Wheat Variety Yield Data: Do Commercial and Public Performance Tests Provide the Same Information?

Andrew Barkley and Frank K. Nti

Department of Agricultural Economics Kansas State University

2013 WAEA Conference, Monterey, CA June 26-28, 2013

MOTIVATION

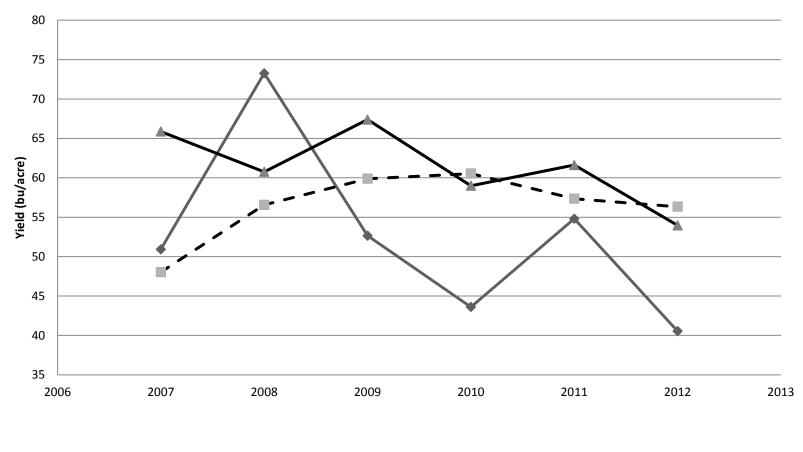
- Wheat performance test in Kansas has for many years been conducted by K-State
- Reported information from performance test trials is crucial to producers
- Recent private sector involvement
 - Sygenta, WestBred, Limagrain
 - Highly competitive wheat seed market
- Yield data shows
 - Reported "best" varieties differ across breeders
 - Potential information asymmetry to wheat producers

OBJECTIVES

Quantify the impact of private and public
wheat breeding programs on yields over time

 Test for sample selection bias between public and private wheat yield data.

DATA AND METHODS



Dataset reports for:

- 113 unique wheat varieties
- 17 unique public and private breeder institutions or companies
 - Only four breeders have experimental plots in Kansas
 - KSU, Syngenta, WestBred and Limagrain
- 71 unique experimental sites.
 - 23 for Syngenta plot
 - 19 for KSU plot
 - 20 for WestBred plot
 - 6 for Limagrain plot

Mean yields across Kansas wheat test plots, 2007-2012

Sygenta Plot -KSU Plot -WestBred Plot

Methods: Impact of Wheat Breeding Programs

 $Yield_{ijkt} = \alpha + \beta_1 HWW_i + \beta_2 IRR_i + \beta_3 RLYR_i + \beta_4 YEAR_t + \delta_i + \theta_i + \gamma_i + v_i + \varepsilon_{ijkt}$

Yield_{ijkt}: yield in bushels per acre HWW_i : hard white wheat IRR_i : irrigated $RLYR_i$: release year for variety i.YEAR_t: trend term for the trial year spanning the study period(2007-2012).

δ_i : vector of qualitative variable for each of seventeen (17) wheat breeders

 $\boldsymbol{\theta}_{i}$: vector of qualitative variable for each of the three (3) regions.

 γ_i :vector of qualitative variable for each experimental plot.

 v_i :vector of interaction terms between same experimental plot and same breeder variables.

 ε_{ijlt} : normally distributed error term that captures unmeasured variables.

Heckman Model

Hypothesis:

Breeders non-randomly report their high-yielding "best" varieties together with low-yielding "worst" varieties of their competitors

• Outcome Equation:

 $\begin{aligned} YieldPlt_{it} &= \varphi + \phi_1 HWW_i + \phi_2 IRR_i + \phi_3 RLYR_i + \\ \phi_4 YEAR_t + \psi_i + \theta_i + u_{it} \end{aligned}$

Selection Equation:

- $Plt_{ik}^* = \emptyset_1 Z_{t-1} + \emptyset_2 RLYR_i + \emptyset_3 BR_n + \varepsilon_{it}$
 - $Plt_{ik} = 1$ if $Plt_{ik}^* > 0$
 - $Plt_{ik} = 0$ otherwise

RESULTS

Ordinary Least Square Estimates

	Mode	el 1	Model 2		
Variable	Coefficient	Std. Err.	Coefficient	Std. Err.	
Irrigated	15.42***	-0.7014	15.43***	-0.7017	
Hard White Wheat	-0.27	-0.8226	-0.22	-0.8272	
East	-7.39***	-1.0354	-7.40***	-1.0359	
West	8.13***	-0.5736	8.14***	-0.5739	
Release Year	.22***	-0.0650	.22***	-0.0654	
Year	-1.01 * * *	-0.1699	-1.01 * * *	-0.1706	
Sygenta Plot	-3.45***	-0.6547	-3.12***	-0.8093	
WestBred Plot	6.13***	-0.6051	6.29***	-0.6843	
Limagrain Plot	-7.91***	-2.0019	-8.30**	-2.6209	
WestBred	2.75**	-0.8485	3.03**	-0.9576	
NU	3.29*	-1.4188	3.23*	-1.4236	
Interaction term 1			-0.85	-1.2531	
Interaction term 3			-0.72	-1.2569	
Interaction term 4			0.99	-3.9831	
Intercept	1630.32***	-319.77	1635.31***	-320.18	
Adjusted R ²	0.225		0.224		
F ratio	66.68***		59.55***		
1 IUUV	00.00 00.00			, 	

Estimates of the Heckman selection model

	Sygenta Plot		KSU Plot		WestBred Plot	
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.
Selection Equation						
Mean Z lag	0.05	0.07	0.06	0.05	0.03	0.06
Sygenta	0.93***	0.06				
KSU			0.47***	0.07		
WestBred					0.46***	0.06
Release Year	0.02***	0.01	0.00	0.01	-0.03***	0.01
Constant	-50.64***	16.20	5.00	13.45	49.34***	13.67
Mills ratio						
λ	3.07	2.61	2.86	4.75	-1.14	4.36
ρ	0.19		0.17		-0.08	
σ	16.11		17.02		15.14	
Censored observation	2072		1261		1988	
Uncensored observation	588		1399		672	
Wald Test	127.96***		443.02***		188.18**	

CONCLUSION

- West Kansas is the most productive region
- Higher contribution of public wheat breeding program(performance testing) to improvements in varietal yield
- No evidence of non-random selection of wheat varieties by breeders
- OLS estimates are unbiased

Thank you for your time!

Questions?

Comments?

This presentation is available in PDF format at: http://fkyekye.wordpress.com/about/

