Mathematics > Optimization and Control

Stochastic Switching Games and Duopolistic Competition in Emissions Markets

Michael Ludkovski

(Submitted on 20 Jan 2010 (v1), last revised 21 Aug 2010 (this version, v3))

We study optimal behavior of energy producers under a CO_2 emission abatement program. We focus on a two-player discrete-time model where each producer is sequentially optimizing her emission and production schedules. The game-theoretic aspect is captured through a reduced-form price-impact model for the CO_2 allowance price. Such duopolistic competition results in a new type of a non-zero-sum stochastic switching game on finite horizon. Existence of game Nash equilibria is established through generalization to randomized switching strategies. No uniqueness is possible and we therefore consider a variety of correlated equilibrium mechanisms. We prove existence of correlated equilibrium points in switching games and give a recursive description of equilibrium game values. A simulation-based algorithm to solve for the game values is constructed and a numerical example is presented.

Comments:Revised version, 24 pagesSubjects:Optimization and Control (math.OC); Probability (math.PR); Trading
and Market Microstructure (q-fin.TR)MSC classes:91A15, 60G40, 93E20, 91B76Cite as:arXiv:1001.3455v3 [math.OC]

Submission history

From: Mike Ludkovski [view email] [v1] Wed, 20 Jan 2010 04:16:05 GMT (59kb,D) [v2] Mon, 8 Feb 2010 23:52:34 GMT (61kb,D) [v3] Sat, 21 Aug 2010 18:15:44 GMT (56kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Go!

All papers

Download:

- PDF
- Other formats

Current browse context: math.OC < prev | next > new | recent | 1001

Change to browse by:

math math.PR q-fin q-fin.TR

References & Citations

• NASA ADS

