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Motivated by the interplay between structural and reduced form credit models, we pro-
pose to model the firm value process as a time-changed Brownian motion that may
include jumps and stochastic volatility effects, and to study the first passage problem
for such processes. We are lead to consider modifying the standard first passage prob-
lem for stochastic processes to capitalize on this time change structure and find that
the distribution functions of such “first passage times of the second kind” are efficiently
computable in a wide range of useful examples. Thus this new notion of first passage
can be used to define the time of default in generalized structural credit models. For-
mulas for defaultable bonds and credit default swaps are given that are both efficiently
computable and lead to realistic spread curves. Finally, we show that by treating joint
firm value processes as dependent time changes of independent Brownian motions, one
can obtain multifirm credit models with rich and plausible dynamics and enjoying the
possibility of efficient valuation of portfolio credit derivatives.

Keywords: Credit risk; structural credit model; time change; Lévy process; first passage
time; default probability; credit derivative.

1. Introduction

The structural approach to credit modeling, beginning with the works of Merton [29]
and Black and Cox [7], treats debt and equity as contingent claims (analogous to
barrier options) on the firm’s asset value process. This unification of debt with equity
is conceptually satisfying, but in practice the approach sometimes leads to incon-
sistencies with intuition and observation, such as the zero short-spread property
(a consequence of the predictable nature of the default time), and, in Merton type
models, time inconsistency. The Black–Cox framework, while time consistent, also
leads to technical difficulties when pushed to provide realistic correlations between
different firms’ defaults and with other market observables. Both approaches tend to
be too rigid to allow good fit to market data as well as effective hedging strategies.

Reduced-form (or “intensity-based”) modeling, introduced by Jarrow and
Turnbull [21], has been successful in providing remedies for some of these
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problematic aspects. It treats default as locally unpredictable, with an instanta-
neous hazard rate, but does away with the connection between default and the
firm’s asset value process.

Subsequent developments have bridged the gap between reduced form and struc-
tural models. For example, the model of Jarrow, Lando and Turnbull [19] and its
extensions [1, 17, 23] posit a continuous time Markov chain to replace the firm value
process as a determinant of credit quality, while retaining the concept of hazard rate
in the form of dynamically varying Markov transition rates. The time of default is
the first-hitting time of the default state, an absorbing state of the Markov chain.
The incomplete information approach of Jarrow and Protter [20] views reduced form
methods as arising from structural models when the market has less than perfect
information about the firm value. So-called hybrid models [27] (see also [11]) seek
to tighten the connection with structural models by allowing the hazard rate to
depend on the firm’s equity value (stock price), and allow the stock price to jump
to zero at the time of default.

Another useful way to generalize the structural framework is to consider other
classes of stochastic processes for the firm value. This line of work can potentially
parallel a great body of work that extends stock price return models by allowing
jumps and stochastic volatility. While this can be quite successful in the Merton
framework, the Black–Cox framework faces the technical difficulty associated with
the first passage problem. Black–Cox style structural credit models using jump-
diffusion processes to model the firm value have been studied in [31, 32]. Because of
the difficulty in solving the first passage problem, their models are hard to compute,
but these studies do demonstrate the viability of the approach in curing some of the
deficiencies of the classic Black–Cox model by adding flexibility and the possibility
of unpredictable defaults. As for exact formulas for first passage, results based on
fluctuation theory [6] and Wiener–Hopf factorization [5] are known. Kou and Wang
[22] solve the first passage problem for a specific class of jump-diffusion process,
and Chen and Kou [12] use those results to extend the Black–Cox firm value model
and the Leland–Toft model [25] for the optimal capital structure of the firm.

The purpose of the present paper is to explore time-changed Brownian motions
(TCBM) for their potential to be used for consistent modeling of a firm’s asset value
process and the firm’s time of default. We aim to retain flexibility (to be able to
match a wide range of possible credit spread curves), computational tractability (to
permit efficient option valuation), and logical consistency with the paper of Black
and Cox (by treating default as a first passage time for the firm value to hit a
default threshold).

Many authors have used TCBMs as models of log stock returns (a notable
review paper is [15]), and their great flexibility is by now well known. When the
time change is an independent Lévy process (Lévy subordinator), one obtains well
known models such as the variance gamma (VG) model and the normal inverse
Gaussian (NIG) model. Barndorff-Nielsen and Shephard [2] have introduced time
change models where the time change is an integrated mean-reverting jump process,
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while important stochastic volatility models such as Heston’s model [16] arise from
time changes that are integrated mean-reverting diffusions. The paper of [10] surveys
25 different realizations of time changed Lévy processes and shows how they perform
in a calibration exercise to observed option pricing data.

This paper focusses on the remaining difficulty in successfully implementing
TCBMs to model the firm value in a Black–Cox framework, namely the efficient
computation of first passage probabilities. Because of the difficulties that arise in
computing the associated first passage distribution, and in analogy to the time-
changed Markov chain models where the default state is an absorbing state, we are
lead to propose a specific variation of first passage time applicable to time-changed
Brownian motions, but not to general jump diffusions. This variation, which we call
the first passage time of the second kind, is designed to be decomposable by iterated
conditional expectation, and thus can be computed efficiently in cases of interest.
This concept is not new, having been used for example by Moosbrucker [30] and
Baxter [4] in their computations of basket credit derivatives, but to our knowledge
its modeling implications have not yet been fully explored.

Our purpose here is threefold. First we explore the mathematical structure of
first passage times for time-changed Brownian motion, and provide a set of natural
solvable examples that can be used in finance. By comparison of these examples
with a range of existing stock price models, we thereby demonstrate the broad
applicability of our framework to equity and credit modeling. Our second aim is
to focus on structural models of credit where the firm value process is a general
time-changed Brownian motion and the time of default is a first passage time of
the second kind. We prove pricing formulas for defaultable zero coupon bonds and
credit default swaps, with and without stochastic recovery. This discussion demon-
strates that time-changed Brownian motion can be the basis of single firm credit
models consistent with the principles of no arbitrage, and with tractable valuation
formulas for important derivative securities. Finally, we demonstrate how the single
firm model can be extended to the joint default dynamics of many firms. Under
a restrictive assumption on the correlation structure, analogous to the one-factor
default correlation structure in copula models, we demonstrate the efficiency of
valuation formulas for portfolio credit derivatives.

To avoid obscuring our most important results by focussing on a too-specific
application, we ask the reader’s indulgence to postpone statistical work on the
modeling framework to subsequent papers. While we are hopeful that statistical
verification of the modeling assumptions on asset price datasets will ultimately show
the viability of our framework, such a verification must proceed one application at
a time, and would take us too far in the present paper.

In outline, the paper proceeds as follows. Section 2 introduces the probabilistic
setting and the definition and basic properties of TCBMs. The first passage prob-
lem for TCBMs is addressed in Sec. 3. Since the standard first passage problem
for TCBMs exhibits no simplification over first passage problem for general jump-
diffusions, we introduce an alternative notion, called the first passage time of the
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second kind, that capitalizes on the time change structure. It is this notion that
is used in all subsequent developments. Section 4 introduces the main categories
of time changes, namely the Lévy subordinators and the integrated mean-reverting
jump-diffusions. These two families are in a sense complementary, and together
provide a rich and tractable family of TCBMs that can be used as building blocks
for more general models. Section 5 introduces the simplest structural credit models
based on TCBMs, and runs through the valuation of some basic credit deriva-
tives. Section 6 provides a brief numerical exploration of the single firm model. The
multifirm extension is addressed in Sec. 7. We find that computational tractabil-
ity strongly suggests that while the time change processes for different firms may
(indeed should) be correlated, the underlying Brownian motions must be taken
independent firm by firm.

2. Time-Changed Brownian Motion

Let (Ω,F ,F, P ) be a filtered probability space that supports a Brownian motion
W and an independent strictly increasing cádlág process G with G0 = 0, called the
time-change. P may be thought of as either the physical or risk-neutral measure.
Let Xt = x + σWt + βσ2t be the Brownian motion starting at x having constant
drift βσ2 and volatility σ > 0.

Definition 2.1. The time-changed Brownian motion (TCBM) generated by X and
G is defined to be the process

Lt = XGt , t ≥ 0. (2.1)

To eliminate a redundant parameter, we normalize the speed of the time change:

lim
T→∞

T−1E[GT ] = 1.

In addition to the “natural” filtration of the TCBM, Ft = σ{Xs, Gu : s ≤ Gt, u ≤
t}, one can also consider the subfiltration Gt = σ{Gs : s ≤ t} and the Brownian
filtration Wt = σ{Ws : s ≤ t}.

Remarks 2.1. (1) Since the above definition requires X and G to be independent,
it is more restrictive than notions of TCBM studied by others. However, as has
been amply demonstrated by finance researchers such as [10, 15], this family
of processes offers a promising degree of versatility and tractibility when used
to model equities. We will see in what follows how this family can be useful in
credit risk modeling.

(2) It is a point of philosophy to think of the time change as a reflection of the
impact of the market on individual firms, in the same way that in reduced form
models, the default intensity λ lies in the market filtration. We think of the
processes X as firm specific generalizations of the default indicator function,
while the time change generalizes the default intensity.
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The characteristic functions Φ for any 0 ≤ s ≤ t and u ∈ D, D a domain in C

are defined to be

ΦXs (u, t) = E[eiu(Xt−Xs)|Ws] = eiσ
2(βu+iu2/2)(t−s),

ΦGs (u, t) = E[eiu(Gt−Gs)|Gs],
ΦLs (u, t) = E[eiu(Lt−Ls)|Fs].

(2.2)

and real variable versions of these functions, in the form of the Laplace exponents
ψ(u) = − logΦ(iu), are also of interest. All are to be understood as processes in the
variable s. A simple calculation gives an essential formula

ΦLs (u, t) = E[E[eiu(XGt−XGs )|Fs ∨ Gt]|Fs]
= E[ΦXGs

(u,Gt)|Gs] = ΦGs (σ2(βu + iu2/2), t). (2.3)

This formula reflects a kind of “doubly stochastic” or “reduced form” property of
TCBMs, already familiar in credit risk modeling: general F expectations involving
default can be “reduced” to expectations in the “market filtration” Gs.

Useful “solvable models” arise when ΦGs and hence ΦLs are explicit determin-
istic functions of an underlying set of Markovian variables. Explicit characteristic
functions not only lead to formulas for moments m(k) = E[Lkt ] and cumulants
c(k) for k = 1, 2, . . . but are also useful for extracting more detailed properties of
the process L. An important algebraic aspect of TCBM is their natural compo-
sition rules. If G,H are two independent time changes then G + H , G × H and
G ◦ H are also time changes, and one has results such as ΦG+H

s = ΦGs × ΦHs and
ΦG◦H
s = E[ΦGHs

(u,Ht)|Fs].

3. First Passage Distributions

The first passage time for a semimartingale Lt starting at a point L0 = x > 0 to
hit zero is the stopping time

t(1) = inf{t|Lt ≤ 0}. (3.1)

The first passage problem for general semimartingales is difficult to deal with, and
few applications have been realized. When applied to the nice subclass of TCBMs,
it turns out that first passage times do not respect the reduced form property, and
even in this setting they remain difficult to compute. On the contrary, when Lt
is a TCBM process, the following different definition of first passage time, which
we call the first passage time of the second kind, is both natural and compatible
with the “reduced form” property. Consequently we shall see that it can be easily
implemented in credit modeling.

Definition 3.1. The first passage time of the second kind of the TCBM Lt = XGt

is the stopping time

t(2) = inf{t|Gt ≥ t∗}, (3.2)

where t∗ = inf{t|Xt ≤ 0}.
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Remarks 3.1. (1) As shown in [18], t(2) can be viewed as an approximation of the
usual first passage time t(1) with t(1) ≥ t(2). When G is a continuous process,
the two definitions coincide.

(2) When the time change is a pure jump process with unpredictable jumps, both
stopping times are totally inaccessible. In general, they can be written as the
minimum of a predictable stopping time and a totally inaccessible stopping
time.

An essential first step in constructing tools for studying t(2) is to collect
“structure” functions associated with first passage t∗ for drifting Brownian motion
Xt = x+ σWt + βσ2t. The following formulas are well known (see for example [9]):

(1) The cumulative distribution function for the first passage time of drifting
Brownian motion is

P (t, x, σ, β) := Ex[1{t∗≤t}]

= N

(−x− βσ2t

σ
√
t

)
+ e−2βxN

(−x+ βσ2t

σ
√
t

)
, (3.3)

where N(x) is the standard normal cumulative distribution function.
(2) For any u > −β2σ2/2, the Laplace exponent of t∗ is

ψ(u, x, σ, β) := − logEx[e−ut
∗
1{t∗<∞}]

= − log
[∫ ∞

0

e−ut
(
∂P (t, x, σ, β)

∂t

)
dt

]

= x(β +
√
β2 + 2u/σ2). (3.4)

(3) The joint distribution function Ex[1{t∗>t}1{Xt≥�}] is given for � ≥ 0 by

N

(
x− �+ βσ2t

σ
√
t

)
− e−2βxN

(−x− �+ βσ2t

σ
√
t

)
(3.5)

These elegant formulas of Brownian motion are needed in the theory of the
second kind of passage problem, for which the structure functions of t(2) are com-
putable via an intermediate conditioning. Thus, for example, its cumulative distri-
bution function (CDF) is given by:

P (2)(t, x) := Ex[1{t(2)≤t}]

= E[Ex[1{t∗≤Gt}|G∞]]

=
∫ ∞

0

P (y, x, σ, β)ρt(y)dy (3.6)

where ρt is the density of Gt and the function P is given by (3.3).
While this formula can sometimes be used directly, in the many cases of interest

where the Laplace exponent ψ(u, t) of the time change Gt is given in closed form,
P (2) and other structure functions can be given a more useful Fourier representation.



January 2, 2010 12:15 WSPC-104-IJTAF SPI-J071 00564

Credit Risk Modeling Using Time-Changed Brownian Motion 1219

Proposition 3.1. For any x > 0 let Lt = XGt , Xt = x+ σWt + βσ2t be a TCBM
where Gt has Laplace exponent ψ(u, t) := − logE[e−uGt ]. Then

(1) For any t > 0 and ε ∈ R the function Ex[1{t<t(2)}δ(Lt − �)] is given by

1{�>0}
eβ(�−x)

2π

∫
R+iε

[eiz(�−x) − eiz(�+x)]e−ψ(σ2(z2+β2)/2,t)dz (3.7)

while Ex[1{t≥t(2)}δ(Lt − �)] is given by

eβ(�−x)

2π

∫
R+iε

eiz(x+|�|)e−ψ(σ2(z2+β2)/2,t)dz. (3.8)

(2) For any t > 0 the CDF P (2)(t, x) is given by

e−2βx1β>0 + 1β≤0 − e−βx

π

∫ ∞

−∞

z sin(zx)
z2 + β2

e−ψ(σ2(z2+β2)/2,t)dz, (3.9)

while the characteristic function Ex[1{t<t(2)}e−βLt+ikLt ] is given for any k in
the upper half plane by

e−βx

2π

∫
R

[
i

k − z
− i

k + z

]
eizxe−ψ(σ2(z2+β2)/2,t)dz. (3.10)

Remark 3.2. The formulas in this proposition are all explicit Fourier integrals in
the variable x involving the Laplace exponent. This is a key advantage over a formula
like (3.6) in at least two respects. Firstly, the Laplace exponent is in many cases
given explicitly while the density ρ is not. Secondly, compared to a generic numerical
integration, the fast Fourier transform (FFT) algorithm is computationally efficient
and comes with powerful error estimates as described in [24].

Proof of Proposition 3.1. To show (3.7), we note that

Ex[1{t<t(2)}δ(Lt − �)] = E[Ex[1{Gt<t∗}δ(XGt − �)|Gt]]
where the inner expectation can be evaluated by differentiating (3.5) and using a
standard Gaussian integral that holds for any ε and t > 0:

1
σ
√

2πt
e−x

2/(2σ2t) =
1
2π

∫
R+iε

e−izx−z
2σ2t/2dz. (3.11)

This then leads to

Ex[1{t<t(2)}δ(Lt − �)]

= E

[
1{�≥0}

eβ(�−x)−β2σ2Gt/2

2π

∫
R+iε

eiz�[e−izx − eizx]e−z
2σ2Gt/2dz

]

= 1{�≥0}
eβ(�−x)

2π

∫
R+iε

eiz�[e−izx − eizx]E[e−σ
2(z2+β2)Gt/2]dz

= 1{�≥0}
eβ(�−x)

2π

∫
R+iε

eiz�[e−izx − eizx]e−ψ(σ2(z2+β2)/2,t)dz



January 2, 2010 12:15 WSPC-104-IJTAF SPI-J071 00564

1220 T. R. Hurd

where in the second step we have used the Fubini Theorem to interchange the
integral and expectation.

To prove (3.8) we use similar logic to note that

Ex[1{t≥t(2)}δ(Lt − �)] +Ex[1{t<t(2)}δ(Lt − �)]

= Ex[δ(Lt − �)] = E

[
1
2π

∫
R+iε

e−β(x−�)e−iz(x−�)−z
2σ2Gt/2−β2σ2Gt/2dz

]
.

To prove (3.9) we integrate (3.7) over � ∈ R+. To interchange the order of the
� and z integrations we need to take ε > β if β ≥ 0, but may take ε = 0 if β < 0.
Then we find

1 − P (2)(t, x) =
e−βx

2π

∫
R+iε

[∫ ∞

0

eβ�+iz�d�

]
[e−izx − eizx]e−ψ(σ2(z2+β2)/2,t)dz

= −e
−βx

2π

∫
R+iε

1
i(z − iβ)

[e−izx − eizx]e−ψ(σ2(z2+β2)/2,t)dz

The integrand has a residue of (2πi)−1e−2βx at z = iβ, and when β > 0 we need
to apply the Residue theorem to deform the z-contour to the real axis. For all β,
the resulting integrals over R can be manipulated into the required real form. The
proof of (3.10) is straightforward under the condition on k.

4. Time Change Models

TCBMs have been well studied as models of log-stock prices. We outline a general
approach to building TCBMs, and provide a number of distinct types of time change
that can be used as “building blocks”.

4.1. Lévy subordinated Brownian motions

These TCBMs arise by taking G to be a Lévy time change, that is, a Lévy subordi-
nator. Such TCBMs are examples of Lévy processes, the general class of continuous
time stochastic processes with stationary and independent increments. Much of
the analysis connected with a Lévy process Lt is based on its characteristic triple
(b̃, c̃, ρ)h, in terms of which its Laplace exponent takes the form

ψL(u, t) := − logE[e−uLt ]

= t[b̃u− c̃2u2/2 +
∫

R\0
[e−uy − 1 − uyh(y)]ρ(y)dy]. (4.1)

Here ρ is a measure on R\0. For ease of exposition in what follows, we set the
truncation function h(y) to zero, which is permissible by adopting the restrictive
condition that |x|∧1 should be ρ-integrable. Our main results extend to the general
case where |x|2∧1 is ρ-integrable. See [13] for general discussions of Lévy processes.

The following result is Theorem 4.3 in [13], and identifies the type of process
that can be expressed as a Lévy-subordinated Brownian motion (LSBM) Lt := XGt .
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Theorem 4.1. Supposing L0 = x, the following are equivalent statements:

(1) L is a Lévy process with characteristic triple (b̃, c̃, ρ)0 where c̃ ≥ 0. The density
ρ is nowhere zero on R and for some β, eβ

√
zρ(−√

z) = e−β
√
zρ(

√
z) and is a

completely monotone function. Furthermore b̃ = βc̃.
(2) Lt := XGt for drifting Brownian motion Xt = x + Wt + βt and G a Lévy

subordinator with characteristic triple (b, 0, ν)0, b ≥ 0, and ν a measure on
(0,∞).

Here are some examples time changes G for Lt = XGt , Xt = x + σWt + βσ2t

that have been used in models of logarithmic stock returns:

(1) The exponential model with parameters (a, b, c) arises by taking G to be the
increasing process with drift b > 0 and jump measure ν(z) = ace−az, c, a > 0
on (0,∞). The Laplace exponent of Gt is

ψ(u, t) := − logE[e−uGt ] = t[bu+ uc/(a+ u)].

and the normalization condition is b + c/a = 1. The resulting time-changed
process Lt := XGt has triple (βσ2b, σ2b, ρ)0 with

ρ(y) =
c√

β2 + 2σ−2a
e−(

√
β2+2σ−2a−β)(y)+−(

√
β2+2σ−2a+β)(y)− ,

where (y)+ = max(0, y), (y)− = (−y)+. This forms a four dimensional subclass
of the six-dimensional family of exponential jump diffusions applied to finance
in [22].

(2) The VG model [26] arises by taking G to be a gamma process with drift defined
by the characteristic triple (b, 0, ν)0 with b ≥ 0 (often b is taken to be 0) and
jump measure ν(z) = ce−az/z, c, a > 0 on (0,∞). The Laplace exponent of
Gt is

ψ(u, t) := − logE[e−uGt ] = t[bu+ c log(1 + u/a)].

and the normalization condition is b + c/a = 1. The resulting time-changed
process has triple (βσ2b, σ2b, ρ)0 with

ρ(y) =
c

|y|e
−(
√
β2+2σ−2a+β)(y)+−(

√
β2+2σ−2a−β)(y)− .

(3) The normal inverse Gaussian model (NIG) with parameters β̃, γ̃ [3] arises when
Gt is the first passage time for a Brownian motion with drift β̃ > 0 to exceed
the level γ̃t. Then

ψ(u, t) = γ̃t(β̃ +
√
β̃2 + 2u)

and the normalization condition is γ̃/β̃ = 1. The resulting time-changed process
has Laplace exponent

ψL(u, t) = xu + tγ̃[β̃ +
√
β̃2 + 2σ2βu + σ2u2].
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4.2. Affine TCBMs

For our second important class of time changes, Gt =
∫ t
0 λsds has differentiable

paths, and the corresponding TCBMs are diffusions (processes with continuous
paths) which exhibit “stochastic volatility”. We focus here on a class we call
ATCBMs (“affine” TCBMs), for which λ is taken in the class of positive mean-
reverting CIR-jump processes introduced by [14]. We mention here two distinct
examples:

dλ
(1)
t = (a− bλ(1))dt+

√
2cλ(1)

t dW
(1)
t , a, b, c > 0,

dλ
(2)
t = −b̃λ(2)dt+ dJt.

(4.2)

Here J is taken identical to the exponential Lévy subordinator with parameters
(ã, 0, c̃) defined in example 1 of the previous subsection.

The essential computations for Laplace exponents

ψ(i)(u, t;λ) := − logE[e−uG
(i)
t |λ(i)

0 = λ], i = 1, 2

of such affine time changes are described in many papers. The following formulas
are proved in the appendix of [17]:

Proposition 4.1. The characteristic functions ψ(i), i = 1, 2, both have the affine
form

ψ(i)(u, t;λ) = A(i)(u, t) + λB(i)(u, t). (4.3)

The functions A(i) and B(i) are explicit:

(1) 

A(1)(u, t) = −κ2 +

(
1 +

c

γ
κ1(eγt − 1)

)−1

κ2,

B(1)(u, t) = −aκ1t+
a

c
log
(

1 +
c

γ
κ1(eγt − 1)

)
,

(4.4)

with constants κ1, κ2 and γ given by


γ =
√
b2 + 4uc,

κ1 =
b+ γ

2c
,

κ2 =
b− γ

2c
.

(4.5)

(2) 

A(2)(u, t) =

u

b̃
(1 − e−b̃t),

B(2)(u, t) = c̃t− ãc̃

ãb̃+ u
log

(
(ãb̃+ u)eb̃t − u

ãb̃

)
.

(4.6)
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The ATCBM model with time change
∫ t
0
λ

(1)
s ds is equivalent to the Heston

stochastic volatility model for stock returns [16], with zero correlation (hence zero
leverage effect). Stock price models with time change

∫ t
0 λ

(2)
s ds, and extensions

thereof, were introduced in [2].

4.3. More general TCBMs

Two different ways of combining time changes have been studied that preserve the
desirable property that the resulting Laplace exponent is explicitly known. The
first is to add time changes. For example, a model that includes time jumps and
stochastic volatility with both a diffusive and jump component arises if we take

Gt =
∫ t

0

(λ(1)
s + λ(2)

s )ds+G
(3)
t

where G(3)
t is a Lévy subordinator.

The paper [10] explores 25 models of the form LHt where L is a Lévy process
and Ht =

∫ t
0 λsds is an independent time change similar to those mentioned in this

section. In most cases they discussed, L is itself of the form XGt , and so LHt is a
TCBM with time change G ◦H . Amongst this class, the paper finds several models
of the stock price that capture very well the implied equity volatility surface.

From the large literature on such TCBMs as models for equities, it is clear that
the class of TCBMs with explicit Laplace exponent is rich enough to describe a
wide range of asset classes in finance. We shall now see how such processes can be
used to build structural models of credit risk.

5. Structural Credit Models

The structural credit modeling paradigm of Black and Cox [7] assumes that default
of a firm is triggered as the debt holders exercise a “safety covenant” when the
value of the firm falls to a specified level. It makes sense therefore to assume that
the time of default is the time of first passage of the firm value process Vt below a
specified lower threshold function K(t).

In this section, we outline how a Black–Cox credit framework can be built under
the assumption that the log-leverage ratio Lt = log(Vt/K(t)) is a TCBM. To demon-
strate the flexibility of the approach, we make use of all the building blocks intro-
duced so far, leading to a large number of parameters. A more realistic implemen-
tation would likely begin with a much more restricted specification. In analogy to
the multifactor reduced form modeling framework of [14] we choose the approach
in which independent time changes are combined together by addition rather than
composition. The alternative route via composition is deserving of separate study.

Assumptions 5.1. (1) There is a vector Zt = [r̃t, λ
(1)
t , λ

(2)
t ] of independent pro-

cesses with λ(i) chosen as in subsection 4.2. r̃ is a CIR process with Laplace
exponent ψr̃(u, t) given in the form (4.4).
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(2) The log-leverage process Lt = log(Vt/K(t)) = XGt , Xt = x + σWt + βσ2t is a
TCBM where the time change is a convex combination of the building blocks
of the previous section:

Gt = α1G
(1)
t + α2G

(2)
t + α3G

(3)
t (5.1)

with 0 ≤ α1, α2, α3 ≤ 1 = α1+α2+α3. HereG(i)
t =

∫ t
0 λ

(i)
s ds, i = 1, 2 are defined

as in Sec. 4.2 with Laplace exponents ψ(i)(u, t;λ(i)) while G(3) is a Lévy subor-
dinator with Laplace exponent ψ(3)(u, t). We also assume that β < 0, σ > 0.

(3) The time of default is t(2), the first passage time of the second kind for Lt.
(4) The spot interest rate is rt = r̃t +m1λ

(1)
t +m2λ

(2)
t for non-negative coefficients

m1,m2.
(5) A constant recovery fraction R < 1 under the recovery of treasury mechanism

is paid on defaultable bonds at the time of default. (This is for simplicity:
[17] shows that we can allow Rt to be a general affine process. We can also
compute under the recovery of par assumption with somewhat more complex
integrations.)

As previously mentioned, Black–Cox models using jump diffusions are usually
based on the standard first passage time, leading to technical difficulties that can be
solved in only a restricted class of processes. Our innovation is to consider instead
the second kind of first passage time, and thereby capitalize on a type of “reduced
form” for computations that applies to general TCBMs.

5.1. Bond pricing

The following proposition gives formulas for default probabilities and default-free
and defaultable zero coupon bond prices.

Proposition 5.1. Let the initial credit state of the firm be specified by initial values
L0 = x and Z0 = [r̃0, λ

(1)
0 , λ

(2)
0 ]. Recall that β < 0.

(1) The probability that default occurs before t > 0 is given by

P [t(2) ≤ t] = 1 − e−βx

π

∫ ∞

−∞

z sin(zx)
z2 + β2

exp

[
−

3∑
i=1

ψ(i)(αiσ2(z2 + β2)/2, t)

]
dz.

(5.2)

(2) The time 0 price P0(T ) of the default-free zero coupon bond with maturity T is

P0(T ) = exp


−ψr̃(1, T ; r̃0) −

∑
i=1,2

ψ(i)(mi, T ;λ(i)
0 )


 . (5.3)
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(3) The time 0 price of the defaultable zero coupon bond with maturity T , under
constant fractional recovery of treasury, is P̄RT0 (T ) = (1 −R)P̄ 0

0 (T ) +RP0(T ),
where P̄ 0

0 (T ) denotes the price of the zero recovery defaultable zero coupon bond,
given by

P̄ 0
0 (T ) =

e−βx−ψ
r̃(1,T ;r̃0)

π

Z ∞

−∞
z sin(zx)

z2 + β2

× exp

2
4− X

i=1,2

ψ(i)(mi+αiσ
2(z2 + β2)/2, T ;λ

(i)
0 )−ψ(3)(α3σ

2(z2+β2)/2, T )

3
5dz.
(5.4)

Proof. We prove only the formula for P̄ 0
0 (T ): the other formulas are similar, but

easier. The risk-neutral pricing formula gives

P̄ 0
0 (T ) = E[e−

R
T
0 rsds1{T<t(2)}]

= E
[
e−

R
T
0 rsdsE[1{GT<t∗}|G]

]
=
e−βx

π

∫ ∞

−∞

z sin(zx)
z2 + β2

E
[
e−

R T
0 rsdse−σ

2(z2+β2)GT /2
]
dz

The third equality comes by using (3.9) in the case when Gt is deterministic, and
using the Fubini Theorem to interchange the order of integration. The final form
for (5.4) now follows by decomposing

∫ T
0 rsds and GT into their independent com-

ponents and performing the resulting one dimensional expectations.

The above pricing formulas are explicit functions of the initial values L0 = x, Z0;
as time develops, prices are deterministic functions of the processes Lt and Zt. We
adopt the point of view that Z contains information about the drivers of general
credit markets, while L reflects firm specific information.

5.2. Credit default swaps

We next consider an idealized CDS with unit notional and maturity T > 0. The
premium leg, paid continuously at a constant rate S until t(2) ∧ T , has the time 0
price

S V (T ) = SE

[∫ T

0

e−
R t
0 rsds1{t≤t(2)} dt

]
= S

∫ T

0

P̄ 0
0 (t)dt (5.5)

where the second equality comes by comparison to (5.4). The default leg pays the
fractional loss of treasury value (1 − R)P0(t(2)) at the time of default if t(2) ≤ T

and has the time 0 value W (T ) = 1−R
R (P0(T ) − P̄ 0

0 (T )). The CDS spread S(T ) is
defined to be the value of S that makes SV = W .
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6. Numerical Results

The structural credit modeling framework of the previous sections is designed
with flexibility and computability in mind. Rather than embark here on a lengthy
statistical investigation of promising specifications and their calibration to market
data, instead, in this section we strip out the complexity, and simply exhibit a set
of parametrizations of the VG TCBM model that generate plausible credit spread
curves, thereby demonstrating the computational efficiency.

We consider the credit framework for a pure geometric Brownian motion model
(Model A) and three parametrizations of the VG model of Sec. 4.1 (Models B,C,D),
with parameters shown in Table 1. All four models are specified so that Lt has
L0 = 1.5, fixed annualized variance σ2 + β2σ4(2/a + 1) = 0.09 and mean log rate
of return −σ2/2 (i.e. β = −0.5).

In Fig. 1, we compare the thirty year zero recovery yield spread and default
probability density for these models. We observe that the yield spreads equalize as
maturity increases, but show the completely different short time behaviour expected
from the presence of jumps. Figure 2 shows the thirty year zero recovery yield
spreads in Model B for four firms which differ in their initial distance-to-default
values L0 = 0.3, 0.6, 1.0, 2.0. We see here that firms with small L0 (high default
risk) can have decreasing spread curves, while the reverse is true if L0 is large.

7. A One Factor Multifirm Structural Model

A difficulty in structural credit risk modeling is finding a framework that extends
naturally and efficiently to a large number of firms, while allowing for a rich default
dependence structure. The present setup of time-changed Brownian motions is such
a framework. Consider M firms, where for each m = 1, 2, . . . ,M , the mth firm is
governed by its firm value process V mt , default trigger threshold Km(t) and log-
leverage ratio process

Lmt = logV mt /Km(t) = Xm
Gm

t
,

Xm
t = xm + σmW

m
t + βmσ

2
mt.

(7.1)

For the mth firm we take parameters xm, βm, σm > 0, and a firm dependent time
change Gmt .

Table 1. Parameter values for the VG TCBM model.

Model A Model B Model C Model D

L0 1.5 1.5 1.5 1.5
a 1 1 10 100
b 1 0 0 0
c 0 1 10 100
β −0.5 −0.5 −0.5 −0.5
σ2 0.09 0.0846 0.0877 0.0880
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Fig. 1. Thirty year yield spread and default PDF curves for geometric Brownian motion model
and three versions of the VG TCBM credit risk model.
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Fig. 2. Thirty year yield spread for Model B with four different values L0 = 0.3, 0.6, 1.0, 2.0.

Assumptions 7.1. The joint dynamics of multifirm defaults is determined by the
first passage times t(2)m of the log-leverage ratio processes Lmt . The time change
processes Gm are given jointly in the “one-factor” form

Gmt = αmGt + (1 − αm)Hm
t (7.2)
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with αm ∈ [0, 1] and time changes G,Hm having the form given by (5.1). Finally,
we assume that G,H1, . . . , HM , X1, . . . , XM are mutually independent processes.

In this one-factor time change model, the maximal correlation structure is
obtained by setting each αm = 1. However, since the underlying Brownian motions
Xm are independent, maximal correlation does not mean the defaults are fully
correlated.

The one factor model can be interpreted as a generalized Bernoulli mixing model,
in the sense of [8] and [28], where the mixing random variable is Gt. That is, the
default states of all firms at time t are conditionally independent Bernoulli random
variables, conditioned on Gt := σ{Gs : s ≤ t}. If we define the conditional survival
probability Fm(xm, Gt) := Exm [1{Gt<tm∗}|Gt], then the following formula extends
(3.9) and is proved exactly the same way:

Fm(x, y) =
e−βmx

π

∫ ∞

−∞

z sin(zx)
z2 + β2

m

× exp[−αmσ2
m(z2 + β2

m)y/2 − ψH
m

((1 − αm)σ2
m(z2 + β2

m)/2, y)]dz.

(7.3)

Now, for any subset σ ⊂ {1, 2, . . . ,M}, the unconditional probability that the
firms in default at time t are precisely the firms in σ is given by

P [t(2)m ≤ t,m ∈ σ; t(2)m > t,m /∈ σ]

=
∫ ∞

0

∏
m∈σ

(1 − Fm(xm, y))
∏
m/∈σ

Fm(xm, y)ρt(y)dy, (7.4)

where ρt is the distribution function of Gt.
There are by now well-known techniques that under the assumption of condition-

ally dependent defaults, reduce the computation of credit portfolio loss distributions
and CDO tranches to intensive computation of the conditional survival probabilities
Fm(x, y).

8. Conclusions

We have studied the first passage problem for a class of semimartingales that are
important for financial modeling, namely Brownian motions time-changed by an
independent time change process. It was seen that the first passage time of the
second kind presents some key advantages over the standard definition of first pas-
sage time, particularly computational tractability and the possibility of extension
to multi-dimensional processes.

Based on these good properties, we defined a pure first passage structural model
of default, and obtained computable formulas for the basic credit instruments,
namely bonds and CDSs. The resultant formulas resolve a fundamental deficiency of
the classic Black–Cox formula, namely the zero short spread property, and provide
needed flexibility to match details of yield spreads.
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Finally, we outlined an extension to many firms in which dependence stems from
systemic components to the time change, while the underlying Brownian motions
are independent and firm specific. The resulting multifirm framework has a condi-
tional independence structure that enables semianalytic computations of large scale
basket portfolio products such as CDOs. The present paper focussed entirely on the
mathematical properties of this modeling approach, and leaves interesting imple-
mentation questions such as calibration and applications in portfolio credit VaR
and CDO pricing as subjects for future work.
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