each chain as a sample. Results shown
(HTMM) (Gruber et al., 2007), which representsare the average over these five samples. All Dirich-
topic transitions between adjacent paragraphs inlet prior hyperparameters are set to 0.1, encouraging
Markovian fashion, similar to the approach taken irsparse distributions. For the GMM, we set the prior
content modeling work. Note that HTMM can only decay parametey, to 1, and the sample size prior
capture local constraints, so it would allow topics ta/ to be 0.1 times the number of documents.
recur noncontiguously throughout a document. For the baselines, we use implementations pub-
We also compare against the structure-agnostligly released by their authors. We set HTMM's pri-
approach of clustering the paragraphs using thess according to values recommended in the authors’
CLUTO toolkit? which uses repeated bisection tooriginal work. For BayesSeg, we use its built-in hy-
maximize a cosine similarity-based objective. perparameter re-estimation mechanism.
For the segmentation task, we compare to
BayesSeg (Eisenstein and Barzilay, 2088), 7 Results

a Bayesian topic-based segmentation mod@ljisnment Table 1 presents the results of the
that outperforms — previous segmentation  apsjignment evaluation. In every case, the best per-
proaches (Utlyama and Isahara, 2001; Galley et akyance is achieved using our full model, by a sta-
2003; Purver et al., 2006; Malioutov and Barzilayyigtica)ly significant and usually substantial margin.

2006). BayesSeg enforces the topic contiguity In both domains, the baseline clustering method

cr:)_nst;[ralnlt. that.rrr:o::vat;ted ?UI’ fnllodeI: Wﬁ IDIrOV'deEerforms competitively, indicating that word cues
this baseline with the benefit of knowing the correcl ¢ g a good indicator of topic. While the sim-

number of segments for each document, which Bler variations of our model achieve reasonable per-

not provided to our system. Note that B"lees’se\%rmance, adding the richer GMM distribution con-

processes each document individually, so it Cann%ﬁstently yields superior results
capture structural relatedness across documents. Across each of our evaluati;)ns HTMM greatly

To investigate the importance of our Orderlnghnderperforms the other approaches. Manual ex-

model, we consider two variants of our model tha&mination of the actual topic assignments reveals

alternately relax and tighten ordering constraints. |ﬂ1at HTMM often selects the same topic for discon-
the constrainedmodel, we require all documents 0 ected paragraphs of the same document, violating

follow_the same canonlcal ord_erlng of tOP'CS- _Th'ﬁhe topic contiguity constraint, and demonstrating
is equivalent to forcing the topic permutation dIS'[I‘I-the importance of modeling global constraints for
bution to give all its probability to one ordering, anddocument structure tasks

can be implemented by fixing all inversion cousts We also compare performance measured on the

o Zero during _mference. Al th'e other extreme, W?nanually annotated section headings against the ac-
consider theuniform model, which assumes a uni-

¢ distributi Il topi it int C#ual noisy headings. The ranking of methods by per-
orm distribution over all topic permutations Insteat, ., 0 remains mostly unchanged between these
of biasing toward a small related set. In our im-

| tation. thi be simulated by forci thtwo evaluations, indicating that the noisy headings
piementation, this can be simulated by Torcing e e syfficient for gaining insight into the compara-
*http://glaros.dtc.umn.edu/gkhome/views/cluto/ tive performance of the different approaches.

10we do not evaluate on the corpora used in their work, since . .
our model relies on content similarity across documentsién t Segm?ntanon Table 2 presents the segmentation
corpus. experiment results. On both data sets, our model



Cities: clean headings|| Cities: noisy headings || Elements: noisy headings

Recall | Prec | F-score|| Recall| Prec | F-score|| Recall| Prec | F-score

Clustering 0.578| 0.439| x0.499| 0.611| 0.331| % 0.429| 0.524| 0.361| %0.428

S | HTMM 0.446| 0.232| x0.305| 0.480| 0.183| *0.265| 0.430| 0.190| % 0.264
Il | Constrained| 0.579| 0.471| «0.520| 0.667| 0.382| * 0.485| 0.603| 0.408| x0.487
< | Uniform 0.520| 0.440| x0.477| 0.599| 0.343| *x0.436| 0.591| 0.403| % 0.479
Our model 0.639 | 0.509 0.566 || 0.705 | 0.399 0.510 | 0.685 | 0.460 0.551
Clustering 0.486| 0.541| x0.512| 0.527| 0.414| x0.464| 0.477| 0.402| % 0.436

S | HTMM 0.260| 0.217| x0.237 | 0.304| 0.187| % 0.232| 0.248| 0.243| % 0.246
Il | Constrained| 0.458| 0.519| %x0.486| 0.553| 0.415| % 0.474| 0.510| 0.421| % 0.461
X | Uniform 0.499| 0.551| x0.524 || 0.571| 0.423| x0.486| 0.550| 0.479| ¢ 0.512
Our model 0.578 | 0.636 0.606 || 0.648 | 0.489 0.557 || 0.569 | 0.498 0.531

Table 1: Comparison of the alignments produced by our mattbaseries of baselines and model variations, for both
10 and 20 topics, evaluated against clean and noisy setstais@eadings. Higher scores are better. Within the same
K, the methods which our model significantly outperforms adédated with« for p < 0.001 ando for p < 0.01.

Cities: clean headingg| Cities: noisy headings|| Elements: noisy headings
Py WD | #Segs|| Pk WD | #Segs| P« WD # Segs
BayesSeg 0.321] 0.376| {12.3| 0.317| 0.376| {13.2| 0.279| 0.316 7.7
S | Constrained|| 0.260| 0.281 7.7 0.267| 0.288 7.7 0.227] 0.244 5.4
II'| Uniform 0.268| 0.300 8.8 | 0.273| 0.304 8.8 || 0.226| 0.250 6.6
< | Ourmodel || 0.253 | 0.283 9.0 || 0.257 | 0.286 9.0 || 0.201 | 0.226 6.7
g | Constrained| 0.274| 0.314| 10.9| 0.274| 0.313| 10.9| 0.231| 0.257 6.6
II'| Uniform 0.234| 0.294| 14.0} 0.234| 0.290| 14.0| 0.209| 0.248 8.7
< | Ourmodel || 0.221 | 0.278 14.2 || 0.222 | 0.278 14.2 || 0.203 | 0.243 8.6

Table 2: Comparison of the segmentations produced by ouehaod a series of baselines and model variations, for
both 10 and 20 topics, evaluated against clean and noispkststion headings. Lower scores are bettBayesSeg
is given the true number of segments, so its segments cdiettsthe reference structure’s segmentation.

outperforms the BayesSeg baseline by a substantidillows model is a theoretically and empirically ap-
margin regardless ak. This result provides strong pealing way of capturing the ordering component
evidence that learning connected topic models ovef this topic sequence. Our results demonstrate the
related documents leads to improved segmentatidmportance of augmenting statistical models of text
performance. In effect, our model can take advaranalysis with structural constraints motivated by dis-
tage of shared structure across related documentscourse theory.

In all but one case, the best performance is ob-
tained by the full version of our model. This resultAcknowledgments

indicates thgt enforcing discourse—motivated_ Sm_JGI"he authors acknowledge the funding support of
turall constramt_s allows for_ better segmentatlon.mNSF CAREER grant 11S-0448168, the NSF Grad-
duction. Encoding global dlscourse-level_con_stralntaa,[e Fellowship, the Office of Naval Research,
leads to bette.r Ignguage models, resultlpg n mor6uanta, Nokia, and the Microsoft Faculty Fellow-
accurate predictions of segment boundaries. ship. We thank the members of the NLP group at
MIT and numerous others who offered suggestions
and comments on this work. We are especially grate-
In this paper, we have shown how an unsupervised! to Marina Meila for introducing us to the Mal-
topic-based approach can capture document strdows model. Any opinions, findings, conclusions, or
ture. Our resulting model constrains topic assignrecommendations expressed in this paper are those
ments in a way that requires global modeling of enef the authors, and do not necessarily reflect the
tire topic sequences. We showed that the generalizgtbws of the funding organizations.
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