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Abstract

We study the situation of an agent who can trade on a financial market and can also transform

some assets into others by means of a production system, in order to price and hedge derivatives

on produced goods. This framework is motivated by the case of an electricity producer who wants

to hedge a position on the electricity spot price and can trade commodities which are inputs for

his system. This extends the essential results of [2] to continuous time markets. We introduce the

generic concept of conditional sure profit along the idea of the no sure profit condition of Rásonyi

[17]. The condition allows one to provide a closedness property for the set of super-hedgeable

claims in a very general financial setting. Using standard separation arguments, we then deduce

a dual characterization of the latter and provide an application to power futures pricing.

Key words : arbitrage pricing theory, markets with proportional transaction costs, non-linear re-

turns, super replication theorem, electricity markets, energy derivatives.

1 Introduction

The recent deregulation of electricity markets in many countries has opened a new range of applica-

tions for financial techniques in order to hedge energy risks. However, the non-storability of electricity

forbids any trading strategy based on the spot price and the standard mathematical toolbox cannot

be exploited to hedge and price derivative products upon this asset. The challenge must still be taken

up for electricity producers who are endowed with such claims. It also concerns financial agents pos-

sessing a power plant, as an asset for diversification purposes. These economical agents can produce

power out of a storable commodity, and sell it to benefit from electricity prices variation. Hence, they

perform a sort of financial strategy, as studied in [1] where the production is a structural function

of electricity demand. Here, our goal is to study the general situation of an agent who can trade

financial assets and inputs for his production system, and who can transform a position into an other

by the mean of a production system he controls.

∗This research is part of the Chair Finance and Sustainable Development sponsored by EDF and CACIB.
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As in [2], the reasoning is the following. In the framework of purely financial portfolios, Arbitrage

Pricing Theory ensures by an economical assumption, the no-arbitrage condition, a closedness prop-

erty for the set of attainable terminal wealth for self financing portfolios. This key property has direct

applications, such as a dual formulation, which provides an equivalent martingale measure for pricing

purposes. In our particular framework, if the financial market runs as usual, production is not bound

up with any particular economical condition : it is an idiosyncratic action of the agent. We thus

propose in this note a general constraint upon the production possibilities of the agent in order to

apply arbitrage pricing techniques. In practice, the additional condition is calibrated to market data

and the producer’s activity. In theory, this condition implies the closedness property of the set of at-

tainable terminal positions, as it is sought in the purely financial case. This property allows to display

many financial techniques, such as risk measures or portfolio optimization. The purpose of this note

is to demonstrate and apply the undermentioned super-replication theorem for the investor-producer.

If we denote X
R
0 (T ) the set of possible portfolio outcomes at time T that the investor-producer can

reach starting from 0 at time 0, and M the set of pricing measures for the financial market model,

we thus show afterwards the following result:

Theorem 1.1. Let H be a contingent claim. Then

H ∈ X
R
0 (T ) ⇐⇒ E [Z ′

TH ] ≤ αR
0 (Z), ∀Z ∈ M

where αR
0 (Z) := sup

{
E [Z ′

TVT ] : VT ∈ X
R
0 (T )

}
is the support function of Z ∈ M on X

R
0 (T ).

The usual interpretation is that a contingent claim is replicable with a strategy starting from nothing

at time 0 if and only if the expectation with respect to a pricing measure Z ∈ M always verifies a

given bounding condition. The paper is thus structured around that theorem as follows. In Section

2, we introduce properly the entities X
R
0 (T ), M and H . In Section 3, we propose the economical

condition under which Theorem 1.1 holds. In Section 4, we give an application to Theorem 1.1.

Section 5 is dedicated to the proof of Theorem 1.1.

This problem has actually been explored in a discrete time framework for markets with proportional

transaction costs in [2]. In the latter, the authors propose to extend the no-arbitrage of second

kind condition of Rásonyi [17] to portfolios augmented by a linear production system. A condition

for general production functions, the no marginal arbitrage for high production regime condition,

has then been introduced using the extended condition above in order to allow marginal arbitrages

for reasonable levels of production. In the present note, we push forward this study by proposing

an alternative condition which has a close economical interpretation: the conditional sure profit

condition. Contrary to the no marginal arbitrage condition of [2], it deals directly with general

production possibilities and avoids to introduce a linear production system. This is the contribution

of Section 3. We also focus on investors-producers with specific means of production: production

possibilities are in discrete time as in [2] but we additionally assume concavity and boundedness of

the production function. In counterpart, our framework encompasses continuous time financial market

models with and without transaction costs. This is the contribution of Section 2. The contribution of

Section 4 is to apply Theorem 1.1 in order to put a price on a power futures contract for an electricity

producer endowed with a simple mean of production.

General notations: throughout this note, x ∈ Rd will be viewed as a column vector with entries

xi, i ≤ d. The transpose of a vector x will be denoted x′, so that x′y stands for the scalar product.
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As usual, Rd
+ and Rd

− stand for the positive and negative orthants of Rd respectively, i.e., [0,+∞)d

and (−∞, 0]d. For a given probability space (Ω,G,P) and a G-measurable random set E, L0(E,G)

will denote the set of G-measurable random variables taking values in E P-almost surely, L1(E,G)

the set of P-integrable random variables takings values in E P-almost surely and L∞(E,G) the set

of essentially bounded random variables taking values in E. The notation conv(E) will denote the

closed convex hull of E, and cone(E) the closed convex cone generated by conv(E). All the inclusions

or inequalities are to be understood in the almost sure sense unless otherwise specified.

2 The framework

We first introduce the financial possibilities of the agent. We consider an abstract setting mainly

inspired by [8], which allows to deal with a very large class of market models. To illustrate our

framework, we provide two examples in Section 2.4. We then introduce production possibilities for

the investor.

Preamble. Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a continuous-time filtered stochastic basis on a finite

time interval [0, T ] satisfying the usual conditions. We assume without loss of generality that F0 is

trivial and FT− = FT . For any 0 ≤ t ≤ T , let T denote the family of stopping times taking values in

[0, T ] P-almost surely. From now on, we consider a pair of set-valued F-adapted process K̂ and K̂∗

such that K̂t(ω) is a proper convex closed cone of Rd including Rd
+, dt ⊗ dP-a.e. The process K̂∗ is

defined by

K̂∗
t (ω) :=

{
y ∈ Rd

+ : xy ≥ 0, ∀x ∈ K̂t(ω)
}

. (2.1)

Since K̂t(ω) is proper, its dual K̂
∗
t (ω) 6= {0} dt⊗dP-a.s. In the literature on markets with transaction

costs, K̂t usually stands for the solvency region at time t, and −K̂t for the set of possible trades at

time t, see [12] and the reference therein. In practice, K̂ and K̂∗ are given by the market model we

consider, see the examples of Sections 2.4 and 4. We use here the process K̂ to introduce a partial

order on Rd at any stopping time in T .

Definition 2.1. Let τ ∈ T . For (ξ, κ) ∈ L0(R2d,Fτ ), ξ �τ −κ if and only if ξ + κ ∈ L0(K̂τ ,Fτ ).

Definition 2.2. A contingent claim is a random variable H ∈ L0(Rd,FT ) such that H �T −κ for

some κ ∈ Rd
+.

2.1 The set of financial positions

We consider a financial market on [0, T ] with d assets. The market also includes the prices of com-

modity entering in the production process, e.g., fuel or raw materials. The agent we consider has the

possibility to trade on this market by starting a portfolio strategy at any time ρ ∈ T . The financial

possibilities of the agent are then represented by a family of sets of wealth processes denoted (X0
ρ)ρ∈T .

The superscript 0 stands for no production, or pure financial.

Definition 2.3. For any ρ ∈ T , the set X0
ρ is a set of F-adapted d-dimensional processes ξ defined

on [0, T ] such that ξt = 0 P − a.s. for all t ∈ [0, ρ). We denote by X
0
ρ(T ) :=

{
ξT : ξ ∈ X

0
ρ

}
the

corresponding set of attainable financial positions at time T .
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We do not give more details on what a financial strategy is. In all the considered examples, it

will denote a self financing portfolio value as commonly defined in Arbitrage Pricing Theory. The

multidimensional setting is justified by models of financial portfolios in markets with proportional

transaction costs, see [12]. In that case, portfolio are expressed in physical units of assets. Just

note that we implicitly assume that the initial wealth of the agent does not influence his financial

possibilities, so that a portfolio generically starts with a null wealth in our setting.

Assumption 2.1. For any ρ ∈ T , the set X0
ρ(T ) has the following properties:

(i) Convexity: X0
ρ(T ) is a convex subset of L0(Rd,FT ) containing 0.

(ii) Liquidation possibilities: X
0
ρ(T )− L∞(K̂s,Fs) ⊆ X

0
ρ(T ), ∀s ∈ [ρ, T ] P− a.s.

(iii) Concatenation: X0
ρ(T ) =

{
ξσ + ζT : (ξ, ζ) ∈ X

0
ρ × X

0
σ, for any σ ∈ T s.t. σ ≥ ρ

}
.

The convexity property holds in most of market models, see [12]. Assumption 2.1.(ii) means that

whatever the financial position of the agent is, it is always possible for him to throw away a non-

negative quantity of assets at any time, or to do an arbitrarily large transfer of assets allowed by the

cone −K̂s. This last possibility is made for models of markets with convex transaction costs. Finally,

the concatenation property also holds in most of market models and often reveals their Markovian

behaviour. Note that Assumption (2.1) (i) and (iii) imply that X
0
ρ(T ) ⊂ X

0
τ (T ) for any (ρ, τ) ∈ T 2

such that ρ ≥ τ .

2.2 Absence of arbitrage in the financial market

As for any investor on a financial market, we assume that our investor-producer cannot find an

arbitrage opportunity. We elaborate below this condition by relying on the core result of Arbitrage

Pricing Theory, which resides in the following fact, see the introduction of [8]. Formally, when the

financial market prices are represented by a process S, the no-arbitrage property for the market holds

if and only if there exists a stochastic deflator, i.e., a strictly positive martingale Γ such that the

process Z := ΓS is a martingale. The process Z can then be seen as the shadow price or fair price of

assets. We assume that such a process Z exists by introducing the following.

Definition 2.4. Let M be the set of F-adapted martingales Z on [0, T ] taking values in K̂∗, with

strictly positive components, such that

sup
{
E [Z ′

T ξT ] : ξ ∈ X
0
0 and ∃κ ∈ Rd

+ s.t. ∀τ ∈ T , ξτ �τ −κ
}
< +∞ . (2.2)

In condition (2.2), we apply the pricing measure Z for the subset of X0
0(T ) comprising financial wealth

processes with a finite credit line κ. We need this basic concept of admissibility for portfolio processes

to define M properly. We will extend admissibility of wealth processes in the next section. Definition

2.4 needs more comment. If the set X
0
0(T ) is a cone, the left hand of (2.2) is null for any Z ∈ M,

according to Assumption 2.1 (i). In the general non conical case, see Section 2.4.2, the support

function in equation (2.2) might be positive, justifying the more general condition. If it is equal to 0

then, for any Z ∈ M and any ξ ∈ X
0
0 with a finite credit line, according to Assumption 2.1 (iii), Z ′ξ

is a supermartingale. We then meet the common no arbitrage condition, see especially Section 2.4.1

below. We thus express absence of arbitrage on the financial market by the following assumption.
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Assumption 2.2. M 6= ∅.

Note that defining M as above is tailor-made for separation arguments, see the proof of Theorem 1.1.

2.3 Admissible portfolios and closedness property

If d = 1, a financial position ξt is naturally solvable if ξt ≥ 0 P−a.s. In the general setting with

d ≥ 1, we use the partial order on Rd induced by the process K̂. Defining solvency allows to define

admissibility which is central in continuous time: the closedness property concerns the subset of X0
0(T )

constituted of admissible portfolios, see [5, 3, 8, 7] and the various definitions provided therein. From

a financial point of view, it imposes realistic constraints on portfolios and avoids doubling strategies.

Here, we use a definition close to the one proposed in [3].

Definition 2.5. For some constant vector κ ∈ Rd
+, a portfolio ξ ∈ X

0
0 is said to be κ-admissible if

Z ′
τξτ ≥ −Z ′

τκ for all τ ∈ T and all Z ∈ M, and ξT �T −κ.

Given M 6= ∅, the concept of admissibility allows to consider a wider class of terminal wealth than

those considered in equation (2.2). According to Definition 2.4, a wealth process ξ is κ-admissible in

the sense of Definition 2.5 if ξ verifies ξτ �τ −κ for all τ ∈ T and some κ ∈ Rd
+. The reciprocal is

not always true, and is the object of the so-called B assumption investigated in [8]. We can finally

define the set of admissible elements of X0
t :

Definition 2.6. We define X0
t,adm :=

{
ξ ∈ X

0
t , ξ is κ-admissible for some κ ∈ Rd

+

}
, and X

0
t,adm(T ) :={

ξT : ξ ∈ X
0
t,adm

}
.

The closedness property will be assigned to the sets X0
t,adm(T ), and is conveyed under the following

technical and standing assumption:

Assumption 2.3. For t ∈ [0, T ], let (ξn)n≥1 ⊂ X
0
t,adm be a sequence of admissible portfolios such that

ξnT �T −κ for some κ ∈ Rd
+ and all n ≥ 1. Then there exists a sequence (ζn)n≥1 ⊂ X

0
t,adm constructed

as a convex combination (with strictly positive weights) of (ξn)n≥1, i.e., ζ
n ∈ conv(ξk)k≥n, such that

ζnT converges a.s. to ζ∞T ∈ X
0
t (T ) with n.

The above assumption calls for the notion of Fatou-convergence. Recall that a sequence of random

variables is Fatou-convergent if it is bounded by below and almost surely convergent. According to

Assumption 2.1 (i), X0
t,adm(T ) is a convex set, which ensures that the new sequence lies in the set.

In Arbitrage Pricing Theory, the Fatou-closedness of X
0
0(T ) often relies on a convergence lemma.

Schachermayer [19] introduced a version of Komlos Lemma that is fundamental in [5], while Campi

and Schachermayer [3] proposed another version for markets with proportional transaction costs.

Assumption 2.3 expresses a synthesis of this result, see Sections 2.4.1 and 4 for applications.

2.4 Illustration of the framework by examples of financial markets

We illustrate here the theoretical framework. We treat two examples, based on [5, 6] and [16, 11]

respectively. In section 4, we also apply our results to a continuous time market with càdlàg price

processes and proportional transaction costs, as studied in [3].

5



2.4.1 A multidimensional frictionless market in continuous time

Consider a filtered stochastic basis (Ω,F ,F,P) on [0, T ], satisfying the usual assumptions. Let S be

a locally bounded (0,∞)d-valued F-adapted càdlàg semimartingale, representing the price process

of d risky assets. We suppose the existence of a non risky asset which is taken constant on [0, T ]

without loss of generality. Let Θ be the set of F-predictable S-integrable processes and Π the set of

F-predictable increasing processes on [0, T ]. We define

X
0
ρ :=

{
ξ = (ξ1, 0, . . . , 0) : ξ1s =

∫ s

ρ

ϑu.dSu − (ℓs − ℓρ−) : (ϑ, ℓ) ∈ Θ×Π, s ∈ [ρ, T ]

}
, ∀ρ ∈ T .

Observe that the set X0
ρ(T ) is a convex cone of R×{0}d−1

containing 0. The set Θ defines the financial

strategies. The set Π represents possible liquidation or consumption in the portfolio. The introduction

of the latter ensures Assumption (2.1) (ii), but does not infer on the mathematical treatment of [5]

where Π is not considered. The set X0
0(T ) also verifies Assumption (2.1) (i) and (iii).

In this context, Delbaen and Schachermayer introduced the No Free Lunch with Vanishing Risk

condition (NFLVR) and proved that it is equivalent to

Q := {Q ∼ P such that S is a Q− local martingale} 6= ∅ (Theorem 1.1 in [5]) .

To relate the NFLVR condition to Definition 2.4, we define M as the set of P-equivalent local mar-

tingale measure processes dQ
dP

∣∣
F.

for Q ∈ Q. If S is a locally bounded martingale, elements of X0
0

are local martingales. We now apply Definition 2.5 of admissibility. We take without ambiguity

K̂ = K̂∗ = Rd
+. As a consequence, a portfolio ξ ∈ X

0
0,adm is κ-admissible only if ξ1t ≥ −κ for all

t ∈ [0, T ], and we retrieve the definition of admissibility of [5]. Therefore, any admissible portfolio is

a true supermartingale under Q ∈ Q.

By Theorem 4.2 in [5], NFLVR implies that X0
0,adm(T ) is Fatou-closed. The proof uses the following

convergence property: for any 1-admissible sequence ξn ∈ X
0
0, it is possible to find ζn ∈ conv(ξk)k≥n

such that ζn converges in the semimartingale topology (Lemmata 4.10 and 4.11 in [5]). Hence, ζnT
Fatou-converges in X

0
0(T ). This can be easily extended to X

0
τ (T ) for any τ ∈ T and for any bound of

admissibility. In this case, Definition 2.5 and the martingale property of ξ1 imply uniform admissibility

in the sense of [5]. Assumption 2.3 then holds in this context.

2.4.2 A physical market with convex transaction costs in discrete time

Let (ti)0≤i≤N ⊂ [0, T ] be an increasing sequence of deterministic times with tN = T . Let us consider

the discrete filtration G := (Fti)0≤i≤N . Here, the market is modelled by a G-adapted sequence

C = (Cti )0≤i≤N of closed-valued mappings Cti : Ω 7→ Rd with Rd
− ⊂ Cti(ω) and Cti(ω) convex for

every 0 ≤ i ≤ N and ω ∈ Ω. We define the recession cones C∞
t (ω) =

⋂
α>0 αCt(ω) and their dual

cones C∞,∗
t (ω) =

{
y ∈ Rd : xy ≥ 0, ∀x ∈ C∞

t (ω)
}
, see also [16] for a freestanding definition

This setting has been introduced in [16] to model markets with convex transaction costs, such as

currency markets with illiquidity costs, in discrete time. Every financial position is labelled in physical

units of the d assets, and the sets Cti denote the possible self financing changes of position at time
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ti, so that

X
0
ti
(T ) :=

{
N∑

k=i

ξtk : ξtk ∈ L0(Ctk ,Ftk), ∀i ≤ k ≤ N

}
for all 0 ≤ i ≤ N .

In this context, Assumption 2.1 trivially holds. If Cti(ω) is a cone in Rd for all 0 ≤ i ≤ N and ω ∈ Ω,

i.e., C = C∞, we retrieve a market with proportional transaction costs as described in [11]. In the

latter, Kabanov and al. show that the Fundamental Theorem of Asset Pricing can be expressed with

respect to the robust no-arbitrage property, see [11] for a definition. This condition is equivalent to

the existence of a martingale process Z such that Zti ∈ L∞(ri(C∞,∗
ti

),Fti), where ri(C∞,∗
ti

) denotes

the relative interior of C∞,∗
ti

. The super replication theorem, see Lemma 3.3.2 in [12], allows M given

by Definition 2.4 to be characterized by such elements Z. In that case, the reader can see that C∞

replaces our conventional cone process K̂.

As mentioned in [16], the case of general convex transaction costs leads to two possible definitions

of arbitrage. One of them is based on the recession cone. Following the terminology of [16], the

market represented by C satisfies the robust no-scalable arbitrage property if C∞ satisfies the robust

no-arbitrage property. This definition implies that arbitrages might exist, but they are limited for

elements of X0
0(T ) and even not possible for the recession cone. Pennanen and Penner [16] proved that

the set X0
0(T ) is closed in probability under this condition. Hence, it is Fatou-closed. The convergence

result used in this context is a different argument than the one of Assumption 2.3. However, the latter

can be applied, see [2] in which Assumption 2.3 has been applied in a very similar context. The notion

of admissibility can also be avoided in the discrete time case.

2.5 Addition of production possibilities

The previous introduction of a financial market comes from the possibility to interpret the available

assets on the market as raw material or saleable goods for a producer. Therefore, we model the

production as a function transforming a consumption of the d assets in a new wealth in Rd. Other

observations from the situation of an electricity provider lead to our upcoming setting. On a dereg-

ulated electricity market, power is provided with respect to an hourly time grid. Production control

can thus be fairly approximated by a discrete time framework. We also introduce a delay in the

control, as a physical constraint in the production process. See [14] for a monograph illustrating these

concerns.

Definition 2.7. Let (ti)0≤i≤N ⊂ [0, T ] be a deterministic collection of strictly increasing times. We

then define a production regime as an element β in B, where

B :=
{
(βti)0≤i<N : βti ∈ L0(Rd

+,Fti), 0 ≤ i < N
}

.

A production function is then a collection of maps R := (Rti)0<i≤N such that for 0 < i ≤ N ,

Rti is a Fti-measurable map from Rd
+ to Rd, in the sense that Rti(βti−1) ∈ L0(Rd,Fti) for βti−1 ∈

L0(Rd
+,Fti−1).

Without loss of generality, it is also possible to consider an increasing sequence of stopping times in T

instead of the (ti)0≤i≤N . The set B can also be defined via sequences (βti)0≤i<N such that βti takes

values in a convex closed subset of Rd
+. The proofs in section 5 would be identical and we refrain from
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doing this. Notice also that it has no mathematical cost to consider separate times of injection and

times of production, i.e., a non-decreasing sequence {t0, s0, t1, s1, . . . , tN , sN} ⊂ [0, T ] with ti < si,

(ti)0≤i<N and (si)0<i≤N allowing to define B and R respectively. As invoked in the introduction, we

add fundamental assumptions on the production function.

Assumption 2.4. The production function has the three following properties:

(i) Concavity: for all 0 < i ≤ N , for all (β1, β2) ∈ L0(R2d
+ ,Fti−1) and λ ∈ L0([0, 1],Fti−1),

Rti(λβ
1 + (1− λ)β2)− λRti(β

1)− (1− λ)Rti(β
2) ∈ Rd

+ P− a.s.

(ii) Boundedness: there exists a constant K ∈ Rd
+ such that for all 0 < i ≤ N ,

K− |Rti(β)− β| ∈ Rd
+ P− a.s. , for all β ∈ Rd

+ .

(iii) Continuity: For any 0 < i ≤ N , we have that lim
βn→β0

Rti(β
n) = Rti(β

0) .

These assumptions are fundamental for the continuous time setting. Assumption 2.4 (i) keeps the

convexity property for the set XR
0 (T ), see Proposition 5.1 in the proofs section. Assumption 2.4 (ii)

does not only ensure the admissibility of investment-production portfolios when we add production.

From the economical point of view, it affirms that the net production income is bounded, which

forbids infinite profits. It thus provides a realistic framework for physical production systems. Finally,

Assumption 2.4.(iii) is a technical assumption in order to use Assumption 2.3. It is only needed to

ensures upper semicontinuity on the boundary of Rd
+, since continuity comes from (i) inside the

domain. See corollary 4.3 in [2], where convexity is not needed and upper semicontinuity is sufficient.

Notice that concavity and the upper bound K for the production incomes are given with respect to

Rd
+ and not K̂. This is a useful artefact in the proofs, but also a meaningful expression of a physical

bound of production, which has nothing to do with a financial model. With Assumption 2.4, it is

possible to fairly approximate a generation asset, see Section 4.

Definition 2.8. The set of investment-production wealth processes starting at time t is given by

X
R
t :=

{
V : Vs := ξs +

N∑

i=1

Rti(βti−11{ti−1≥t})1{ti≤s} − βti−11{t≤ti−1≤s}, (ξ, β) ∈ X
0
t,adm × B

}
.

The set of terminal possible outcomes for the investor-producer is given by XR
t (T ) :=

{
VT : V ∈ X

R
t

}
.

The agent manages his production system as follows. Assume that he starts an investment-production

strategy at time t. On one hand, he performs a financial strategy given by ξ ∈ X
0
t,adm. On the other

hand, he can decide to put a quantity of assets βti−1 at time ti into the production system if ti−1 ≥ t.

The latter returns a position Rti(βti−1) labelled in assets at time ti. At this time, the agent also

decides the regime of production βti for the next step of time, and so on until time reaches tN .

The generalization to continuous time controls raises mathematical difficulties. When coming to a

continuous time control, we have to make a distinction between the continuous and the discontinuous

part of the control, i.e., between a regime of production as a rate and an instantaneous consumption of

assets put in the production system. This natural distinction has already been observed for liquidity
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matters in financial markets, see [4]. This implies a separate treatment of consumption in the function

R. With a continuous control and as in [4] the production becomes a linear function of that control,

which is very restrictive and similar to the polyhedral cone setting of markets with proportional

transaction costs. With a discontinuous control, non linearity can appear but we face two difficulties.

If the number of discontinuities is bounded, it is easy to see that the set of controls is not convex. On

the contrary, if it is not bounded, the set is not closed. This problem typically appears in impulse

control problems and is not easy to overcome, see Chapter 7 in [15]. We ought to focus on that

difficulty in another paper.

3 The conditional sure profit condition

In the situation of our agent, even if we accept no arbitrage on the financial market, there is no

economical justification for the interdiction of profits coming from the production. This is the reason

why the concept of no marginal arbitrage for high production regime has been introduced in [2]

(NMA for short). The NMA condition expresses the possibility to make sure profits coming from

the production possibilities, but that marginally tend to zero if the production regime β is pushed

toward infinity. This condition relied on an affine bound for the production function, introducing

then an auxiliary linear production function for which sure profits are forbidden. We propose another

parametric condition based on the idea of possibly making solvable profits for a small regime of

production. It is stronger than NMA under Assumption 2.4, see Remark 2.5 in [2], but we express

directly the new condition with the production function.

Definition 3.1. We say that there are only conditional sure profits for the production function R,

CSP(R) holds for short, if there exists C > 0 such that for all 0 ≤ k < N and for all (ξ, β) ∈

X
0
tk,adm

× B we have:

ξT +

N−1∑

i=k

Rti+1(βti)− βti �T

N−1∑

i=k

Rti+1(0) P− a.s. =⇒ ‖βti‖ ≤ C for k ≤ i < N .

The condition CSP(R) thus reads as follows. If the agent starts an investment-production strategy at

an intermediary date t ∈ (tk−1, tk] for some k (whatever his initial position is at t), then he can start

his production at index k. We then assess that he can do better than the strategy (0, 0) ∈ X
0
0×B only

if the regime of production is bounded. CSP(R) comes from the following observation: coming back

to the usual case of a financial market, a possible interpretation of a no-arbitrage condition is that

there is no strategy which is better than the null strategy P-a.s. We thus transpose this interpretation

to production with a slight modification. Here, doing nothing implies that the agent is subject to

possible fixed costs expressed by R(0). Since we do not specify portfolios by an initial holding, we

can focus on portfolios starting at any time before T with any initial position.

The terminology CSP(R) refers to the no sure profit property introduced by Rasonyi [17] (which

became the no sure gain in liquidation value condition in the final version), since it is formulated

in a very similar way and expresses the interdiction for sure profit if some condition is not fulfilled.

The CSP(R) property is indeed very flexible. It is possible to change the condition “‖βti‖ ≤ C for

k ≤ i ≤ N” by any restriction of the form:

“There exists a value ci ∈ (0,+∞) s.t. ‖βti‖ 6= ci for all 0 ≤ i < N ”.
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This can convey the condition that the regime of production shall be null or greater than a threshold

to allow profits, or observe a more precise condition on its components as long as it also constrains

the norm of β. Posing CSP(R) implies that the closedness property on the financial market alone

transmits to the market with production possibilities. Theorem 1.1 given in introduction then follows

as a corollary to the following proposition.

Proposition 3.1. The set XR
0 (T ) is Fatou-closed under CSP(R).

4 Application to the pricing of a power future contract

We illustrate Theorem 1.1 by an application to an electricity producer endowed with a generation

system converting a raw material, e.g. fuel, into electricity and who has the possibility to trade that

asset on a market. We address here the question of a possible price of a term contract a producer can

propose on power when he takes into account his the generation asset. We assume that the financial

market is submitted to proportional transaction costs. For this reason, we place ourselves in the

financial framework developed by Campi and Schachermayer [3].

4.1 The financial market

We consider a financial market on [0, T ] composed of two assets, cash and fuel, which are indexed by

1 and 2 respectively. The market is represented by a so-called bid-ask process π, see [3] for a general

definition.

Assumption 4.1. The process π = (π12
t , π21

t )t is a (0,+∞)2-valued F-adapted càdlàg process verifying

efficient frictions, i.e.,

π12
t × π21

t > 1 for all t ∈ [0, T ] P− a.s.

Here π12
t denotes at time t the quantity of cash necessary to obtain and (π21

t )−1 denotes the quantity

of cash that can be obtained by selling one unit of fuel. The efficient frictions assumption conveys the

presence of positive transaction costs. The process π generates a set-valued random process which

defines the solvency region:

K̂t(ω) := cone(e1, e2, π12
t (ω)e1 − e2, π21

t (ω)e2 − e1) ∀(t, ω) ∈ [0, T ]× Ω .

Here (e1, e2) is the canonical base of R2. The process K̂ is F-adapted and closed convex cone-valued.

It provides the partial order on R2 of Definition 2.1.

Assumption 4.2. Every ξ ∈ X
0
0 is a làdlàg R2-valued F-predictable process with finite variation

verifying, for every (σ, τ) ∈ T 2
[0,T ] with σ < τ ,

(ξτ − ξσ)(ω) ∈ conv


 ⋃

σ(ω)≤u≤τ(ω)

−K̂u(ω)


 ,

the bar denoting the closure in Rd.

Assumption 4.2 implies Assumption 2.1. Admissible portfolios are defined via Definitions 2.5 and 2.1.
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Corollary 4.1. Every Z ∈ M is a R2
+-valued martingale verifying (π21

t )−1 ≤ Z1
t /Z

2
t ≤ π12

t P− a.s.

and:

• for all σ ∈ T , (π21
σ )−1 < Z1

σ/Z
2
σ < π12

σ ;

• for all predictable σ ∈ T , (π21
σ−

)−1 < Z1
σ−

/Z2
σ−

< π12
σ−

.

Proof The market model is conical, so that α0
0(Z) := sup

{
E [Z ′

TVT ] : V ∈ X
0
0,adm

}
= 0, for all

Z ∈ M. The fact that Definition 2.4 corresponds to these elements Z follows from the construction

of K̂ and is a part of the proof of Theorem 4.1 in [3]. ✷

Under the assumption that M 6= ∅, Zξ is a supermartingale for all Z ∈ M and admissible ξ ∈ X
0
0,

see Lemma 2.8 in [3]. Finally, Assumption 2.3 is given by Proposition 3.4 in [3]. For a comprehensive

introduction of all these objects, we refer to [3].

4.2 The generation asset

We suppose that the agent possesses a thermal plant allowing to produce electricity out of fuel on

a fixed period of time. The electricity spot price is determined per hour, so that we define the

calendar of production as (ti)0≤i≤N ⊂ [0, T ], where N represents the number of generation actions

for each hour of the fixed period. At time ti, the agent puts a quantity βti = (β1
ti
, β2

ti
) of assets in

the plant. The production system transforms at time ti+1 the quantity β2
ti
of fuel, given a fixed heat

rate qi+1 ∈ R+, into a quantity qi+1β
2
ti
of electricity (in MWh). The producer has a limited capacity

of injection of fuel given by a threshold ∆i+1 ∈ L∞(R+,Fti+1). This implies that any additional

quantity over ∆i+1 of fuel injected in the process will be redirected to storage facilities, i.e., as fuel

in the portfolio. The electricity is immediately sold on the market via the hourly spot price. On

most of electricity markets, the spot price is legally bounded. It can also happen to be negative. It

is thus given by Pi+1 ∈ L∞(R,Fti+1). For a given time ti+1, the agent is subject to a fixed cost γi+1

in cash. The agent also faces a cost in fuel in order to maintain the plant activity. This is given

by a supposedly non-positive increasing concave function ci+1 on [0,∆i+1] such that c′i+1(∆i+1) ≥ 1,

where c′i+1 represents the left derivative. Altogether, we propose the following.

Assumption 4.3. The production function is given by Rti+1(βti) = (R1
ti+1

(βti), R
2
ti+1

(βti)) for 0 ≤

i < N , where

{
R1

ti+1
((β1

ti
, β2

ti
)) = Pi+1qi+1 min(β2

ti
,∆i+1)− γi+1 + β1

ti

R2
ti+1

((β1
ti
, β2

ti
)) = ci+1(min(β2

ti
,∆i+1)) + max(β2

ti
−∆i+1, 0)

.

We can constraint β1
ti
to be null at every time ti without any loss of generality.

Corollary 4.2. Assumption 2.4 holds under Assumption 4.3.

Proof For each i, Rti+1 verifies Assumption 2.4 (ii):

|R1
ti+1

((β1
ti
, β2

ti
))− β1

ti
| ≤ |Pi+1qi+1∆i+1|+ |γi+1| ∈ L∞(R,Fti+1)

and

|R2
ti+1

((β1
ti
, β2

ti
))− β2

ti
| ≤ max(|ci+1(0)|, |ci+1(∆i+1)−∆i+1|) ∈ L∞(R+,Fti+1) .
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Notice that since ci+1 is concave with c′i+1(∆i+1) ≥ 1, the function R2
ti+1

is clearly concave. The

function R is then concave in each component with respect to the usual order, so that Assumption

2.4 (i) holds with the partial order induced by K̂. It is also continuous, so that Assumption 2.4 (iii)

holds. ✷

4.3 Super replication price of a power futures contract

We now fix a condition provided by the agent in order to apply Definition 3.1. For example suppose

that the agent knows at time ti that by producing under a typical regime C (a given threshold of

fuel to put in his system) and selling the production at the market price, he can refund the quantity

of fuel needed to produce. It is a conceivable phenomenon on the electricity spot market. Since the

electricity spot price is actually an increasing function of the total amount of electricity produced by

the participants, the agent can sell a small quantity of electricity at high price if the total production

is high. He can then partially or totally recover his fixed cost and even make sure profit. The constant

C can depend on external factors of the model, such as the level of aggregated demand of electricity.

Assumption 4.4. We assume that there exists C > 0 such that

R1
ti+1

(β2
ti
) + γi+1 ≥ (π12

ti+1
)−1(R2

ti+1
(β2

ti
)− β2

ti
− ci+1(0)) P− a.s. =⇒ β2

ti
≤ C (4.1)

Here, an immediate transfer ξti+1 of quantity R1
ti+1

(β2
ti
) of asset 1 brought in asset 2 gives ξti+1 +

Rti+1(βti) � Rti+1(0), and CSP(R) condition holds under Assumption 4.4. The latter thus implies

that the set XR
0,adm(T ) is Fatou-closed, so that we can apply Theorem 1.1.

Now we consider the following contingent claim. We denote by F (x) the price of a power futures

contract with physical delivery. Buying this contract at time 0 provides a fixed power x (in MW) for

N consecutive hours of a fixed period. Here, the N hours correspond to the (ti)1≤i≤N . Theorem 1.1

can be immediately applied to obtain the price at which the investor-producer can sell the contract.

Corollary 4.3. The price is given by F (x) = supZ∈M

(
1
Z1

0
E

[∑N

i=1 Z
1
ti
Pix

]
− αR

0 (Z)
)
where

αR
0 (Z) = sup

β∈B
E

[
N∑

i=1

Z1
ti

(
Piqi min(β2

ti−1
,∆i)− γi

)
+ Z2

ti

(
ci(min(β2

ti−1
,∆i))−min(β2

ti−1
,∆i)

)]
.

The theorem then ensures the existence of a wealth process, involving a financial strategy starting

with wealth F (x) and production activities, such that his terminal position is solvent P− a.s..

5 Proofs

5.1 Proof of Proposition 3.1

We define a collection of sets

X̃
k
t :=

{
V : Vs := ξs +

k∑

i=1

RtN+1−i
(βtN−i

)1{tN+1−i≤s} − βtN−i
1{tN−i≤s}, (ξ, β) ∈ X

0
t,adm × B

}
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and X̃
k
t (T ) :=

{
VT : V ∈ X̃

k
t

}
for t ∈ [0, T ] and 0 ≤ k ≤ N , with the convention that

0∑

i=1

RtN+1−i
(βtN−i

)− βtN−i
= 0 .

Note thus that X̃0
t (T ) corresponds precisely to the set X0

t,adm(T ). We are conducted by the following

guideline. According to Assumption 2.3, X̃0
tN
(T ) is Fatou closed. We then proceed by induction

in two steps: we first show that X̃
k
tN−(k+1)

(T ) is closed if X̃k
tN−k

(T ) is closed. Then we prove that

X̃
k+1
tN−(k+1)

(T ) is closed if X̃k
tN−(k+1)

(T ) is closed.

Proposition 5.1. For all 0 ≤ k ≤ N , the set X̃k
tN−k

(T ) is convex.

Proof This is a consequence of Assumption 2.4 (i). Indeed take (ξ1, β1) and (ξ2, β2) in X
0
tN−k,adm

×B

and λ ∈ [0, 1]. Take (κ1, κ2) ∈ R2d
+ the respective bounds of admissibility for ξ1 and ξ2. Note that

λξ1+(1−λ)ξ2 is clearly (λκ1+(1−λ)κ2)-admissible since K̂ is a cone-valued process. By Assumption

2.4 (i), there exists (ℓtN+1−i
)1≤i≤k with ℓtN+1−i

∈ L0(Rd
−,FtN+1−i

) such that

RtN+1−i
(λβ1

tN−i
+ (1− λ)β2

tN−i
) + ℓtN+1−i

= λRtN+1−i
(β1

tN−i
) + (1− λ)RtN+1−i

(β2
tN−i

) , 1 ≤ i ≤ k .

Notice that Rd
− ⊂ K̂t for any t ∈ [0, T ], so that ℓtN+1−i

∈ L0(−K̂tN+1−i
,FtN+1−i

). We will use this

fact throughout the proof. Notice also that, according to Assumption 2.4 (ii), each ℓtN+1−i
is bounded

by below by 2K for 1 ≤ i ≤ k, where K is the bound of net production incomes. By relation (2.1)

and the above fact, λξ1T + (1 − λ)ξ2T +
∑k

i=1 ℓtN+1−i
∈ X

0
tN−k,adm

(T ). Assembling the parts gives the

proposition. ✷

Proposition 5.2. If X̃k
tN−k

(T ) is Fatou-closed, then the same holds for X̃
k
tN−(k+1)

(T ).

Proof Let (V n
T )n≥1 ⊂ X̃

k
tN−(k+1)

(T ) be a sequence such that V n
T Fatou-converges to some V 0

T . Let

(ξn)n≥1 ⊂ X
0
tN−(k+1),adm

and (βn
tN−i

)1≤i≤k,n≥1 with (βn
tN−i

)n≥1 ⊂ L0(Rd
+,FtN−i

) for 1 ≤ i ≤ k, and

κ ∈ Rd
+, such that

V n
T = ξnT +

k∑

i=1

RtN+1−i
(βn

tN−i
)− βn

tN−i
�T −κ ∀n ≥ 1 .

According to Assumption 2.4 (ii), and since Rd
+ ⊂ K̂T , we have that for any n ≥ 1,

−kK �T

k∑

i=1

RtN+1−i
(βn

tN−i
)− βn

tN−i
=: V̂ n

T ∈ X̃
k
tN−k

(T ) .

Due to Assumption 2.4 (ii) also, we have that ξnT �T −(κ + kK) for all n ≥ 1. According to

Assumption 2.3, we can then find a sequence of convex combinations ξ̃n of ξn, ξ̃n ∈ conv(ξm)m≥n,

such that ξ̃nT Fatou-converges to some ξ̃0T ∈ X
0
tN−(k+1),adm

(T ). The convergence of ξ̃nT implies, by using

the same convex weights, that there exists a sequence (Ṽ n
T )n≥1 of convex combinations of V̂ m

T , m ≥ n,

converging P − a.s. to some Ṽ 0
T . By Proposition 5.1 above, the sequence (Ṽ n

T )n≥1 lies in X̃
k
tN−k

(T ).

Recall that it is also bounded by below. Since X̃k
tN−k

(T ) is Fatou-closed, Ṽ 0
T ∈ X̃

k
tN−k

(T ) and moreover,

Ṽ 0
T is of the form

∑k

i=1 RtN+1−i
(β0

tN−i
) − β0

tN−i
+ ℓ0tN+1−i

for some β0 ∈ B and (ℓ0tN+1−i
)1≤i≤k with
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ℓ0tN+1−i
∈ L∞(−K̂tN+1−i

,FtN+1−i
) for 1 ≤ i ≤ k. This is due to Assumption 2.4 (i)-(ii). If we let

(λm)m≥n be the above convex weights, we can always write for 1 ≤ i ≤ k and n ≥ 1

∑

m≥n

λm

(
RtN+1−i

(βm
tN−i

)− βm
tN−i

)
= RtN+1−i

(
∑

m≥n

λmβm
tN−i

)−
∑

m≥n

λmβm
tN−i

+ ℓntN+1−i
.

The sets L0(−K̂tN+1−i
,FtN+1−i

) and L0(Rd
+,FtN−i

) are closed convex cones for 1 ≤ i ≤ k, so that

ℓntN+1−i
and

∑
m≥n λmβm

tN−i
and their possible limits stay in those sets respectively. From the bound-

edness condition of Assumption 2.4 (ii), the vectors ℓntN+1−i
are uniformly bounded by below by 2K

for any 1 ≤ i ≤ k and n ≥ 1, and so are ℓ0tN+1−i
for 1 ≤ i ≤ k. According to (2.1), ξ̃nT +

∑k
i=1 ℓ

0
tN+1−i

∈

X
0
tN−(k+1),adm

(T ). We then have that ξ̃nT + Ṽ N
T converges to ξ̃0T + Ṽ 0

T = V 0
T ∈ X̃

k
tN−(k+1)

(T ). ✷

Proposition 5.3. If X̃k
tN−(k+1)

(T ) is Fatou-closed, then the same holds for X̃
k+1
tN−(k+1)

(T ).

Proof Let (V n
T )n≥1 ⊂ X̃

k+1
tN−(k+1)

(T ) such that there exists κ ∈ Rd
+ verifying V n

T �T −κ for n ≥ 1,

and V n
T converges P − a.s. toward VT ∈ L0(Rd,FT ) when n goes to infinity. We let (V̄ n

T , β̄n)n≥1 ⊂

X̃
k
tN−(k+1)

(T )×L0(Rd
+,FtN−(k+1)

) be such that V n
T = V̄ n

T +RtN−k
(β̄n)− β̄n. Define ηn = |β̄n| and the

FtN−(k+1)
-measurable set E := {lim supn→∞ ηn < +∞}. We consider two cases.

1. First assume that E = Ω. Then (β̄n)n≥1 is P − a.s. uniformly bounded. According to Lemma

2 in [13], we can find a FtN−(k+1)
-measurable random subsequence of (β̄n)n≥1, still indexed by n for

sake of clarity, which converges P − a.s. to some β̄0 ∈ L∞(Rd
+,FtN−(k+1)

). By Assumption 2.4 (iii),

RtN−k
(β̄n) converges to RtN−k

(β̄0), Recall that V̄ n
T � −κ − K for n ≥ 1. Since it is P-almost surely

convergent to VT −RtN−k
(β̄0) + β̄0 =: V̄ 0

T and that X̃k
tN−(k+1)

(T ) is Fatou-closed, the limit V̄ 0
T lies in

that set. This implies that VT ∈ X̃
k+1
tN−(k+1)

(T ).

2. Assume now that P [Ec] > 0. Since Ec is FtN−(k+1)
-measurable, we argue conditionally to that

set and suppose without loss of generality that Ec = Ω. We then know that there exists a FtN−(k+1)
-

measurable subsequence of (ηn)n≥1 converging P-almost surely to infinity with n by an argument

similar to the one of Lemma 2 in [13]. We overwrite n by the index of this subsequence. We write

V n
T as follows:

V n
T = ξnT + RtN−k

(βn
tN−(k+1)

)− βn
tN−(k+1)

+
k∑

i=1

RtN+1−i
(βn

tN−i
)− βn

tN−i
, (5.1)

with (ξn)n≥1 ⊂ X
0
tN−(k+1),adm

and (βn
tN−i

)1≤i≤k+1,n≥1 with (βn
tN−i

)n≥1 ⊂ L0(Rd
+,FtN−i

) for 1 ≤ i ≤

k + 1, and with the natural convention that for all n ≥ 1, βn
tN−(k+1)

= β̄n. We then define

(Ṽ n
T , ξ̃nT , β̃

n
tN−(k+1)

, . . . , β̃n
tN
) :=

2‖C‖

1 + ηn
(V n

T , ξnT , β
n
tN−(k+1)

, . . . , βn
tN
) . (5.2)

Now that (β̃n
tN−(k+1)

)n≥1 is a bounded sequence, we can extract a random subsequence, still indexed

by n, such that (β̃n
tN−(k+1)

)n≥1 converges P − a.s. to β0
tN−(k+1)

∈ L0(Rd
+,FtN−(k+1)

) . Notice for later

that ‖β̃n
tN−(k+1)

‖ converges to ‖β0
tN−(k+1)

‖ = 2‖C‖. It is clear that Assumption 2.4 (i) allows to write

2‖C‖

1 + ηn

(
RtN+1−i

(βn
tN−i

)− βn
tN−i

)
= RtN+1−i

(β̃n
tN−i

)− β̃n
tN−i

−

(
1−

2‖C‖

1 + ηn

)
RtN+1−i

(0) + ℓntN+1−i
,

(5.3)
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with (ℓntN+1−i
)n≥1 ⊂ L∞(−K̂tN+1−i

,FtN+1−i
) for 1 ≤ i ≤ k + 1. Note that, according to Assumption

2.4 (iii), the particular case i = k + 1 gives

lim
n↑∞

RtN−k
(β̃n

tN−(k+1)
)− β̃n

tN−(k+1)
= RtN−k

(β0
tN−(k+1)

)− β0
tN−(k+1)

. (5.4)

The general case i ≤ k follows from Assumption 2.4 (ii) applied to equation (5.3): the left hand term

converges to 0 and (1− 2‖C‖
1+ηn ) converges to 1, so that

lim
n↑∞

RtN+1−i
(β̃n

tN−i
)− β̃n

tN−i
+ ℓntN+1−i

= RtN+1−i
(0) . (5.5)

By construction of the subsequence, the convexity of X
0
tN−(k+1),adm

(T ) and the belonging of 0 to

that set, ξ̃nT ∈ X
0
tN−(k+1),adm

(T ). By using property of Assumption 2.1 (ii) and since the sequence

(ℓntN+1−i
)n≥1 is uniformly bounded for any 1 ≤ i ≤ k+1, see proof of Proposition 5.2 above, we define

V̂ n
T := ξ̃nT + ℓntN−k

+

k∑

i=1

(
RtN+1−i

(β̃n
tN−i

)− β̃n
tN−i

+ ℓntN+1−i

)
∈ X̃

k
tN−(k+1)

(T ) ,

which converges by definition and equations (5.4) and (5.5) to V̂ 0
T such that

V̂ 0
T +RtN−k

(β0
tN−(k+1)

)− β0
tN−(k+1)

�T

k+1∑

i=1

RtN+1−i
(0) . (5.6)

Notice also that by Assumption 2.4 (ii), for all n ≥ 1

V̂ n
T = Ṽ n

T −RtN−k
(β̃n

tN−(k+1)
) + β̃n

tN−(k+1)
+

k+1∑

i=1

(
1−

2‖C‖

1 + ηn

)
RtN+1−i

(0) �T −(κ+ (k + 1)K) .

By Fatou-closedness of X̃
k
tN−(k+1)

(T ), we finally obtain that V̂ 0
T + RtN−k

(β0
tN−(k+1)

) − β0
tN−(k+1)

∈

X̃
k+1
tN−(k+1)

(T ). By equation (5.6) and CSP(R), ‖β0
tN−(k+1)

‖ ≤ C but by construction, ‖β0
tN−(k+1)

‖ =

2‖C‖, so that we fall on a contradiction. The case 2. is not possible. ✷

Remark that the flexibility of the CSP(R) condition is reflected in the construction in equation (5.2)

used in the last lines of the proof of Proposition 5.3. The choice of a good norm for β̃ can indeed vary

according to the condition we aim at. Following Propositions 5.2 and 5.3, X̃k+1
tN−(k+1)

(T ) is Fatou-closed

if X̃k
tN−k

(T ) is Fatou-closed. Proposition 5.2 is used a last time to pass from the closedness of X̃N
t0
(T )

to the closedness of XR
0 (T ).

5.2 Proof of Theorem 1.1

Proof The “⇒” sense is obvious. To prove the “⇐” sense, we take H ∈ L0(Rd,FT ) such that

H � −κ for some κ ∈ Rd
+ and such that E [ZH ] ≤ αR

0 (Z) for all Z ∈ M and H /∈ X
R
0 (T ), and work

toward a contradiction. Let (Hn)n≥1 be the sequence defined by Hn := H1{‖H‖≤n} − κ1{‖H‖>n}.

By Proposition 3.1, XR
0 (T ) is Fatou-closed, so by Lemma 5.5.2 in [12], XR

0 (T )∩L∞(Rd,FT ) is weak*-

closed. Since H /∈ X
R
0 (T ), there exists k large enough such that Hk /∈ X

R
0 (T ) ∩ L∞(Rd,FT ) but,

because any Z ∈ M has positive components, still satisfies

E
[
Z ′
TH

k
]
≤ αR

0 (Z) := sup
{
E [Z ′

TVT ] : VT ∈ X
R
0 (T )

}
for all Z ∈ M. (5.7)
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By Proposition 5.1, the set XR
0 (T ) is convex, so that we deduce from the Hahn-Banach theorem that

we can find z ∈ L1(Rd,FT ) such that

sup
{
E [z′VT ] : VT ∈ X

R
0 (T ) ∩ L∞(Rd,FT )

}
< E

[
z′Hk

]
< +∞. (5.8)

We define Z̃ by Z̃t = E [z|Ft]. By using the same argument as in Lemma 3.6.22 in [12], we have that

X
R
0 (T ) ∩ L∞(Rd,FT ) is dense in X

R
0 (T ) and so that the left hand term of equation (5.8) is precisely

αR
0 (Z̃). The process Z̃ is a non negative martingale and since

(
X

R
0 (T )− L∞(K̂t,Ft)

)
⊂

(
X

R
0 (T ) ∩ L∞(Rd,FT )

)
∀t ∈ [0, T ] ,

we have Z̃t ∈ L1(K̂∗
t ,Ft). The contrary would make the left term of equation (5.8) equal to +∞

for suitable sequences (ξm)m≥1 ⊂ X
R
0 (see the proof of Proposition 3.4 in [2]). By using the same

arguments as above, and since X
0
0,adm(T ) is Fatou-closed too, we have that X0

0,adm(T ) ∩L∞(Rd,FT )

is dense in X
0
0,adm(T ) . This implies that

α0
0(Z̃) := sup

{
E

[
Z̃ ′
TVT

]
: VT ∈ X

0
0,adm(T )

}

= sup
{
E

[
Z̃ ′
TVT

]
: VT ∈ X

0
0,adm(T ) ∩ L∞(Rd,FT )

}

≥ sup
{
E

[
Z̃ ′
TVT

]
: V ∈ X

0
0 and Vτ �τ −κ for all τ ∈ T , for some κ ∈ Rd

+

}

Moreover, according to Assumption 2.4 (ii), ξT +
∑N

i=1 Rti(0) ∈ X
R
0 (T ) ∩ L∞(Rd,FT ) for any ξT ∈

X
0
0,ad(T ) ∩ L∞(Rd,FT ), so that

α0
0(Z̃)−NZ̃ ′

0K ≤ α0
0(Z̃) + E

[
Z̃ ′
T

N∑

i=1

Rti(0)

]
≤ sup

{
E [z′VT ] : VT ∈ X

R
0 (T ) ∩ L∞(Rd,FT )

}

and then α0
0(Z̃) is finite according to equation (5.8). Take Z ∈ M. Then there exists ε > 0 small

enough such that, by taking Ž = εZ + (1− ε)Z̃,

αR
0 (Ž) ≤ εαR

0 (Z) + (1− ε)αR
0 (Z̃) < εE

[
Z ′
TH

k
]
+ (1− ε)E

[
Z̃ ′
TH

k
]
= E

[
Ž ′
TH

k
]
.

It is easy to see that Ž ∈ M, so that the above inequality contradicts (5.7). ✷
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