Biology of Sport

pISSN 0860-021X

Editorial Board Editorial Staff Instructions for Authors

Current issue

Archival Issues

Volume 27, 2010

Volume 26, 2009

Volume 25, 2008

Volume 24, 2007

Volume 23, 2006

Volume 22, 2005

Volume 21, 2004 Volume 20, 2003

Search

Newsletter

Authors Pathway

Information for Authors

Journal Abstract

Acute hepatic response to diet modification and exercise-induced endotoxemia during a laboratory-based duathlon

J Moncada-Jiménez, EP Plaisance, F Araya-Ramírez, JK Taylor, L Ratcliff, ML Mestek, PW

Grandjean, LF Aragon Vargas

Biol Sport 2010; 27 (2):

ICID: 913077

Article type: Original article

IC™ Value: 9.38

Abstract provided by Publisher

The purpose of the study was to compare the acute hepatic response to diet modification and exercise-induced endotoxemia, and to determine if associations exist between liver damage markers, body core temperature, and IL-6 responses to a laboratory-based duathlon. Eleven moderately-trained healthy males followed a low-carbohydrate (CHO) and a high CHO diet to change their glycogen stores two-days before completing a duathlon. Blood samples were obtained at rest, immediately after and 1- and 2-h following the duathlon for determination of endotoxin-lipopolysaccharide binding protein (LPS-LBP) complex, IL-6, and liver integrity markers AST, ALT, and AST/ALT ratio. Hydration status and body core temperature were assessed at rest, during, and after the duathlon. Athletes were more dehydrated and had higher AST/ALT ratios in the lowcompared to the high-CHO diet trial regardless of the measurement time (p<0.05). IL-6 increased from resting to immediately after, 1- and 2-h following duathlon regardless of the diet (p<0.05). A higher LPS-LBP complex concentration was observed from rest to immediately after the duathlon. No significant correlations were found between LPS-LBP complex levels and body core temperature. In conclusion, athletes on a low-CHO diet showed higher hepatic structural damage and finished more dehydrated compared to athletes on a high-CHO diet. Body core temperature and LPS-LBP complex levels were unrelated beyond the increase in body core temperature explained by exercise. No significant associations were found between body core temperature, IL-6 and LPS-LBP complex concentrations.

ICID 913077

FULL TEXT 290 KB

Related articles

- in IndexCopernicus™
 - human [44 related records]
 - Cytokines [438 related records]
 - lipopolysaccharide [16 related records]
 - Inflammation [655 related records]
 - Exercise [953 related records]

Back

Copyright © Biology of Sport 2010

Pages created by IndexCopernicus™ Journal Management System