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The increasing dependence on information networks for business operations has focused managerial attention
on managing risks posed by failure of these networks.  In this paper, we develop models to assess the risk of
failure on the availability of an information network due to attacks that exploit software vulnerabilities.
Software vulnerabilities arise from software installed on the nodes of the network. When the same software
stack is installed on multiple nodes on the network, software vulnerabilities are shared among them.  These
shared vulnerabilities can result in correlated failure of multiple nodes resulting in longer repair times and
greater loss of availability of the network.  Considering positive network effects (e.g., compatibility) alone
without taking the risks of correlated failure and the resulting downtime into account would lead to
overinvestment in homogeneous software deployment.  Exploiting characteristics unique to information
networks, we present a queuing model that allows us to quantify downtime loss faced by a  rm as a function
of (1) investment in security technologies to avert attacks, (2) software diversification to limit the risk of
correlated failure under attacks, and (3) investment in IT resources to repair failures due to attacks.  The
novelty of this method is that we endogenize the failure distribution and the node correlation distribution, and
show how the diversification strategy and other security measures/investments may impact these two
distributions, which in turn determine the security loss faced by the firm.  We analyze and discuss the
effectiveness of diversification strategy under different operating conditions and in the presence of changing
vulnerabilities.  We also take into account the benefits and costs of a diversification strategy. Our analysis
provides conditions under which diversification strategy is advantageous.
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Introduction

Network effects, arising from the need for compatibility, have
been the driving force underlying a firm’s decision on
technology adoption (i.e., whether to adopt, what to adopt,
and when to adopt) (Brynjolfsson and Kemerer 1996; Katz
and Shapiro 1985, 1986).  In the case of software adoption,
firms often find it more valuable to adopt software with a
larger market share.  By making a choice that is compatible
both internally as well as with their partners, firms enjoy
positive network effects stemming from greater benefits of
compatibility and interoperability.  As a result, markets with
network effects are usually “tippy” (i.e., tipping in favor of
one product) (Farrell and Klemperer 2001; Katz and Shapiro
1985, 1994).  The rise of Microsoft Windows as the most
popular choice for desktop operating system is largely
attributed to this very fact (Economides 2001).

However, the negative network externality associated with a
consuming software with large market share is often ignored. 
First, more attacks target popular software (Honeynet Project
2004; Symantec Corporation 2006).  Second, by using popu-
lar software to interact with many partners, firms risk being
attacked and affected by breaches at their partners’ (Kun-
reuther and Heal 2003; Ogut et al. 2005).  Third, maintaining
networks that are internally homogeneous (i.e., all computers
on the network share the same vulnerability) substantially
increases the possibility of concurrent failure of multiple
systems given an exploit.  Widely replicating worms and
viruses have highlighted this very threat as seen in case of
MS-Blaster (CERT CA-2003-20) and SQL Slammer (CERT
CA-2003-04).  Since viruses, worms, and other network
exploits can easily seek and target any vulnerable computer
connected to the network, networks that are internally homo-
geneous are likely to observe high correlation in failure of
their devices and services due to such attacks (Bain et al.
2001).

It may be that in considering positive network externalities
alone and disregarding negative externalities firms have over-
invested in homogeneous systems.  An influential report titled
“CyberInsecurity:  The Cost of Monopoly” has argued that
this has led to market failure in the case of the operating
systems market (Geer et al. 2003).  Inspired by biology
research showing that the human race has survived deadly
attacks that have plagued our history because of diversity due
to heterogeneity, Sharman et al. (2004) proposed a new way
to look at security, which they term functionality defense by
heterogeneity.  The idea is that rather than trying to defend a
single system, we should defend functionality which can be
achieved through heterogeneity (i.e., by having different

hardware and software in place); this is consistent with what
we propose in this paper.  However, diversity comes with the
costs of compromised network effects and the lack of econo-
mies of scale in maintaining heterogeneous software environ-
ments.  Therefore, it is not clear whether and under what
conditions maintaining a diversity of systems is a better
strategy for firms.

The first goal of this research is, therefore, to provide a formal
analysis to examine whether and when a firm can benefit from
internally maintaining a diversity of systems by moving away
from the dominant strategy of maintaining homogeneous
systems that allow firms to take advantage of positive network
effects and economies of scale.  To address this question, we
need to quantify the benefits and costs of a diversification
strategy, and, therefore, our second goal is to develop a risk
management framework to derive the optimal level of diver-
sity at the firm level, taking into account the benefits and
costs of a diversification strategy.  Our approach uses network
downtime resulting in unavailability of service/operations as
a measure of security loss since downtime has been directly
linked to financial loss.  We develop an approach based on 
queuing theory for determining network downtime in the face
of correlated failures.  The software diversification strategy
proposed in this study can be used to reduce shared vulnera-
bilities across nodes and therefore downtime loss by installing
different software stacks on different nodes.  In practice, soft-
ware diversity can also be incorporated at a modular level by
deploying n version software, which have some common and
some diverse components (Avizienis 1995; Deswarte et al.
1998), and techniques like stack randomization are useful in
introducing compile-time and run-time diversity (Barrantes et
al. 2003; Kc et al. 2003).  We show that mixing software with
a different level of security (in the sense of receiving different
number of attacks) can make a firm better off than using just
the most secure software alone (unless the software has no
vulnerability and receives zero attacks).  This is the advantage
of diversity:  even though the firm may face more attacks due
to more distinct vulnerabilities when employing hetero-
geneous software, the consequence of each attack would be of
smaller magnitude and more manageable. By reducing shared
vulnerabilities and, therefore, the variance of attack magni-
tude, the firm greatly reduces the possibility of drastic loss.

The operation of security involves three levels:  prevention,
detection, and response (White et al. 2004).  Our risk manage-
ment model incorporates all three levels of security operation:
Software diversification can be used to help prevent drastic
loss, while our model also accommodates other security
instruments, such as antivirus software and firewalls, which
help in detecting and curtailing attacks.  Our model incor-
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porates response by the repair time needed to bring nodes or
the system back to a usable state.  A firm may invest in
response by increasing IT service capability, which helps to
reduce repair time.  This holistic and practice oriented frame-
work allows us to compare the effectiveness of software
diversification to the effectiveness of other security instru-
ments in reducing loss and to study how software diversifi-
cation can be used together with these other security measures
to reduce security loss.  We also note that while security
technologies such as firewalls, intrusion detection systems
(IDS), and antivirus software can reduce the likelihood of a
vulnerability being successfully exploited, they cannot elimi-
nate the vulnerabilities present in deployed systems.  In a
homogeneous software deployment, the vulnerabilities are
shared by all computers on the network (i.e., every computer
is vulnerable to an exploit targeting the particular vulner-
ability), regardless of whether these computers are directly
connected or not.  Software diversification, on the other hand,
can isolate these vulnerabilities such that opportunistic attacks
(exploiting a particular vulnerability) are effective against
only a smaller subset of computers than under homogeneous
software deployment, thereby reinforcing the effectiveness of
other security measures, such as firewalls and IDS.

The concept of using diversification to limit correlated risks
has been used in other settings, for example insurance and
finance (Varian 1992).  However, there are some fundamental
differences between these settings and information systems.
One of the most notable differences is that, in information
systems, there is significant positive network effect associated
with homogeneity, which is not present in finance and
insurance.  The potential lack of network effects together with
possible loss of economies of scale in maintaining hetero-
geneous software represent major costs of a diversification
strategy.  Therefore, a diversification strategy in IS needs to
take into account these costs.  Our analysis suggests that
expected security loss, which is often ignored in the decision-
making process, is as important as network effect and
economies of scale in formulating a firm’s system acquisition
and deployment strategy.  We show that under general condi-
tions, optimal diversity level is an interior solution, and
diversity strategy is especially effective when other security
measures are imperfect.  In the case that guaranteed level of
service is required, the result would, in most cases, involve a
diversification strategy.

Overall, this research makes several unique contributions to
the literature.  First, it contributes to the IS and the economics
of network effects and standardization literature by
(1) demonstrating the importance and benefits of diversifica-
tion in IT, (2) developing a general framework to help guide

a firm’s IT investments, and (3) exploring the conditions
when the diversification strategy is effective.  We also add to
the security management literature by developing models to
quantify security loss and by introducing the concepts of the
vulnerability matrix and the node failure correlation matrix
to help firms better manage security risks.  While our model
to estimate security loss due to unavailability (i.e., system
downtime) is based on well-established queuing models, one
innovation of our model is that the distribution from which
the number of requests sent to the queue is drawn is endog-
enous to system variables, such as the level of diversity, the
number of shared vulnerabilities, and the type of other
security measures used.  Therefore, by adequately setting the
system variables, a firm can influence the performance of the
queue and expected downtime loss.  We believe that our
model is not only of practical value to firms, but that our
finding that diversification strategy can be an effective way to
reduce security loss also provides important policy implica-
tions.  Specifically, the required condition for diversification
strategy to be viable is the existence of multiple compatible
software with low shared vulnerability.  Given such a condi-
tion, this suggests that the government has to ensure an
environment where multiple software may exist and where the
number of shared vulnerabilities among different software
applications is minimized.  The various policy levers that can
be utilized by the government to promote diversity include
public procurement, new technology grants, antitrust enforce-
ment, and interoperability standards. 

The rest of the paper is organized as follows.  In the next sec-
tion, we introduce system downtime as a metric for security
loss and present a queuing model for estimating this loss.
One innovation of our queuing model is that the distribution
from which the number of requests sent to the queue is drawn
is endogenous to system variables.  In the subsequent section,
we analyze the effectiveness of the diversification strategy in
reducing expected downtime and show how optimal diversi-
fication can be determined when the goal is to minimize
system downtime.  We then discuss the benefits (i.e., lower
downtime loss) and the costs of diversification (due to inter-
operability, integration, and support), and provide a frame-
work that takes into account these benefits and costs of
diversification and allows a firm to determine its optimal
software deployment strategy to maximize its expected
overall utility.  We discuss conditions where diversity would
be preferred.  Moreover, since vulnerabilities evolve (old
vulnerabilities are patched and new vulnerabilities are
discovered), we also present an optimal allocation method to
adapt the diversification strategy to changing vulnerabilities.
Finally, we conclude by discussing our results and their
implications and presenting ideas for future work.
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A Model for Measuring Security Loss
Due to Unavailability of Systems

As discussed earlier, security loss is usually not accounted for
in deriving a firm’s IT acquisition strategy in the literature or
in practice, leading to over-investment in homogeneity.  A
reason for this is that it is difficult to quantify security loss.
In this section, we introduce expected system downtime as a
metric for quantifying loss and develop a model to calculate
it.  System downtime that results in the system’s unavail-
ability of service/operations has been directly linked to
financial loss.  For example, eBay’s outage in 2000 has been
linked to an unbelievable $5 billion loss (or about $225,000
per hour of downtime), while estimates are that the per hour
downtime for brokerage operations can reach over $6 million;
for package shipping services, it is about $150,000; for airline
reservation services, it is $89,000; and for ATM services, it is
$15,000 (Patterson 2002).

In the following, we assume that when an attacker success-
fully exploits a vulnerability through a worm, a virus, or a
hack, the computer hosting the system is affected and will
need to be “repaired” to be put back into service.  System
downtime is the time duration from when the successful
exploit takes place to when the computer that is exploited is
back in service.  When multiple computers are affected under
an attack, the systems affected in an attack have to wait while
other affected systems are serviced.  We note that system
downtime is taken from the perspective of the firm.  Firms
and customers may have different views of downtime in the
case that multiple computers are used to support operations.
For example, when just one computer, among several that are
used to support operations, is taken down, it reduces the
operating capacity of the firm, and there is downtime from the
firm’s perspective, although there is no downtime time from
the customers’ perspective.

We model the sequential nature of diagnosis and repair of
affected computers as a service queue (Figure 1).  Note that
while the focus of our analysis is on the shared vulnerabilities
between applications and software systems, the approach is
readily applicable to business processes.  In the case of busi-
ness processes, the system can be defined as a set of corre-
lated or dependent business processes supported by informa-
tion systems, and the downtime is the time duration from
when the successful exploit takes place to when affected
business processes that are exploited are able to function.
When a process is down due to an attack to a node hosting
systems that execute either steps within a process or the entire
process, then other processes that depend (either through
shared steps or input–output dependence) on the “downed”

process may be non-functional even though they run on non-
attached nodes.  In this case of correlated processes, failure of
one can cause unavailability of several processes or even the
system as a whole.  However, regardless of the level of
analysis, downtime is still the time it takes to repair the failed
node, no matter how many processes are affected.

Next, we present a queuing model to estimate expected down-
time.  To formally model the expected downtime, we model
each arriving attack incident2 as an event that sends a set of
failed computers to the IT department service queue for
repair.  The number of computers failed in an incident is
dependent on how vulnerable (in terms of probability of
failure and how vulnerability is shared among nodes) the firm
is to each attack, which in turn is determined by the type of
software and the security measures used by the firm.  We
develop a model and provide several tools to estimate the
number of computers failed in an incident.  We then discuss
how security incidents are modeled.  For analytical tract-
ability, we assume that the security incidents happen indepen-
dently following a Poisson arrival process.  However, we note
that some incidents may be correlated themselves due to
evolving attack tactics such as several variants of worms ap-
pearing frequently, but these dynamics should strengthen our
results even more, as correlated incidents would cause more
buildup in the queue, causing longer wait times.

Downtime Due to an Attack

We adopt the batch Poisson process with an MX/G/1 queue to
model system downtime due to security incidents (Kleinrock
1975).  In an MX/G/1 queuing system, requests for service
arrive to the system according to a Poisson process with rate
λ.  The units within a batch are served one at a time by a
single server, which corresponds to the firm’s overall IS/IT
department, according to some service time distribution.  The
single server and the sequential service on failed computers
do not always hold because computers failed in the same
attack may be fixed concurrently by dispatching the patches
through the network instead of individually one by one.  We
would like to note that although many preventive measures
such as installing software patches can be carried out in paral-
lel across multiple computers, once a computer is infected,
curative measures require individual attention to account for
differences in user settings, permissions, data backups, and
custom applications.  In addition, we would like to point out
that the insights derived from the single-server analysis would

2An incident can be defined as a collection of similar attacks spaced together
in time (Howard 1997).
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Figure 1.  A Service Queue Repair Model for Failed Computers

still hold in the case of multiple servers as long as there is a
repair queue.  Since, in most cases, the repair capacity is less
than the total resources in the firm, it is reasonable to expect
the queue buildup in some cases.

In our context, each batch corresponds to a security incident,
and the number of units in a batch corresponds to the number
of computers (Y) affected in an incident, which depends on
the type of attacks a firm faces and the susceptibility of its
computers to those attacks.  Once E[Y] is known, we can bor-
row from the literature to calculate the total downtime experi-
enced in each incident.  However, the challenge is that the
distribution from which Y is drawn depends on many endog-
enous factors controlled by the firm, such as the type of soft-
ware installed, system configurations, and other security
measures used by the firm.  One unique feature of our model
that makes us different from the conventional MX/G/1 models
is that we endogenously determine E[Y] by identifying the
factors that affect E[Y] and deriving E[Y] as a function of
these factors (please see the next subsection for derivations).
Table 1 summarizes the major notations used in our risk
framework.

Assuming, in the meantime, that E[Y] is given, the mean
arrival rate of affected computers to the service queue (γ) is
then a function of how many attack incidents occur per unit
time (λ ) and how many computers fail on average per such
incident (i.e., E[Y]).  Therefore, 

(1)[ ]γ λ= × E Y

The downtime (or sojourn time) for the computers affected in
an incident is the sum of service time (S) plus the waiting time

(W) computers have to wait before other affected computers
are serviced.  The expected downtime per computer is given
by

(2)E T E S E W[ ] [ ] [ ]= +

Sohraby (1989) has shown that for an MX/G/1 queue with
deterministic service time, d, per computer, where queue utili-
zation  = λd < 1, the average wait time per computer will be

(3)[ ] [ ]E W d
Bat= + −

−
θ
θ

1
2 1( )

Where, Batchiness, Bat, of a batched Poisson process is given
by (Eckberg 1985)

(4)Bat E Y
E Y= [ ]

[ ]

2

Substituting (3) in (2),

(5)[ ]E T d
Bat

[ ] ( )= + −
−

1
2 1

θ
θ

The overall economic loss due to unavailability of service
experienced by the firm is equal to downtime per computer,
E[T], times number of computers affected per unit time, γ. 
Therefore, the expected downtime loss is given by 

DT = E [T] × γ (6)

In the next subsection, we focus on modeling the number of
computers affected per incident (Y).  As noted earlier, one
major contribution of our model is that E[Y] is treated as an
endogenous variable, and we also introduce tools to manage
and identify factors that affect E[Y].
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Table 1.  Major Notations Used in the Risk Framework

Y Number of computers failed in an incident

N Total number of nodes

λ Arrival rate of attacks

γ Arrival rate of computers to the service queue (γ = λ × E[Y])

S Total service time

W Total wait time before a computer can be serviced

d Service time per computer

T Total downtime per incident

DT; DT(x) Total downtime (across all attacks) under diversity level x

θ Queue utilization = λd

Bat Defined as E[Y2]/E[Y]

Pi Probability of attacks node i receives

Pij Probability of attacks node i and j have in common

π Unconditional probability of computer failure in an attack (0 # π # 1)

ρ Correlation of failure across nodes:  when ρ = 0, nodes fail independently; ρ = 1, all nodes fail together (0 # ρ
# 1)

m Relative number of attacks faced by another software configuration (e.g., when software 1 receives λ attacks,
software 2 would receive mλ attacks)

c Proportion of attacks that are common across software (c # min{1,m})

xi The proportion of nodes allocated with software configuration i  

b Degree of interoperability 

NE(x) Network effects benefits under diversity level x

CNE Scaling constant of network effects benefits and security loss

MC(x) Maintenance costs under diversity level x

CMC Scaling constant of maintenance costs and security loss

ak Allocation k, indicating the kth software configuration

Number of Computers Affected per Incident (Y)

Firms usually have many computers on their network, each
running several software applications (Figure 2).  These
software applications often have vulnerabilities in them,
which, when exploited, cause correlated failure of nodes that
run those vulnerable applications.  This is because attacks that
are successful against one installation of vulnerable appli-
cation are also likely to succeed on other installations of the
same application.  The overall correlation in failure of nodes
can thus be determined by considering all the shared vulner-
abilities present in them because of shared components in
their software configuration.  For example, a system with
configuration 1, comprising of Linux OS, Firefox browser,
Thunderbird e-mail client, and MySQL database, is unlikely
to have a failure correlated with a system running configu-
ration 2, comprising of Windows OS, IE browser, Outlook

e-mail client, and SQL server.3 On the other hand, if the
systems have some common applications like a Flash plug-in,
then attacks targeting a vulnerability in the Flash plug-in can
affect both systems and hence increase the likelihood of
correlated failure.

Failure Correlation

The correlation structure for node failure can be derived from
a representation we introduce called vulnerability matrix.  A
vulnerability matrix is a mapping of software vulnerabilities
to nodes (computers) on the network.  To derive the vulner-
ability matrix, we first define the concept of configuration,

3Attacks that exploit protocol-level vulnerabilities can affect disparate
software that share a common interface. We discuss this in detail later.
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The organization’s computer network with node having multiple software applications installed on them.  Vulnerabilities in
those applications, when exploited, cause correlated failure of nodes that share the same vulnerability (i.e., have a
vulnerable link between them).

Figure 2.  Representative Computer Network

which is a set or stack of specific software to fulfill the
functional requirements of a node, for example, Microsoft
Windows, Microsoft Office, Outlook, and Internet Explorer
(Figure 3a).  Each node is assigned a configuration (Figure
4a).  The software running on each node (or node–software
mapping) is essentially the dot product of node–configuration
mapping (Figure 4a) and configuration-software mapping
(Figure 3a).  The data required to populate the vulnerability
matrix is derived from two sets of sources.  The nodes or
configurations can be obtained from the firms’ configuration
management database4 (CMDB).  The CMDB lists the soft-
ware configurations or applications installed on each node and
is an important resource maintained by most IT departments. 
The CMDB is represented in the matrix shown in Figure 3a. 
The list of vulnerabilities present in each software application
(Figure 3b) is available from the National Vulnerability Data-
base (see http://nvd.nist.gov/).  Taking the dot product of
these matrices (then dichotomizing values to binary) yields
the configuration vulnerability matrix shown in Figure 3c.  A
row in this matrix represents the set of vulnerabilities present
in a configuration and the columns represent the set of con-
figurations that share a particular vulnerability.  Such a con-
figuration vulnerability matrix is useful when a firm is
considering which configuration(s) to install and how to
assign configurations to nodes.  By taking the dot product of

the node–configuration mapping and the configuration–
vulnerability matrix, one obtains the vulnerability matrix
(Figure 4c).5  This vulnerability matrix changes as new soft-
ware applications are installed or when new vulnerabilities are
discovered in existing software and old vulnerabilities are
patched or removed.  

The vulnerability matrix is an important situational awareness
representation informing the system administrators about
which nodes on the network are vulnerable to an attack
exploiting a specific vulnerability.  We can further weight the
vulnerability matrix by the severity level or impact of
vulnerability (Park et al. 2007) to get better estimate of the
shared risk among nodes.  There are network management
tools available from vendors such as IBM (Tivoli), HP
(Openview), and Computer Associates (Unicenter), and open-
source tools such as Nessus6 that provide real-time informa-
tion to the administrator about the state of hosts on their net-
work in terms of software configuration and network connec-
tivity.  Vulnerability scanners in combination with these net-
work management tools can readily populate the vulnerability
matrix that we describe above.  The recently released IF-MAP
protocol which aims to provide a big picture of the network
by “creating a structured way to store, correlate, and retrieve
identity, access control, and security posture information about

4A configuration management database, as stipulated by the IT Infrastructure
Library’s  best practice, is a compendium of IT assets of a firm.  It contains
information about all hardware and software components present on the
network.

5Another way to obtain the vulnerability matrix is by taking the dot product
of the node–software mapping and the software–vulnerability matrix.

6http://nessus.org.
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A time varying mapping of vulnerabilities to configurations on a network; derived by multiplying configuration (C) – software
(S) mapping with the software (S) – vulnerability (V) matrix.

Figure 3.  Configuration Vulnerability Matrix

A time varying mapping of vulnerabilities to nodes on a network; derived by multiplying node (N) – configuration (C)
mapping with the configuration (C) – vulnerability (V) matrix.

Figure 4.  Vulnerability Matrix

users and devices on a network”7 would also be useful to
create a dynamic vulnerability matrix.  Tools implemented
with both IF-MAP protocol and the vulnerability matrix will
provide better information for an organization to understand
and estimate the risk it faces and act accordingly.

Given the vulnerability matrix and intelligence reports about
attack trends,8 a system administrator can determine the prob-
ability of any two nodes failing together.  For example, given

the vulnerability matrix in Figure 4c, nodes N1 and N2 will not
have simultaneous failure under an attack that exploits
vulnerability V1 because they do not share that vulnerability. 
However, they are likely to fail together when vulnerability
V3, which they do share, is exploited by an attack.  Overall,
the correlation in failure of nodes is higher if they share more
vulnerabilities and if those vulnerabilities are attacked often. 
Post multiplying the transpose of vulnerability matrix with the
product of vulnerability matrix and attack trend matrix (Figure
5b) determines the number of shared attacks between any pair
of nodes (Figure 5d).  Given the joint susceptibility of nodes
to various types of attacks, we can compute the correlation of
failure for a pair of nodes on the network as the correlation
between two Bernoulli random variables:

(7)ρij

ij i j

i i j j

p p p

p p p p
=

−

− −( ) ( )1 1

7http://www.infoblox.com/solutions/pdf/IFMAP-wp.pdf.

8CERT/CC (www.cert.org), CAIDA (www.caida.org), and SANS Institute
(www.sans.org), along with many private security consultants, provide
reports on attack trends to their clients and the public at large.  Many large
firms also use their internal IDS logs and honeynet logs to characterize attack
trends.
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Post multiplying the transpose of vulnerability matrix (c) with the product vulnerability matrix (a) and attack trend matrix (b)
determines the number of shared attacks between any pair of nodes (d)

Figure 5.  Shared Attacks Matrix

Where

pi = probability/percentage of attacks node i receives
pj = probability/percentage of attachs node j receives
pij = probability/percentage of attacks nodes i and j

have in common

Given the expression for ρij, if the network administrators
have information regarding all software, vulnerabilities, and
attacks on their network, then they can accurately calculate
node correlation matrix (Figure 6).  However, network admin-
istrators usually do not have complete information about
susceptibility of nodes due to specific actions taken by users
and/or attackers, which may lead to errors in their estimation
of pi, pj, and pij.  For example, nodes that share same con-
figuration can be expected to have pi = pj = pij, which would
imply correlation of 1; however, due to other contextual
differences between nodes (e.g., user specified configuration
settings), the correlation may be less than 1.

In the following subsection, we observe the effect correlation
has on node failure distribution.

Failure Distribution

The number of nodes affected in an attack depends on the
probability of an attack being successful (p) and the failure
correlation (ρ).  The node failure distribution reflects how
vulnerable an organization is to a particular attack.  Specifi-
cally, we define the correlation of failure between two nodes
as the chance when the same vulnerability is exploited on
these two nodes, or, equivalently, the correlation of failure
measures the probability of failure of one node under a par-
ticular attack conditional on the other node being failed under
the same attack.  A perfect correlation of failure means that
either no node fails or all nodes fail together.  This definition
of correlation of failure focuses on horizontal correlation
among nodes.  Note that failures may also be correlated verti-
cally across vulnerabilities when multiple vulnerabilities are
exploited on the same or different systems (e.g., a browser
hole leads to a keylogger, installation which leads to password
stealing, which leads to data theft).9  This kind of correlated

9We thank an anonymous reviewer for pointing out this interesting example.
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ρij is the failure correlation between node i and node j

Figure 6.  Failure Correlation Matrix

failure across vulnerabilities can be accommodated in our
model in the following way, using the browser hole example: 
the browser hole would be the vulnerability we identify in the
paper, while the keylogger installation, password stealing, and
data theft would be the consequence of the vulnerability being
exploited, and some efforts are then needed to repair the
system, causing downtime to the system.  In our research, we
investigate the benefit of software diversification as an ap-
proach to reducing correlated failure among nodes because
diversifying the software can successfully partition the
vulnerability matrix and lower the failure correlation by
reducing shared vulnerabilities.

We model the failure of a node as a Bernoulli trial.  Since
vulnerabilities are shared among nodes, the failure of one
node is not independent of failure of other nodes on the
network.  Therefore, the total number of node failures can be
considered as an outcome of a collection of correlated
Bernoulli trials where each node failure is a coin-toss, the
outcome of which depends on the outcome of other trials.

We model failure of nodes that share the same software using
the beta–binomial distribution, which has been used in the
computer science literature to model correlated failure of
backup systems and failure across multiple versions of the
same software (Bakkaloglu et al. 2002; Nicola and Goyal
1990).  The beta–binomial distribution is computed by
randomizing the parameter p (probability of failure) of the
binomial distribution by the beta distribution.  In general, the
randomized binomial distribution is given by

(8)b c N y p p f p dpN y
y N y

p( ) ( , ) ( ) ( )= ∗ − − 1
0

1

where

N = Total number of nodes10

C(N, y) = Number of ways in which y out of N nodes
can fail

The intensity function fp(p) gives the probability distribution
that a fraction of all nodes fail.  It is a unit impulse at average
p when there is no correlation.11  For the beta–binomial dis-
tribution, the intensity function follows the beta distribution:

(9)f p
p p

B
pp ( )

( )

( , )
; , ,=

−
< < >

− −α β

α β α β
1 11

0 1 0

where B(α, β) is the beta function with parameters α and β
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π is the unconditional probability of computer failure in an
attack (i.e., the expected value of the random variable p), and
0 # ρ # 1 is the correlation of failure across nodes.  The
limiting case ρ = 0 is when all computers fail independently
(leading to binomial distribution for the number of failed com-

10Without loss of generality, in our examples for the rest of this paper, we
assume the total number of nodes on the network to be 100.

11It then results in a binomial distribution, which is basically a collection of
independent Bernoulli trials.
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The beta–binomial distribution for computer failure on a 100 node network resembles binomial distribution for small values
of ρ; however, as ρ increases, the probability mass shifts toward the ends, exhibiting highly correlated failure.

Figure 7.  Beta–Binomial Distribution

puters),12 whereas the limiting case ρ = 1 is when all
computers fail together (perfectly correlated) as shown in
Figure 7.13

Given this, the probability of y out of N computers failing in
an attack is computed by substituting (9) in (8)
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B y N y
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The mean and variance of beta–binomial distribution are
given by
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If we have many diverse software configurations, then
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Where Y is the number of node failures in an attack incident. 
It is important to observe that a cautiously managed homog-
eneous network may exhibit low mean but still have high
correlation in failure and therefore high variance, which can

be detrimental to a firm seeking low variance in downtime
loss.  In the next section, we consider the tradeoff between
investment in software diversification to limit correlation vis-
à-vis investment in other security technologies.  In the next
subsection, we model the dynamics of attack rate.

Number of Attacks (λ)

The average arrival rate of attacks faced by a software product
may depend on many factors including type of software,
industry where it is used, inherent security level of software,
market share, sentiment against the software product, etc.
There is some evidence suggesting that market share appears
to be highly correlated to the number of attacks faced by a
product (Symantec Corporation 2006).  For instance, Win-
dows, with over 90 percent market share in the desktop
operating system market, receives considerably more attacks
than Linux, Unix, and Solaris combined (Honeynet Project
2004).  Consider a stylized model where a firm faces two
different software configurations or choices that are func-
tionally equivalent:  software (configuration) 1 and software
(configuration) 2.14  We accommodate the heterogeneous
attack rates across software by assuming that if software 1
on average faces  λ attacks then software 2 would face m @ λ

12 Since, in this setup nodes share the same software, there is no possibility
of negative correlation.

13Without loss of generality, for the rest of this paper we assume ρ to have an
intermediate value of 0.5 (i.e., some amount of correlation). 14For simplicity, we denote them as software 1 and software 2 in the paper.
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Vulnerabilities may be shared by multiple software configurations due to shared code base or programming libraries from a
vendor or due to flaws in protocols and industry standards.

Figure 8.  Software Vulnerability

attacks where, m may depend on the relative market share
and/or the relative security quality of the two software con-
figurations.  The basis for this assumption is that, from the
attackers’ point of view, there is both a direct as well as an
indirect externality in attacking the software with large market
share.  A few skilled hackers develop tools to exploit vulner-
abilities and a large number of script-kiddies (unskilled
hackers) use those tools to attack as many computers as they
can.  Therefore, there is a force multiplier effect in the case of
exploits that target software with a large installed base
(Collins et al. 2006).

Most real-world software products are not completely inde-
pendent of each other in terms of vulnerabilities (Figure 8). 
Many interfaces and functionalities are standardized, leading
to similar or reused code.  In many cases, code is also shared
via the use of programming libraries.  Due to this shared code
base, it is inevitable that some vulnerabilities are common
across different software.  For example, Microsoft’s Graphic
Device Interface Plus (GDI+) library contained a vulnerability
in the processing of JPEG images, which could be exploited
in any application that uses the GDI+ library.15  To capture the
effect of attacks that target vulnerabilities present in multiple
software configurations, we introduce a parameter c to
account for the proportion of attacks that are common across
software.  Given m and c, the distribution of attacks is such
that

Prob(attack = 1only) = (14)
1

1

−
+ −

c

m c

Prob(attack = 2only) = (15)
m c

m c

−
= −1

Prob(attack = common) = (16)
c

m c1+ −

If all attacks were successful in causing node failure, then the
correlation in failure between two software configurations can
be expressed using Equation (7) as

ρ12

1
=

+ − −
−

c m c m

m m c

( )

( )

This leads to the following observation:

Observation 1:  As the number of shared vulner-
abilities between two software configurations
increases, their correlation of failure also
increases.16

In summary, the framework introduced in this section
highlights several factors that have an impact on security loss: 
rate of attacks to a particular software λ, probability of node
failure π, correlation of failure across nodes ρ, and service
time per computer d.  A firm may reduce its security loss by
influencing one or more of these factors through employing
different security measures.  For example, a firm may reduce
λ by choosing a more secure software, reduce π by installing
a firewall or an intrusion detection system, and reduce d by
enhancing the service capacity/efficiency.  The proposed

15http://www.us-cert.gov/cas/techalerts/TA04-260A.html. 16Please see Appendix A for all proofs. 
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diversification strategy aims to reduce ρ by reducing the
shared vulnerability among nodes.  The rate of attacks each
software configuration receives (λ and mλ) and the number of
common attacks received by different software configurations
(c) are key factors that influence the effectiveness of the
diversification strategy.

We should note that in addition to the commonality/diversity
of software, network connectivity may also impact correlation
of failure among nodes (Figure 6); however, the impact of
network connectivity on node failure correlation is of second
order.  One important thing to note is that zero connectivity
doesn’t mean zero failure correlation.  For nodes in discon-
nected networks but sharing the same vulnerability, their
failure will not be independent of each other (that is, their
failure correlation is nonzero) because they still face the same
vulnerability and attacks that exploit the shared vulnerability
and will have a positive correlation of failure.  Network
connectivity, however, will cause higher node failure correla-
tion for nodes sharing the same vulnerabilities in the same
network.  On the other hand, network connectivity doesn’t
make a node more prone to failure when there is no shared
vulnerability.  From the discussion above, we know that
commonality/diversity of software is the most important
determinant of the node correlation matrix, while high
network connectivity can boost the node failure correlation
but zero connectivity doesn’t eliminate the node failure
correlation.  In this paper, we assume that network connec-
tivity is given (which is realistic since, in most cases, many
node connections are required for functional reasons and
cannot be changed) and, as a result, the decision of diversity
is independent of network connectivity.  In the following
section, we explore how software diversification can be used
as a means to reduce correlation and thus system downtime.

Software Diversification to Reduce
Downtime Loss

In this section, we show how software diversity can be
applied in practice to reduce system downtime.  First, without
loss of generality, we use a stylized two-node model to
demonstrate that software diversity under certain conditions
can stochastically dominate software homogeneity.  Sto-
chastic dominance is a comprehensive criteria to prove that a
distribution of outcomes is superior to another (see Hadar and
Russell 1969; Rothschild and Stiglitz 1970, 1971).  It is often
used in the financial markets to evaluate performance of one
portfolio against another.  In this paper, we use it to evaluate
one software allocation “portfolio” versus another.

Stochastic Dominance:  The Two-Node Case

Without loss of generality, we start with a simple two-node
case to study the advantages of software diversification
because closed-form solutions can be derived, allowing us to
get a better understanding of the factors that impact the
benefits of diversification.  A lot of insights can also be
derived in this simple case.

We first show the conditions when the node failure distribu-
tion under diversity second order stochastically dominates that
under homogeneity.   If the node failure distribution F second
order stochastically dominates a distribution G, then for every
concave utility function u(x),

(17)u x dF x u x dG x
nn

( ) ( ) ( ) ( )≥  00

This implies that risk-averse firms would choose, from the set
of possible designs for their networked information systems,
a design for which loss distribution second order stochas-
tically dominates the loss distributions associated with all
other designs.  Properties of risk aversion and second order
stochastic dominance are discussed in detail by Hadar and
Russell (1969) and Rothschild and Stiglitz (1970, 1971).

In a simple two node network, there are two possible software
allocations:  either both nodes share the same software (homo-
geneity) or they have different software (diversity).  An attack
on a two-node network can have three possible outcomes: 
zero failures, one failure, or two failures, as illustrated in
Figure 9.

The failure distribution under homogeneity (software con-
figuration 1 deployed on all nodes) can be written as
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Figure 10.  Loss as a Function of Node Failure
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Where PH(2F) indicates probability of two node failures under
homogeneity, and π, as mentioned before, is the unconditional
probability of node failure under an attack.

Figure 10 shows a simple downtime loss function that
accounts for loss in availability due to service plus waiting
time.

Proposition 1.  When two software (configurations)
have comparable attack rates such that  

1

1
1 1

+ + −
+ + −

< < + − + + −
c

m c c
( )

( )( ),
π ρ πρ
π ρ πρ π ρ πρ

software diversity second order stochastically domi-
nates software homogeneity.

Recall that m measures the relative attack rate of software 2
to that of software 1, which is normalized to 1.  Proposition 1
shows the range of m when it is advantageous to diversify
software (i.e., use both software) rather than using just the
more secure software that receives fewer attack (min(1,m)).
An interesting observation is that the upper bound in
Proposition 1 is always greater than 1 unless c = 1 (c = 1
implies that all attacks software 1 receives are common
attacks, i.e., these attacks also target software 2).  This is
interesting as it suggests that even if software 2 is less secure
(i.e., when m > 1), the firm can still reduce security loss by

employing both software configurations.  This clearly demon-
strates the benefit of diversification:  having both software
configurations in place is more beneficial than employing
only the more secure software configuration.

Another interesting observation from Proposition 1 is that a
broader range of m suggests that the optimal software strategy
to reduce downtime loss is more likely to involve both
software configurations.  By studying how the range of m
changes with c, π, and ρ, we can also get some insights on
how the benefits of diversification change with c, π, and ρ.

Proposition 2.  The range of m decreases in c and
increases in π and ρ, suggesting that diversification
becomes more attractive as the number of shared
attacks (c) decreases, the probability of failure (π)
increases, and the correlation of failure (ρ)
increases.

While it is intuitive to show that diversification is more
advantageous when the different software configurations
employed receive fewer common attacks, it is interesting to
note from Proposition 2 that diversification is especially
advantageous when other security measures are imperfect
(i.e., when a firm faces higher π and/or ρ for whatever
reasons).  In addition, as noted before, certain software
vulnerabilities may lead to higher failure rates, and high con-
nectivity of nodes can also lead to high correlation of failure.
Therefore, software diversification can also be advantageous
in these cases.  

In a two-node network, we have shown analytically when
firms would prefer diversity.  We next present a more general
framework for software diversification.

Service Queue

Service time + Wait time = Downtime Loss

0 Failure:
1 Failure:
2 Failures:

0   +   0   =   0
1   +   0   =   1
2   +   1   =   3
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Loss Reduction via Diversity

As noted before, a firm can reduce its security loss by
manipulating one or more of the factors that link to security
loss:   rate of attacks λ, probability of node failure π, correla-
tion of failure across nodes ρ, and service time d.  In this
section, we will show how diversity can reduce security loss
by reducing ρ (the costs of diversification will be discussed in 
the next section).

Consider a firm that decides to diversify its software in order
to reduce the chances of simultaneous failure of multiple
computers.  It may do so by keeping x1 proportion of its
computers on software configuration 1 while switching to
competing software configuration 2 for the remainder (1 ! x1).
Given a diverse software deployment, the distribution of the
total number of computers affected in an attack can be
calculated as per the previous section, which, in conjunction
with the formulation also presented in that section, can be
used to determine the expected loss faced by the firm: 
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Notice that diversification increases the total number of
attacks but reduces the exposure per attack as only a subset of
nodes are vulnerable to any attack.  Substituting expressions
for Bat(x), θ (x), and γ(x) in (18) we get (please see Appendix
A for derivation of E[Y] and E[Y2]) 

( )

DT x d
c Nx

m c

m c N x

m c

cN

m c

c Nx Nx

m c

m c N x N x

m c

cN N

m c

( )
( ) ( ) ( )

( ) ( ) (

( ) ( ) ( ) ( )

( ) ( )

(

1
1 1

1
1

1

1
1

1

1

1

1

1

1 1

1
1 1 1

1

1 1 1 1

1

1 1

1

=
−
+ −

+
− −

+ −
+

+ −






+
− − − +

+ −










+
− − − − + −

+ −

+
− − +

+ −

+

−

−

−

λ
π π π

π π ρ ρ

π π ρ ρ

π π ρ ρ

1
1

1

1

1 1

1

1
1 1

2

1

− −
−
+ −

−
− −

+ −
−

+ −






+ − −

c Nx
c Nx

m c

m c N x

m c

cN

m c

m c

)
( ) ( ) ( )

( )

π
π π π

+ − − −
−
+ −

−
− −

+ −
−

+ −






+ −

+ −
−
+ −

−
− −

+ −
−

+ −






+ −

+
−
+ −

+
−

−

−

( ) ( )
( ) ( ) ( )

( )

(
( ) ( ) ( )

( )

( ) ( )

m c N x
c Nx

m c

m c N x

m c

cN

m c

m c

c N
c Nx

m c

m c N x

m c

cN

m c

m c

c Nx

m c

m c

1
1

1

1

1 1

1

1

1

1

1 1

1

1

1

1
1 1

2

1

1 1
2

1

1

π
π π π

π
π π π

π N x

m c

cN

m c

c Nx

m c

m c N x

m c

cN

m c

d
c Nx

m c

m c N x

m c

cN

m c

d
c Nx

m c

m c N

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

1

1 1

1

1

1

1 1

1

1

1

1 1

2 2
1

1

1

1
2

1 1
1

1 1

1

−
+ −

+
+ −







−
+ −

+
− −

+ −
+

+ −






−
−
+ −

+
− −

+ −
+

+ −






−
−
+ −

+
− −

−

π π

π π π

λ
π π π

λ
π x

m c

cN

m c
1

1

1 1

)π π
+ −

+
+ −















−

(19)

The firms can reduce downtime loss by either investing in
reducing probability of failure, π, given an attack, by
deploying security technologies such as firewalls and anti-
virus software; by introducing diversity, x1, in their network
to decrease the number of shared vulnerabilities and therefore
correlation of failure on the network; or by reducing service
time, d, to repair computers affected in an attack.  The first
two approaches alter the node failure distribution while the
latter approach alters repair rate.  The effectiveness of the
diversification strategy to reduce node failure distribution
depends on the exogenous factors of how likely each software
configuration is to be under attack (λ and mλ) and how many
attacks are shared among the software (c).  Optimal choices
of x, π, and d  can be solved by minimizing DT with respect
to x, π, and d subject to the relative security level of alter-
native software and the budget constraint on those:

Min Downtime = minz,x,d DT(x, π, d, ρ, m, c, λ);
(20)

k1 x + k2 π + k3 d # k4

Where, k1 to k3 are the per unit direct costs of investment in
diversity, security technology, and repair capacity, while k4 is
the total technology budget.

Equation (20) highlights the relevant factors that a firm has to
consider when deciding its security strategy, including
deciding the level of diversity.  This framework allows us to
compare the relative effectiveness of software diversity in
reducing expected loss with that of security technologies and
service capacity, which we will discuss next.  We address the
organizational costs of diversity in the section on maximizing
net benefit.
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Applications

As noted earlier, a firm may invest in security technologies,
such as antivirus, firewall, and intrusion detection systems,
which help in detecting and curtailing attacks.  A firm may
also invest in service capacity, which helps in its response to
attacks by bringing failed nodes/systems back to work faster.
Using the framework that we have developed, we compare the
relative effectiveness of software diversity in reducing ex-
pected loss with that of security technologies and service
capacity.  First we consider how downtime loss varies with
the extent of diversity under different service capacity levels,
d (Figure 11).

Investment in Diversity Versus
Investment in Response

As is evident from Figure 11, expected loss is reduced when
firms deploy different software configurations that share
minimal vulnerabilities.  As shown earlier, such diversifica-
tion strategy leads to lower correlation, and thus the extent of
failure (i.e., the variance of computers failing per incident) are
reduced.  This is because under most attacks only a subset of
computers are at risk (those running the software that is
vulnerable to that attack).  Consider a two-software configura-
tion example as illustrated by Figure 11 where software
configuration 2 is assumed to receive more attacks than
software configuration 1 (m = 1.5).  Even though software
configuration 2 is less “secure” than software configuration 1,
an optimal strategy to reduce security loss would involve
deploying both software configurations in the network, and
the optimal x1 is greater than 0.5 (i.e., the more-secure
software configuration 1 should be deployed on more com-
puters).  This suggests that deploying software configuration
2 together with software configuration 1 would result in lower
overall security loss than running all nodes on the more-
secure software configuration 1.  This example echoes what
we found in Proposition 1 and clearly demonstrates the
benefits of diversity:  even though the firm may face more
attacks by also employing the less secure software con-
figuration in its computing infrastructure (as opposed to just
the most secure one), the consequence of each attack would
be of smaller magnitude and more manageable.  By reducing
the variance of attack magnitudes, the firm greatly reduces the
possibility of drastic loss.

Figure 11 also shows that the magnitude of loss reduction
from diversification alone decreases with increase in service
capacity (i.e., decreasing d) as systems affected in either type
of attack are serviced faster, suggesting that the diversifica-
tion strategy becomes less attractive when a firm’s service

capacity is large or when repair time is short.  However, it is
important to note that surplus service manpower (i.e., lower
d) comes with an organizational cost.  From the budget
allocation point of view, the optimal investment in service
capacity is when the marginal benefit of a dollar spent on
service capacity equals the marginal benefit from a dollar
spent on software diversification.

Investment in Diversity Versus
Investment in Detection 

We next compare the relative effectiveness of diversification
in reducing downtime loss vis-à-vis the effectiveness of basic
security technologies (Figure 12).  Once again, we see that
expected loss is reduced under a diversification strategy.  A
firm can also reduce its expected loss by reducing the proba-
bility of computer failure (π) by investing in better protection
technologies such as firewalls, antivirus software, etc.  We
can also observe that the magnitude of loss reduction from
diversification decreases with decreases in π, suggesting that
diversification becomes less attractive when other security
measures are more effective.  This again demonstrates what
we found in Proposition 2.  The optimal choice can be deter-
mined by comparing the marginal cost and marginal benefit
of each approach.  As noted earlier, the costs of diversity may
include training and integration costs, while more strict
security policies or security measures, such as firewalls or
intrusion detection systems, are often associated with limited
flexibility and thus a possible decrease in user efficiency.
Given that different organizations have different levels of
sophistication in technology use, the right amount of security
investment would be organization and industry specific.

We would like to highlight an interesting observation from
Figures 11 and 12:  the optimal software allocation of the
diversification strategy is insensitive to d and π; this is due to
the fact that m and c (i.e., the relative security level of alter-
native software and the number of common attacks across
software) and the relative costs of diversity to that of d and π
do not change.  While the level of d and π does influence the
marginal benefits of the diversification strategy (as shown in
Figures 11 and 12), they do not affect the optimal form of the
diversification strategy (this is evident from the same shape of
the curves in Figures 11 and 12, which show that the curves
of downtime loss as a function of x are of the same shape
under different d and π).  The optimal allocation among alter-
native software under the diversification strategy depends
only on m and c and the unit costs of x.

However, even though d and π do not change the shapes of
the curves, they do influence the decision of whether the diver-
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Expected downtime loss as a function of x1 for varying levels of service capacity (smaller d means higher capacity).  m is
kept constant at 1.5 (i.e., software 2 receives 50% more attacks than software 1); c = 0; λ = 0.01; π = 0.1; ρ = 0.5; N = 100.

Figure 11.  Variations of Downtime Loss

Expected security loss as a function of x1 for varying levels of probability of failure π (π1 = π2).  m is kept constant at 1.5
(i.e., software 2 receives 50% more attacks than software 1); c = 0; λ = 0.01; d = 1; ρ = 0.5; N = 100.

Figure 12.  Expected Security Loss

sification strategy should be adopted since they influence the
marginal benefits of diversification strategy.  When both d
and π are low enough, we can show that the optimal strategy
involves no diversification; otherwise, when the diversifica-
tion strategy is adopted, it always employs the same optimal
allocation as long as m and c and the unit costs of x do not
change.

So far, we have considered mainly the benefits of diversi-
fication and the optimal level of diversification when the
objective function is to reduce expected downtime loss.  How-
ever, in reality, firms may hesitate to mix different software
applications due to the concerns of compatibility as well as

the costs associated with managing a heterogeneous environ-
ment.  While the trend in industry standardization and the
development of the web services architecture has pushed
toward compatibility, the concerns still remain.  In general, no
two diverse software applications are completely inter-
changeable in the sense that the functionalities provided by
and the set of applications that work with a particular software
application are not exactly the same.   Furthermore, software
choice depends on past experience and support, both of which
have direct and indirect network externalities with the
external world (i.e., if the rest of the world uses Windows,
then it is easier to learn about and support Windows systems).
In the next section, we consider an extended model where the
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firm’s concern is not only to minimize the expected security
loss but also the potential costs associated with software
diversification.

Software Diversification to Maximize
Net Benefit to the Firm

We have, thus far, shown that diversification can be an
effective way to reduce security loss.  However, this benefit
does not come without costs.  Diversification is a costly
process.  First, the total cost of ownership is higher.  There is
the cost of supplementary software acquisition and possibly
switching costs.  It also involves training and maintaining
diverse systems, resulting in potentially higher maintenance
costs.  Second, the benefit of full compatibility and inter-
operability may be hard to achieve with diverse software
when two software technologies are not perfectly compatible. 
When compatibility and interoperability is a major concern,
the sunk costs of past investments may prevent firms from
fully executing the diversity strategy.

Altogether, there are essentially three types of costs firms
have to balance in deciding the level of diversity:  security
costs due to repair and downtime, loss due to network effects
from lack of homogenization, and maintenance costs for all
computers within the firm, which may include routine check-
up, upgrades, backups, installing updates, etc.  Security costs
were discussed earlier.  In this section, we will discuss the
costs due to possible loss of network effects and economies of
scale in maintaining heterogeneous software.  We will also
explore the conditions under which diversity is preferred over
homogeneity by simultaneously considering the security loss,
network effects arising from compatibility, and the additional
support costs associated with software diversification.

Network Effects from Compatibility

Consider a group of N nodes, which can directly exchange
information or communicate with each other.  Suppose there
is value to each potential direct interaction, then the benefit of
running the same software on all nodes is of the order N2

since there are a total of N ( (N – 1) possible interactions
(Shapiro and Varian 1999).  To model the network effect
benefit of software, we choose this standard N2 benefit
function.  In the case of two software configurations that are
not perfectly interoperable, we define a standardization index
b 0 [0, 1], which captures the value of interaction between
two nodes running diverse software relative to their running
homogeneous software.  A higher b implies that diverse

software have a standardized interface and thus are inter-
operable with each other.  With this setup, we can define the
level of network effect benefits achievable from running two
software configurations with standardization index b, as 

NE(x) = Cne ( (N2
1 + N2

2 + 2bN1N2) (21)

where
N1 = N ( x1, number of nodes running software

configuration/stack 1
N2 = N (  (1 – x1), number of nodes running soft-

ware configuration/stack 2
N = total number of nodes in network
x1 = the proportion of nodes running software

configuration/stack 1
Cne = scaling constant to compare the magnitude of

network effects with that of security loss

Notice that for b . 0, we have two disconnected networks,
and for b . 1 we have one large network with seamless
connectivity such that there is no loss of compatibility even
when we are running two different software configurations. 
In practice, different classes of software satisfy varying
degree of standardization.  For instance, the web services
architecture has been fairly standardized as a result of
concerted industry initiative, for example, webmail (b . 1),
whereas some document file formats are largely proprietary,
for example,  MS word (b . 0 ).  In practice, we may measure
b by the relative costs required to make two software
applications communicate or exchange files seamlessly.  In
the case that two software applications are perfectly com-
patible, and no extra cost is needed to make them
communicate, then b would be 1.  The higher the costs, the
lower the standardization index b.  For example, if the cost
required to make two software applications communicate or
exchange files is c1 and the cost for making two incompatible
software applications communicate is c2, then a simple way
to measure b would be (1- c1 / c2 ).  The point is that b should
capture the value of software applications being able to com-
municate/interact directly with each other.

Given the strong industry trend toward standardization with
the advent of HTTP, XML, SOAP, AJAX, etc., and the
development of technological solutions that aim to overcome
the limitations of interoperability (e.g VMware,17 a popular
virtual infrastructure software that emulates multiple
operating systems on a single computer), we might observe
decreasing barriers to diversification in the future.

17http://www.vmware.com.

414 MIS Quarterly Vol. 35 No. 2/June 2011



Chen et al./Correlated Failures, Diversification, and Information Security Risk Management

Cost of Maintenance

As noted earlier, there are economies of scale in maintaining
homogeneous systems, such as training, routine checkup,
upgrades, backups, installing updates, etc.  Therefore, firms
may face additional support cost from maintaining a diversi-
fied software environment.  This additional cost is due to the
loss in economies of scale in acquiring and supporting diverse
software.  Without loss of generality, we model the eco-
nomies of scale in maintaining software using a concave cost
function.  To keep our model tractable with minimum param-
eters, we consider the simple and widely used log cost
function.  The insights, however, are generalizable to other
concave cost functions.

MC(x) = Cmc ( (log(N1 + 1) + log(N2 + 1)
– log(S+1)) (22)18

where
MC(x) = cost of maintaining x level of diversity for

0 < x < 1
Cmc = scaling constant to compare the magnitude of

cost of maintenance with that of security loss
S = the common components shared by the two

software

Optimal Diversification Strategy

As noted earlier, the potential costs of diversity may come
from two sources:  loss of compatibility and increases in
maintenance costs.  The optimal diversity in the network can
be determined by maximizing the net benefit taking into
account network effects, cost of maintenance and downtime
loss (from the previous section on reducing downtime costs):

MeanNetBenefit(x) = NE(x) – MC(x) – DT(x) (23)

We identify the conditions under which diversity is preferred
over homogeneity by maximizing the net benefit with respect
to the level of diversity x.  Figure 13 illustrates the conditions
when diversity is preferred over homogeneity, that is, x*1 0
(0,1).  For each point on the graph we compute whether the
net benefit is greater with diversification or without diversi-

fication; the shaded regions indicate the conditions where
diversity would be preferred, while the white region indicates
conditions suitable for homogeneity.  The graph is a contour
plot, and we summarize the findings below.

Observation 2:
(1) Diversification becomes more attractive as the

standardization index b increases (i.e., as dif-
ferent software get standardized interfaces
through XML, web services, etc.).

(2) Diversification becomes more attractive as the
cost to ensure compatibility and interoperability
(Cne) decreases, or when the requirement for
homogeneous deployment to gain the benefit of
network effect diminishes.19  Cne is likely to be
low for software applications where adapters or
middleware are easily accessible, and for
organizations that are not highly networked i.e.,
network effects are mild (low Cne).

(3) Diversification is more attractive as the cost of
supporting and maintaining diverse systems
decreases (Cmc).  This is evident in Figure 13
that as the cost of maintaining diverse systems
decreases (indicated by decreasing Cmc), the
region favorable to diversity expands (shown
via lighter shades).  Firms that are sophisti-
cated in IT use or have good IT support infra-
structure will have relatively low Cmc, and can
therefore benefit more from diversity.  We
should also note that Cmc is application depen-
dent too.  Certain applications, such as ERP
systems, may have high Cmc due to high acquisi-
tion and maintenance costs and, therefore, it
may be more cost effective to invest in other
security technologies and/or faster response.

Overall, we show that software diversification is a viable
technology investment strategy under general conditions,
which to date has been overlooked in the IS and economics
network effects/standardization literature.  In the following
subsection, using real world data on vulnerabilities in com-
mon software applications such as Internet Explorer, Firefox
web browser, and Outlook, we demonstrate the use of our
framework in calculating the optimal software allocation for
any network.18We add +1 to the log function to make sure the log function does not

become ill-defined when the element becomes zero.  In addition, we expect
the costs of managing two different software configurations to be lower when
they share more components than when they share few components.  S can
be highly correlated to the amount of shared vulnerabilities between the two
software configurations, although they are not necessarily the same because
the security of each component may differ.   

19As is evident in Figure 13, for low values of Cne, diversification is a
preferred strategy under a larger range of values for b and Cmc (i.e., more
shaded region around low Cne).
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Dark areas indicate the region where the net benefit is higher with diversification; the color fades (diversification region
expands) as costs of supporting diverse systems goes down; x-axis is standardization index b and y-axis is normalized
scaling constant for network effects; N = 100; π = .1; ρ = .5; m = 1; c = 0; λ = .01; d = 1.

Figure 13.  Conditions When Diversity Is Preferred

Application:  Software Allocation

Our analyses have demonstrated the benefits of diversification
to an organization.  An interesting question that follows is
how a firm can optimally allocate software to achieve the
benefits of diversification.  Specially, considering the
configuration–vulnerability matrix presented in Figure 3c,
should a firm consider deploying more than one software
configuration?  If yes, how should a firm allocate these
different configurations to nodes in a network?  For example,
a question that has received a lot of attention recently is: 
Should firms switch their web browsers from Microsoft’s
Internet Explorer to Mozilla’s Firefox?  Firefox has gained
tremendous publicity for being more secure than Internet
Explorer.  There are similar concerns regarding Microsoft’s
Outlook and the Windows operating system.  We explore the
options for software allocations for IT managers and how
might they go about making an informed choice using a case
example.

We define software allocation as the deployment of software
configurations across nodes by assigning software configu-
rations to nodes such that all nodes have the required set of
applications such as e-mail, editor, and web browser. 
Specifically, if we consider the case of two software
categories—web browser and e-mail client—the requirement
is that each feasible allocation (i.e., software configuration)
should consist of software from each of these categories.

Given software applications like Internet Explorer (IE),
Firefox (FF), Outlook (OL), and Thunderbird (TB), a firm can
choose from four possible configurations for its nodes viz. 
C1 (IE + OL), C2 (IE + TB), C3 (FF + OL), and C4 (FF +
TB).  Note that there are a total of C(N + M – 1,M – 1) many
ways of assigning M configurations to N nodes;20 for M = 4
and N = 10, there are 286 possible allocations.  However,
considering positive network externalities alone and dis-
regarding the risk posed by correlated failure, firms have
usually chosen C1 for all of their N nodes.  In our work, we
challenge that traditional approach and consider all possible
allocations to find the optimal one.

The mean net benefit for an allocation ak (k ranges from 1 to
286) can be written as

MeanNetBenefit(ak) = NE(ak) – MC(ak) – DT(ak) (24)

The above formulation can be used to estimate the mean net
benefit associated with each allocation, which can then be
rank ordered to calculate the best allocation.  However, as
mentioned before, due to the correlated nature of node failure,
it is not sufficient to calculate expected security loss just as a
function of mean failure of nodes.  Our calculation of security

20The implicit assumption here is that each node is symmetric.  If the nodes
are asymmetric, for example, due to the way they are connected, then there
would be MN possible allocations.
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loss built on the MX/G/1 queuing system takes into account
not only the mean node failure but also the variance of nodes
failure (which is captured by the endogenous correlation of
failure in our model).  An important goal for many organi-
zations is to ensure business or operation continuity even in
unfavorable circumstances, which would require developing
bounds such that even in g-worst case (g-worst is defined as
the event for which the probability of it happening is below
g), the proportion of node failures is no greater than a
threshold (t).  Consider this example:  if important business
data is replicated over two computers, then the firm can
recover from the failure of one computer.  However, if both
nodes fail simultaneously, the loss would be catastrophic.
Therefore, a more practical allocation problem is defined as
follows:

max ( ); ( ,..., ),
α

α α
k

MeanNetBenefit x xk k k Mk= 1

(25)

xik
i

M

=
=
 1

1

subject to the constraint:

P(Y > t @ N) < g

where x1 through xM are the proportion of nodes assigned
configurations 1 through M, Y is the number of node failures
in an attack incident, and N is the total number of nodes on
the network.

Given the number of vulnerabilities in IE, FF, OL, and TB
(Figure 14) and the rate of attacks against them, we calculate
the joint susceptibility of attacks for C1 through C4 (Figure
15).  In our analysis, we assume that owing to their popularity
Microsoft software (IE and OL) receive m times as many
attacks as FF and TB.21  We then calculate the correlation of
failure for all pairs of nodes for all possible allocation
scenarios22 and generate the node failure distributions.  We
find that the allocation that has the highest mean net benefit
is (x1 = 0, x2 = 0, x3 = 0, x4 = 1), however, this does not satisfy
the above failure constraint for t = 0.7 and  g = 0.05.  The
allocation that has the highest mean net benefit subject to that
constraint is (x1 = 0, x2 = 0, x3 = 0.2, x4 = 0.8).  We compare

allocations for t = 0.7, as it appears to be a reasonable
reference point.  As discussed next, other threshold values can
be considered, depending on organizational goals.  In Figure
16, we compare the failure distribution associated with these
allocations with the failure distribution when all nodes are
assigned the default configuration C1.  Note that, the right-
most distribution is unambiguously unfavorable since it has
a very high chance of simultaneous failures.  Also note that
between the leftmost and central distributions, the central one
has a fatter right tail, and therefore is less ideal than the
leftmost one.

We calculate the mean net benefit for all possible allocation
scenarios such that an efficient frontier can be found for
determining the maximum mean benefit that is possible under
different failure constraints (Figure 17).  The goal of IT
managers should be to achieve an allocation such that the
benefit lies on the efficient frontier.  However, it is under-
standable that due to continuously varying vulnerability and
attack conditions, the optimal allocation drifts away from the
efficient frontier.  We next discuss how organizations can
cope with these changing vulnerabilities.

Monitoring Drift

Since software vulnerabilities change over time (old ones are
patched while new ones are discovered), optimal allocation
will not remain the same.  For example, while Firefox has
been considered more secure, recently it has been reported to
be the most vulnerable browser due to a high number of
vulnerabilities.23  When new vulnerabilities are suddenly
discovered in the Firefox browser, as an example, such that
entry in cell(2,2) in Figure 14 changes from 17 to 50, then
clearly the optimal allocation will change accordingly.  We
define this phenomenon as the drift which occurs due to
change in external conditions such as the number of shared
vulnerabilities and/or attack rates affecting them.  Figure 17
shows how the location of previous-best allocation changes
under the new set of conditions and a new efficient frontier. 
We believe that the concept of drift could be useful for IT
managers in monitoring the state of their networks.  In
addition, based on our approach, they can develop policies to
periodically review the drift so that software can be reas-
signed to nodes whenever the magnitude of the rectilinear
drift from the efficient frontier is high vis-à-vis cost of reallo-
cation.  The rectilinear drift can be measured as either the
horizontal distance or the vertical distance from the efficient
frontier.  Horizontal distance signifies compromise in failure

21Therefore, total number of attacks = 28m (attacks on IE) + 16 (attacks on
FF, not included in IE) + 2m (attacks on OL) + 0 (attacks on TB, not included
in FF).

22In addition to susceptibility to attacks, correlation also depends on
individual actions taken at nodes like user specified software settings,
additional precautions etc.  To account for that we scale the correlation
calculated by the formula for ρij by 0.5. 23http://news.cnet.com/8301-1009_3-10190206-83.html.
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The vulnerabilities were retrieved from the National Vulnerability Database for the period of April–June 2007.

Figure 14.  Number of Shared Vulnerabilities between a Set of Software Applications

Joint susceptibility of attacks for configurations C1 through C4, which can be derived from the configuration–vulnerability
matrix shown in Figure 3c.

Figure 15.  Joint Susceptibility of Attacks

Figure 16  Failure Distributions Associated with Various Allocation Possibilities (m = 2; N = 10)
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Highest achievable benefit under various failure constraints; m = 2; g = 0.05; N = 10; Cne = 1; Cmc = 1; b = 0; a = 0.01; d = 1.

Figure 17.  Efficient Frontier

threshold whereas vertical distance signifies shortfall in maxi-
mum achievable benefit under that threshold.  The appropriate
weights can be assigned for them by the IT managers after
taking into consideration organization-specific goals.

Discussion and Conclusion

Software vulnerabilities when exploited cause loss in confi-
dentiality, integrity, and availability of information.  Various
encryption and encoding techniques have been proposed to
protect confidentiality and integrity of information, while
redundancy and fault tolerance have been the classical
solutions to ensure availability.  However, in a network
environment, when a vulnerability common to all nodes is
exploited, redundancy alone is not enough to ensure avail-
ability.  In this paper, we argue that an alternative solution to
maintain availability is to spread the risk (i.e., to diversify the
network such that all nodes do not share the same vulner-
abilities).

The objective of this paper is to quantify security loss due to
unavailability and to examine whether a firm can benefit from
maintaining a diversity of systems or software taking into
account the benefits and costs of a diversification strategy. 
Unavailability may result from node/system failure, repair,
and/or checkup.  We introduce system downtime as a suitable
metric to quantify security loss and develop a formulation
based on queuing theory to quantify downtime loss due to

unavailability of nodes.  We present a comprehensive attack–
failure–repair model to evaluate the impact of software
diversity and develop a formulation for calculating failure
distribution based on the correlation matrix.  The novelty of
this model is that we endogenize the failure distribution and
the node correlation distribution, and show how the diversi-
fication strategy and other security measures may impact
these two distributions, which in turn determine the expected
security loss faced by the firm.  In addition, our proposed
model incorporates the three levels of security:  prevention,
detection, and response.  As a result, it not only allows us to
compare the benefits of diversification vis-à-vis investments
in response or other security measures such as firewalls,
antivirus software, intrusion detection systems, and security
policies, but also enables us to study how diversification can
be used with these security instruments to reduce security
loss.  While the reduction in downtime brought by diversity
is a compelling consideration, we note that diversity has
significant costs associated with it in the IS context due to the
potential loss of network effects and the lack of economies of
scale.  Therefore, determining the optimal level of diversity
and conditions when diversity is superior are non-trivial.  We
present a framework to guide optimal investment in software
diversification taking into account these benefits and costs. 
We show that diversification is appealing under rather general
conditions.

Diversity has often been ignored in the IS and economics
network effects literature due to over-emphasis on network
effects.  Our analyses contribute to this literature by showing
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how diversity can benefit firms and developing a framework
and several tools to guide the technology investment decisions
of firms.  This research also contributes to the risk analysis
literature in addition to the information security literature by
showing that diversity is advantageous not only to a risk-
averse firm but also to a risk-neutral firm that cares about
minimizing mean downtime.  A risk-averse firm that also
cares about the variance of downtime would attach even
greater weight to downtime loss when determining the
optimal diversity.  Our finding that diversification benefits
firms has an important policy implication as well.  In parti-
cular, it suggests that the government should provide an
environment where multiple software/system configurations
can coexist.  While we do not study socially optimal diversifi-
cation in our paper directly, our finding does suggest that
society as a whole will benefit from a diversification strategy
by spreading the risks and reducing drastic risks and loss.

In addition to contributing to the information security and risk
management literature, this paper also makes several practical
contributions.  First of all, we propose managing security loss
through managing shared vulnerability among systems.  We
propose that we can better preserve the availability of system
functionality through diversity, consistent with the idea of
“functionality defense by heterogeneity” by Sharman et al.
(2004).  We introduce the concepts of the configuration–
vulnerability matrix, the (node) vulnerability matrix, and the
node failure correlation matrix, which can be used as risk
awareness tools that can help organizations better manage
their security risks (Straub et al. 2008).  Furthermore, our
proposed framework is holistic and practice oriented and
incorporates other security measures and practical concerns
facing a firm (such as costs to maintain a diverse environment
and a minimum availability guarantee), and can help a firm
develop its software acquisition/allocation strategy.  Our
analysis also suggests that diversity can make other security
measures more effective.

Our formulation is not particularly dependent on the func-
tional form of the attack process or the service routine.  Our
assumption of Poisson arrival for attacks is a nonrestrictive
one, because if the attacks were not independent, then it
would lead to further buildup in the service queue causing
even higher downtime, which would further strengthen our
argument for diversity as a means to avoid queue buildup. 
The use of MX/G/1 formulation, though, has a minor limita-
tion:  it assumes that whenever an attack incident occurs, the
entire network is exposed to it; however, because some nodes
may be in repair queue at the time of attack, they may not be
susceptible to those attacks.  Practically, nodes will be in a
functional state most of the time; therefore, the above concern
does not pose a risk in most cases.  Our framework is general

and applies to any scenario where loss is convex in the
number of failed nodes.  Our analysis indicates that as tech-
nology markets trend toward more standardized environ-
ments, the barriers to diversity become less of a concern,
making diversity more acceptable.  Similarly, diversity is pre-
ferred when the cost of supporting diverse systems declines.

However, this paper suffers from some limitations.  First of
all, even though we believe that the assumptions of single
server and sequential repair are not material to the insights
that are gained from our model, future research may relax
these assumptions to see how sensitive the benefits of diver-
sification are to number of servers and simultaneous repair
(although individual attention to each affected computer in
order to account for differences in user settings, permissions,
data backups, and custom applications is often needed even
when computers can be repaired simultaneously).  We also
did not consider attacker behavior and did not formally
account for the dampening effect of legacy systems on new
software adoption, or the costs related to redesign the service
facility to accommodate diverse software environments. 

Despite these limitations, we believe that our framework has
contributed to understanding the main tradeoffs of a software
diversification strategy, and it can be extended to overcome
the aforementioned limitations.  In addition, the cost of sup-
porting diverse systems can be highly dependent on the
overall service capability of the IT department.  Some
software configurations may be easy to support while others
are more costly to support and may require considerable fixed
costs (e.g., hiring a specialist).  Under these conditions, the
redesign or reorganization of the service capacity becomes a
direct function of diversity.  Therefore, we believe that the
complete cost–benefit analysis is a multivariate constrained
optimization problem which, in addition to all the factors
discussed in this paper, should also take into account the
network redesign issues and service facility reorganization.
An interesting future research project would be to develop an
IT acquisition and deployment decision support system sup-
ported by the formulation of a combinatorial optimization
model taking into account the factors and tradeoffs considered
in this paper as well as other practical constraints faced by the
firm to help guide its system deployment strategy (e.g., how
many different software configurations to deploy and how to
deploy them).  Furthermore, there are many strategic factors
that would also be relevant to the design of the decision
support system.  For example, the vulnerability disclosure
policy of the software or third party vendor and the time it
takes for patches to be available may be relevant to a firm’s
choice of vendors/software (Arora et al. 2010).  The attack
trend of vulnerabilities may differ across firms depending on
their patching policies and the channel through which they
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acquire the vulnerability information (Kannan and Telang
2005; Li and Rao 2007).  Moreover, as markets evolve, the
market share of competing software would change, which in
turn may affect attack distribution.  For example, would Linux
have a higher market share in the future and would this
change the nature of the attack distribution on Linux?  Would
Windows or MS-Office be made available in multiple ver-
sions with few or no overlapping vulnerabilities in order to
preserve the benefits of interoperability while also reducing
attack exposure?  These are interesting future research ques-
tions to explore.  Finally, our model deals with the effects of
attacks on availability, an important aspect of security cost
that is tied closely to a firm’s financial loss.  However, diver-
sification may also have an impact on confidentiality and
integrity of data.  When the same data is replicated in two
systems that share few common vulnerabilities, it is more
difficult for an attacker to attack both systems and, therefore,
it becomes easier to detect whether data has been manipulated
or not by comparing data residing in both systems.  On the
other hand, it may become more difficult and costly to protect
data from being stolen in a diverse environment because the
firm has to protect multiple systems with different vulner-
abilities.  This seems to suggest that diversification has a
negative impact on confidentiality while having a positive
impact on integrity of data.  However, further research is
needed to explore the real implications of diversification on
confidentiality and integrity of data.
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Appendix A

Proofs

Proof of Observation 1
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Since , increase in shared vulnerabilities increases correlation of failure.  QED.
∂ρ
∂c

> 0

Proof of Proposition 1

Loss distribution under diversity second order stochastically dominates homogeneity if the cumulative area under its cumulative distribution
function (CDF) is lower than under homogeneity (see Figure A1), that is,
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Figure A1.  Availability Loss:  Cumulative Distribution of Function (CDP)

Which implies that
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This takes into account both the software homogeneity scenarios (i.e., all nodes have software configuration 1 or all nodes have software
configuration 2).  ρ, as before, is the failure correlation for software (configuration) 1 and software (configuration) 2.  The aforementioned
condition states that when the two software (configurations) have comparable attack rates, software diversity second order stochastically
dominates software homogeneity.  QED.

Proof of Proposition 2

We can get the results by differentiating the lower bound and upper bound of Proposition 1 to c, π, and ρ. 

Derivation of E[Y] and E[Y2]

E[Y ] = EattackE[Y/attack]

An attack can be one of three types:

1.  Specific to vulnerability in software 1.
2.  Specific to vulnerability in software 2.
3.  Exploiting a vulnerability common to both software 1 and 2.

Therefore, the expected number of failures under diverse deployment is given by

E[Y ] = Prob(attack = 1) * E[Y/attack = 1] +Prob(attack = 2) * E[Y/attack = 2] +Prob(attack = common) * E[Y/attack = common]

Now, a is the rate of attacks on software 1, and m @ a is the rate of attacks on software 2, where m is related to relative market shares.  c @ a is
the rate of attacks which are common to both software configurations.  Then,

Prob(attack = 1only) =
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Prob(attack = common) =
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We know that E[Y2] = V[Y ] + E[Y]2, and V[Y] = Eattack[V [Y/attack]] + Vattack[E[Y/attack]], using the two we get E[Y2] = Eattack[V [Y/attack]]
+ Vattack[E[Y/attack]] + E[Y]2.  Where variance V[Y] for a beta–binomial distribution is given by .  Therefore,V Y N N[ ] ( ) ( / )= − − +π π ρ ρ1 1 1
E[Y2] can be expanded as
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