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Fundamental Frequency Modeling for Speech Synthesis
Based on a Statistical Learning Technique
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SUMMARY This paper proposes a novel multi-layer approach to fun-
damental frequency modeling for concatenative speech synthesis based on
a statistical learning technique called additive models. We define an addi-
tive F0 contour model consisting of long-term, intonational phrase-level,
component and short-term, accentual phrase-level, component, along with
a least-squares error criterion that includes a regularization term. A back-
fitting algorithm, that is derived from this error criterion, estimates both
components simultaneously by iteratively applying cubic spline smoothers.
When this method is applied to a 7,000 utterance Japanese speech cor-
pus, it achieves F0 RMS errors of 28.9 and 29.8 Hz on the training and
test data, respectively, with corresponding correlation coefficients of 0.806
and 0.777. The automatically determined intonational and accentual phrase
components turn out to behave smoothly, systematically, and intuitively un-
der a variety of prosodic conditions.
key words: speech synthesis, fundamental frequency, additive models, sta-
tistical learning

1. Introduction

In recent years, corpus-based concatenative methods for
speech synthesis have received increasing attention within
the research community as well as the speech technology
industry, because of their ability to generate natural sound-
ing speech output [1]–[3]. In general, for synthesized speech
to be natural and intelligible, it is crucial to have a proper F0

contour that is compatible with linguistic information such
as lexical accent (or stress) and phrasing in the input text.
In the corpus-based concatenative speech synthesis setting,
target F0 features (e.g., mean frequency, ending frequency,
amount of movement) are generated for each synthesis unit.
Distance metrics can then be used to compute a cost be-
tween the unit target values, and those available in a speech
corpus. Overall cost is minimized during search to find the
best matching sequence of synthesis units from the corpus.

In some systems, F0 target is predicted by an indepen-
dent rule-based front-end [4], while regression tree-based
approaches are popularly used to predict F0-related mea-
sures from a set of linguistic features [3], [5], [6]. A re-
gression tree approach is advantageous in that it is simple
to implement yet very powerful. It has a few drawbacks,
however. For example, the predicted values do not have a
smooth contour, since it essentially represents a piecewise
constant function of the input features. It also has a draw-
back that it cannot capture additive structure when the data
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does have such a structure.
In this work, we propose a simple yet novel multi-layer

additive model approach to F0 contour prediction, and a
method to estimate the component functions through the
minimization of a residual sum-of-squares error criterion
that includes a regularization (or penalty) term. Additive
Models [7], [8] are a class of nonlinear regression models,
which can be regarded as a generalization of linear models
(or multiple linear regression). It and its extension by link
function, called Generalized Additive Models, are described
in detail in the monograph [8], and have been applied to
various statistical modeling practices such as weather fore-
cast [9] and public health research [10], among others.

In the next section we define a two-layer additive F0

model, along with a penalized least-squares criterion from
which we derive a backfitting algorithm as the minimizer
of the criterion. We then describe experimental results ap-
plying the proposed method to a large corpus of Japanese
speech in the following section.

2. Additive Model Approach

The basic formulation for the F0 contour is similar to previ-
ous work that models F0 in a superpositional way, e.g., [11]
that models F0 generation mechanism with second-order
linear systems, and [12] that uses multiple linear regression
with indicator variables. In our two-layer additive model-
ing approach, the F0 contour, Y, is regarded as the output of
a statistical model that combines a long-range intonational-
phrase level component, g, and a shorter accentual-phrase
level component, h:

Y = α + g(I,U) + h(A,V) + ε

= α + gI(U) + hA(V) + ε, (1)

where α is a constant, I is a discrete input variable that repre-
sents a type of intonational phrase, and indexes the relevant
function gI . U is a continuous variable representing a time
point relative to the starting point of the phrase of type I.
Similarly, discrete variable A designates a type of accentual
phrase, and V represents a time point relative to the starting
point of the accentual phrase of type A. The random error
term, ε, is zero mean. Figure 1 shows how the three terms
form the entire F0 contour function.

2.1 Penalized Least Square and Backfitting algorithm

A unique characteristics of the additive model approach, as
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Fig. 1 A schematic diagram of the additive F0 model f (I,U, A,V) = α + gI (U) + hA(V). A constant
α and component functions g and h are summed up to form the F0 contour f . In this example, a 6-mora
accentual phrase with the accent nucleus at the third mora (’6m3n’, for short), e.g. “monowa’kareni”
is followed by an ’4m4n’ accentual phrase, e.g. “owatta” to form a 10-mora intonational phrase, e.g.
“monowa’kareni owatta”.

(1) Initialize: α̂ = 1
N

∑N
n=1 yn, ĝi ≡ 0, ĥa ≡ 0, f or all i ∈ r(I), a ∈ r(A).

(2) Cycle: repeat (2g) and (2h) until the functions ĝI and ĥA stabilize.
(2g) Partition the set of training data {(in, un, an, vn, yn) | n = 1, . . . ,N}, into |r(I)| subsets {(i, ui,l, ai,l , vi,l , yi,l) | l = 1, . . . , Ni} (i ∈

r(I)), so that each training point has the same value of i if in the same subset. Note that
∑

i∈r(I) Ni = N.
For all i ∈ r(I),

ĝi ← Si

[
{yi,l − α̂ − ĥai,l (vi,l)}Ni

l=1

]
.

(2h) Repartition the training data {(in, un, an, vn , yn) | n = 1, . . . , N} into |r(A)| subsets {(ia,l , ua,l , a, va,l , ya,l) | l = 1, . . . , Na} (a ∈
r(A)), so that each training point has the same value of a if in the same subset. As before,

∑
a∈r(A) Na = N.

For all a ∈ r(A),

ĥa ← Sa

[
{ya,l − α̂ − ĝia,l (ua,l)}Na

l=1

]
.

Fig. 2 A backfitting algorithm for the additive F0 model.

compared to previous work, is that we do not have to assume
any parameterized functional form. Instead, we assume a
smoothness defined in terms of curvature, and use an esti-
mation scheme derived from a least-squares error criterion
with a regularization term, or roughness penalty [7], [8]. We
define the penalized residual sum-of-squares (PRSS) error
of the model with regard to the overall training data in the
following form:

PRSS = RSS + λgJ(g) + λhJ(h)

=

N∑
n=1

{yn − α − gin (un) − han(vn)}2

+ λg

∑
s∈r(I)

∫
g′′s (w)2dw + λh

∑
t∈r(A)

∫
h′′t (x)2dx,

(2)

where (in, un, an, vn, yn) (n = 1, . . . ,N) are a set of training
data corresponding to the variables (I,U, A,V, Y), and λg, λh

are fixed smoothing parameters. The number N represents

the total number of the available training data points. r(I)
and r(A) represents the set of possible values (or range) for
I and A, respectively. The number of elements in a set will
be denoted by vertical bars, e.g., |r(I)| meaning the num-
ber of different values for I. The first term in (2) measures
the closeness to the data, while the second and third terms
penalize the curvatures in the functions, and smoothing pa-
rameters λg and λh establish a tradeoff between them. Large
values of λ’s yield smoother curves, while smaller values
result in more fluctuation.

It can be shown that the minimizer of (2) is an ad-
ditive cubic spline model, where gI’s and hA’s are natu-
ral cubic splines in the predictor variables U and V , with
knots, or break points, at each of the unique values of (in, un)
and (an, vn). To make the solution unique, we assume that∑N

1 g(in, un) =
∑N

1 h(an, vn) = 0, therefore αwill be the over-
all mean of yn (n = 1, . . . ,N). We can find the solution for
(2) with a backfitting algorithm [7], a simple iterative proce-
dure depicted in Fig. 2.

In the algorithm, we apply a natural cubic-spline
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smoother matrix, e.g., Si, to the vector of partial residual,
{yi,l − α̂− ĥai,l (vi,l)}Ni

l=1, which is regarded as a function of ui,l,
to obtain a new estimate ĝi. Smoothing of partial residual
is done for gi’s and ha’s in turn, using the current estimate
of the other component function. The iteration is continued
until the estimates ĝi’s and ĥa’s stabilize. In the rest of the
section, we briefly describe how this backfitting algorithm,
with natural cubic spline smoothers, is derived as a iterative
procedure equivalent to a blockwise Gauss-Seidel algorithm
for solving a system of linear equations emerging from the
minimization of the penalized least-square criterion (2).

2.2 Natural Cubic Spline and Its Property

In solving the penalized least square problem, we use a
unique property of a family of functions called natural cubic
splines. A natural cubic spline is a piece-wise cubic function
defined in terms of the points called knots x1, x2, . . . , xK on
some interval [a, b]. It is known that among all twice differ-
entiable functions g(x) defined on [a, b] that passes through
the points (x1, z1), (x2, z2), . . . , (xK , zK) where a < x1 < . . . <
xK < b, the one minimizing a “roughness” measure defined
as an integrated squared second derivative,

∫ b

a
g′′(x)2dx,

is a natural cubic spline with knots at x1, x2, . . . , xK . We
take advantage of this property in solving the penalized least
square problem. For convenience of the reader, we review
the definition of natural cubic spline and the proof of this
property in Appendix A and Appendix B, respectively.

2.3 Derivation of the Backfitting Algorithm

Now, by paying attention to different intonational phrase
types, we can partition the entire set of training data into
|r(I)| subsets in such a way that the points in a subset have
the same value of in, i.e., they belong to the same type of
intonational phrase. We can then express the entire training
data,D, as a union of |r(I)| nonoverlapping subsets:

D = {(in, un, an, vn, yn) | n = 1, . . . ,N}
=
⋃

i∈r(I)

{(i, ui,l, ai,l, vi,l, yi,l) | l = 1, . . . ,Ni}, (3)

where
∑

i∈r(I) Ni = N. Similarly, we can partition the training
data based on the identity of the value of an:

D = {(in, un, an, vn, yn) | n = 1, . . . ,N}
=
⋃

a∈r(A)

{(ia,l, ua,l, a, va,l, ya,l) | l = 1, . . . ,Na}, (4)

where
∑

a∈r(A) Na = N. By using partitionings in (3) and (4),
the expression for the penalized residual sum of squares (2)
can now be rewritten in two ways:

PRSS = RSS + λgJ(g) + λhJ(h)

=
∑
i∈r(I)

Ni∑
l=1

{yi,l − α − gi(ui,l) − hai,l(vi,l)}2

+ λg

∑
s∈r(I)

∫
g′′s (w)2dw + λh

∑
t∈r(A)

∫
h′′t (x)2dx

(5)

=
∑

a∈r(A)

Na∑
l=1

{ya,l − α − gia,l(ua,l) − ha(va,l)}2

+ λg

∑
s∈r(I)

∫
g′′s (w)2dw + λh

∑
t∈r(A)

∫
h′′t (x)2dx.

(6)

Now, let us consider searching for the optimal function
ĝi0 that minimizes the penalized least square criterion (5) for
a certain value i0 of i, when other gi’s (i � i0) and ha’s are
fixed to certain functions.

Assume we are given any twice continuously differ-
entiable function g that is not a natural cubic spline which
passes through the points (ui0,l, g(ui0,l)) (l = 1, . . . ,Ni0 ). Let
ḡ be the natural cubic spline that interpolates the same points
(ui0,l, g(ui0,l)) (l = 1, . . . ,Ni0 ). Since ḡ(ui0,l) = g(ui0,l) by
definition, it immediately follows that the residual sum of
squares error term is exactly the same for these two func-
tions, i.e.,

Ni0∑
l=1

{yi0 ,l − α − ḡ(ui0,l) − hai0 ,l
(vi0,l)}2

=

Ni0∑
l=1

{yi0,l − α − g(ui0,l) − hai0 ,l
(vi0,l)}2.

On the other hand, due to the property of the natural cu-
bic spline interpolant that we saw in 2.2, it holds that∫

ḡ′′(t)2dt <
∫

g′′(t)2dt. We can therefore conclude that
PRSS(gi0 = ḡ) < PRSS(gi0 = g). This means that, unless
g itself is a natural cubic spline, we can find a natural cu-
bic spline which yields a smaller value of PRSS in (5). It
immediately follows that the minimizer ĝi0 of (5) must be a
natural cubic spline with knots at each of the unique values
of ui0,l (l = 1, . . . ,Ni0 ). Extending the discussion above to
all the instances of gi in (5) and all instances of ha in (6), we
see that each of gi’s and ha’s has to be a natural cubic spline.

We can now write each of gi as the linear combination
of Ki natural cubic spline basis functions N(i)

j (cf. Appendix
A):

gi(u) =
Ki∑
j=1

N(i)
j (u) θ(i)j , i ∈ r(I), (7)

where Ki is the number of distinct values for ui,l, the time
points within the intonational phrase function gi. Then the
vector of the values of gi at the training data points ui,l (l =
1, . . . ,Ni) can be written as

gi = Niθi (8)
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where θi = (θ(i)1 , . . . , θ
(i)
Ki

)T and the Ni×Ki matrix Ni contains
Ki cubic spine basis functions evaluated at each of the Ni

training data points, i.e. (Ni)l, j = N(i)
j (ui,l). Then, by defining

a Ki ×Ki matrixΩNi as (ΩNi ) j,k =
∫

N(i)
j

′′
(x) N(i)

k

′′
(x) dx, we

can write each component roughness penalty for gi as:

∫
g′′i (x)2dx =

∫ 
Ki∑
j=1

N(i)
j

′′
(x) θ(i)j


2

dx

= θT
i ΩNiθi, (9)

An accentual phrase function ha can also be written as a
linear combination of natural cubic spline basis functions
N(a)

j :

ha(v) =
Ka∑
j=1

N(a)
j (v) θ(a)

j , a ∈ r(A), (10)

and we can derive the component roughness penalty for ha

in the same way:∫
h′′a (x)2dx = θT

aΩNaθa, (11)

where θa is a cubic spline coefficient vector (θ(a)
1 , . . . , θ

(a)
Ka

)T ,

and (ΩNa ) j,k =
∫

N(a)
j

′′
(x) N(a)

k

′′
(x) dx.

PRSS in (5) can now be written in a matrix form:

PRSS =
∑
i∈r(I)

(yi − α − gi − hi)
T (yi − α − gi − hi)

+ λg

∑
i∈r(I)

θT
i ΩNiθi + λh

∑
a∈r(A)

θT
aΩNaθa

=
∑
i∈r(I)

(yi − α − Niθi − hi)T (yi − α − Niθi − hi)

+ λg

∑
i∈r(I)

θT
i ΩNiθi + λh

∑
a∈r(A)

θT
aΩNaθa, (12)

where yi = (yi,1, . . . , yi,Ni )
T , α = (α, . . . , α)T , hi =

(hai,1(vi,1), . . . , hai,Ni
(vi,Ni))

T . By differentiating (12) with re-
spect to the coefficient vector θi0 of one component function
gi0 (u) (i0 ∈ r(I)), and setting the partial derivative to zero,
we obtain:

θ̂i0 = (NT
i0 Ni0 + λgΩNi0

)−1NT
i0 (yi0 − α − ĥi0 ). (13)

Similarly, we can derive another matrix form of the pe-
nalized least square criterion from (6):

PRSS

=
∑

a∈r(A)

(ya − α − ga − Naθa)T (ya − α − ga − Naθa)

+ λg

∑
i∈r(I)

θT
i ΩNiθi + λh

∑
a∈r(A)

θT
aΩNaθa, (14)

where ya = (ya,1, . . . , ya,Na)
T , ga = (gia,1(ua,1), . . . ,

gia,Na
(ua,Na))

T , and (Na)l, j = N(a)
j (va,l). As before, differenti-

ating with respect to the coefficient vector θa0 of one com-
ponent ha0 (a0 ∈ r(A)), and setting the partial derivative to

zero, we obtain

θ̂a0 = (NT
a0

Na0 + λhΩNa0
)−1NT

a0
(ya0
− α − ĝa0

). (15)

Repeating the operations above for all i0 ∈ r(I) and a0 ∈
r(A), we obtain a set of estimating equations:

θ̂i = (NT
i Ni + λgΩNi )

−1NT
i (yi − α − ĥi)

for all i ∈ r(I) (16)

θ̂a = (NT
a Na + λhΩNa )−1NT

a (ya − α − ĝa)

for all a ∈ r(A). (17)

We note that l-th row of ĥi in (16) is a linear combination of
the elements of θai,l in the form of (10), and that l-th row of
ĝa in (17) is a linear combination of the elements of θia,l in
the form of (7). Therefore (16) and (17) together consists a
set of K equations with K unknowns, where

K =
∑
i∈r(I)

Ki +
∑

a∈r(A)

Ka.

Multiplying both sides of (16) and (17) by Ni and Na, re-
spectively, from the left, we have

ĝi = Niθ̂i

= Ni(NT
i Ni + λgΩNi )

−1NT
i (yi − α − ĥi)

= Si(yi − α − ĥi) for all i ∈ r(I) (18)

ĥa = Naθ̂a

= Na(NT
a Na + λhΩNa )−1NT

a (ya − α − ĝa)

= Sa(ya − α − ĝa) for all a ∈ r(A). (19)

Each of Si = Ni(NT
i Ni + λgΩNi )

−1NT
i and Sa = Na(NT

a Na +

λhΩNa )−1NT
a in (18) and (19) is called a smoother matrix

for a cubic smoothing spline. We can obtain the solutions
ĝi for all i ∈ r(I) and ĥa for all a ∈ r(A) using the back-
fitting algorithm, an iterative method depicted in Fig. 2, in
which these smoother matrices are applied as smoothing op-
erators in turn until convergence. This backfitting algorithm
is equivalent to a block-wise Gauss-Seidel method [13] to
solve the linear system of (16) and (17).

In our current implementation, we have adopted the ar-
guments in [7] and have used more computationally man-
ageable (K + 4) B-spline basis functions, replacing K basis
functions of natural cubic spline (Appendix A). It is also
suggested that if the number of knots is very large, it is not
necessary to use all the knots and some thinning strategy
will save in computations with negligible effect on the fit [7].
In our current implementation, therefore, we just adopt one
every ten time points for the use as knots.

3. Experiments and Results

We have recently been developing a speech synthesizer for
Japanese based on our finite-state transducer-based frame-
work [14], [15], and have created a preliminary version for
a weather forecast domain [16]. We have therefore at-
tempted to evaluate the use of our F0 modeling technique for
Japanese as well. In our current implementation, we made



SAKAI: FUNDAMENTAL FREQUENCY MODELING
493

(a) Intonational phrase components.

(b) Accentual phrase components.

Fig. 3 Examples of intonational phrase components and accentual
phrase components estimated with the proposed method. (a) Intonational
phrase components with the length of 8 through 12 moras. (b) 3-, 4- and
5-mora accentual phrase components with all distinct accent nucleus posi-
tions.

an simplifying assumption that an intonational phrase com-
ponent of F0 is identified by its mora length. The predictor
variable I represents the number of moras (or morae) in the
intonational phrase. An accentual phrase component is as-
sumed to be identified by the number of moras in it and the
position of the nucleus of accent (often called accent type).
Therefore, the variable A represents a pair (m, n), where m
is the number of moras in the accentual phrase and n means
that the nucleus is associated with the n-th mora.

We have implemented the algorithm mentioned above
in Matlab [17], and estimated component functions gi’s and
ha’s in the log frequency domain using a corpus of Japanese
utterances read by a female speaker. λg and λh are both set
to be 1.0.

The corpus consisted mostly (around 90%) of general
sentences taken from news, novels and other types of gen-
eral texts. The rest consists of weather (approx. 7%) and
stock market report (approx. 3%). The speaker was in-
structed to read in a fairly neutral manner (but not so neutral
as to be completely unexpressive), in other words to give a
delivery typical of that of a newscaster.

In the transcription of this corpus, the intonational
phrase boundaries were defined simply in terms of pauses
the speaker made, and assigned in the labels by human tran-

scriptionists, who checked and marked the phrase bound-
aries for all of the recorded material. It was attempted to
check carefully the location of pauses during recordings
so that they did not occur in unnatural spots, although the
speaker was not given specific instructions about where to
pause in the text and where not to.

The corpus comprised 7,282 utterances, which in turn
consist of 16,181 intonational phrases and 44,717 accen-
tual phrases. The number of distinct types of intonational
phrases (or distinct mora lengths) was 49, and there were
130 unique accentual phrase types. Utterances in the cor-
pus are annotated with accentual phrase and intonational
phrase boundary information as well as phone labels. F0

values were extracted from the corpus every 10 ms using
the Snack Sound Toolkit, a public domain toolkit devel-
oped at KTH [18], [19]. These F0 data were used as is, and
no particular postprocessing such as elimination of “micro-
prosody” was performed. The mean and the standard devia-
tion of the corpus F0 were 207 Hz and 48.2 Hz, respectively.

Before the estimation, the original pitch samples were
normalized to have the same number of samples per mora
by uniformly interpolating or decimating each accentual
phrase. The data instances for which no pitch was extracted
for more than half of the mora interval at the beginning or
end of all the instances of an accentual phrase type were dis-
carded before estimation, which resulted in accentual phrase
types available for training reduced to 116, i.e. 89% of the
number of distinct types before discarding. As a side effect,
the number of unique intonational phrase types was reduced
to 46, which is 94% of the number before discarding.

The backfitting iteration (Fig. 2, (2)) converged well
when sixth loop was over. As a result, estimates for 46
distinct intonational phrases, and 116 types of accentual
phrases were obtained.

Figure 3 shows examples of extracted intonational and
accentual phrase components. Figure 4 illustrates an exam-
ple of the estimated F0 contour plotted with the actual F0

data in the training corpus. As an objective evaluation, we
measured the goodness of fit in terms of root mean square er-
ror (RMSE) and correlation coefficient (Corr) in the voiced
portions of the data, which are often used in the evaluation
of F0 modeling [5], [20]. On the training data, RMSE was
28.9 Hz, and the Corr was 0.806. Measured on 85 intona-
tional phrases set aside from the training data, RMSE and
Corr were 29.8 Hz, and 0.777, respectively (Table 1). Mea-
sured in the log frequency domain to the base 2, the RMSE
for training and test set were 0.195 (octave) and 0.203 (oc-
tave), respectively.

Although it can be difficult to compare performance
across different speech corpora and languages, we believe
these results are quite promising. For example, state-of-the-
art results of 33–34 Hz RMSE, and 0.6–0.72 Corr have been
reported on a female-speaker English radio news corpus [5],
[20] with the standard deviation reported as e.g. 53 Hz in
[20].
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Fig. 4 F0 contour from the trained model, displayed with the actual F0 contour. The dark dots are the
F0 data in the training corpus, and light dots are the F0 contour derived from the additive model trained
on the entire training corpus.

Table 1 Experimental results for the additive F0 model. “RMSE” stands
for the root mean square error and “Corr” for the correlation coefficient.

RMSE Corr
training 28.9 0.806

test 29.8 0.777

4. Conclusions and Future Work

In this paper, we have proposed a novel two-layer approach
to F0 modeling that uses a statistical learning technique for
nonparametric regression called Additive Models. We con-
firmed by experiment that intonational and accentual phrase
components that shows a quite regular patterns can be suc-
cessfully estimated from a large Japanese speech corpus
with the proposed method.

The fundamental frequency predicted by the model can
be used as the reference for deriving a substitution (target)
cost for unit selection in a corpus-based speech synthesizer.
It may also be used in part of a post-processor to modify the
waveform units to have pitch contour closer to the target.

Although current paper has only examined a two-layer
modeling with the proposed additive framework, there is no
theoretical limitation to the number of layers. It is expected
that we may be able to add more layers as far as additivity
of the component effects holds and those components are
linearly independent from each other.

We plan to incorporate the F0 measures predicted by
the model, as one of the target measures to evaluate the
goodness of the corpus units, into our next generation
speech synthesis system we are currently developing. We
also plan to apply this framework to F0 modeling for En-
glish speech synthesis.
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Appendix A: Definition of Natural Cubic Spline [7],
[21]

Suppose we have real numbers ξ1, . . . , ξK on some inter-
val [a, b], satisfying a < ξ1 < ξ2 < . . . < ξK < b.
A function g defined on [a, b] is a cubic spline if two
conditions are satisfied. First, on each of the intervals
(a, ξ1), (ξ1, ξ2), . . . , (ξK , b), g is a cubic polynomial. Second,
the polynomial pieces fit together at the points ξi in such a
way that g itself and its first and second derivatives are con-
tinuous at each ξi, hence on the whole of [a, b]. The points
ξi are called knots.

A natural cubic spline has additional constraints,
namely that its second and third derivatives are zero at a
and b. These constraints incurs that the function is linear
beyond the two boundary knots, ξ1 and ξK . It is known that
a natural cubic spline with K knots can be represented in the
form of a linear combination of K basis functions

g(x) =
K∑

j=1

θ jN j(x), (A· 1)

where each of the basis functions Nj is a some polynomial
with an order up to three. See, for example, [7] (pp.120–
122) for the detailed discussion.

Appendix B: A Property of Natural Cubic Spline In-
terpolant (Green and Silverman [21])

Suppose that N ≥ 2 and that g is the natural cubic spline
interpolant to the pairs (xi, zi) (i = 1, . . . ,N) with a < x1 <
. . . < xN < b. This is a natural cubic spline with knots at
xi (i = 1, . . . ,N). Let g̃ be any other twice continuously
differentiable function on [a,b] that also interpolates the N
pairs, i.e. g̃(xi) = zi for i = 1, . . . ,N. Then, it holds that∫ b

a
g̃′′(x)2dx ≥

∫ b

a
g′′(x)2dx,

with equality only if g̃ and g are identical.

Proof Let h(x) = g̃(x) − g(x). Since g̃ and g both inter-
polates the pairs (xi, yi), h is zero at all xi (i = 1, . . . ,N).

Using the boundary conditions that g′′ is zero at a and b,
integration by parts yields
∫ b

a
g′′(x)h′′(x)dx

= g′′(b)h′(b) − g′′(a)h′(a) −
∫ b

a
g′′′(x)h′(x)dx

= −
∫ x1

a
g′′′(x)h′(x)dx −

N−1∑
j=1

∫ x j+1

x j

g′′′(x)h′(x)dx

−
∫ b

xN

g′′′(x)h′(x)dx

= −
N−1∑
j=1

g′′′(x+j )
∫ x j+1

x j

h′(x)dx

= −
N−1∑
j=1

g′′′(x+j ){h(x j+1) − h(x j)} = 0. (A· 2)

We have used the fact that g′′′ is zero on the intervals (a, x1)
and (xN , b) and is constant on each of the intervals (x j, x j+1)
with the value g′′′(x+j ). Using (A· 2), it follows that

∫ b

a
g̃′′(x)2dx

=

∫ b

a
{g′′(t) + h′′(t)}2dx

=

∫ b

a
g′′(x)2dx + 2

∫ b

a
g′′(x)h′′(x)dx +

∫ b

a
h′′(x)2dx

=

∫ b

a
g′′(x)2dx +

∫ b

a
h′′(x)2dx

≥
∫ b

a
g′′(x)2dx, (A· 3)

and equality will hold only if
∫ b

a
h′′(x)2dx is zero, so that h

is linear on [a, b]. But since h is zero at x1, . . . , xN , and since
N ≥ 2, this can only happen if h is identically zero, which
means that g and g̃ are the same function. �
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