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EXPECTED UNCERTAIN UTILITY THEORY

BY FARUK GUL AND WOLFGANG PESENDORFER1

We introduce and analyze expected uncertain utility (EUU) theory. A prior and an in-
terval utility characterize an EUU decision maker. The decision maker transforms each
uncertain prospect into an interval-valued prospect that assigns an interval of prizes
to each state. She then ranks prospects according to their expected interval utilities.
We define uncertainty aversion for EUU, use the EUU model to address the Ellsberg
Paradox and other ambiguity evidence, and relate EUU theory to existing models.
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1. INTRODUCTION

WE CONSIDER AN AGENT who must choose between Savage acts that asso-
ciate a monetary prize to every state of nature. The agent has a prior μ on
a σ-algebra E of ideal events. Ideal events capture aspects of the uncertainty
that the agent can quantify without difficulty. For E -measurable acts (ideal
acts), the agent is an expected utility maximizer. Therefore, the utility of an
E -measurable act f is

W (f)=
∫
v(f )dμ(1)

for some von Neumann–Morgenstern (vNM) utility index v.
When confronted with a non-ideal act, f , the agent forms an ideal lower

bound [f ]1 and an ideal upper bound [f ]2. These bounds represent the range
of possible outcomes implied by uncertainty that cannot be quantified. The
utility of act f is

W (f)=
∫
u
([f ]1� [f ]2

)
dμ(2)

where u(x� y) is the utility of an unquantifiable uncertain prospect with prizes
between x and y . We refer to the utility function W as an expected uncertain
utility (EUU) and to the utility index u as an interval utility.

When f is ideal, the lower and upper bounds coincide and (2) reduces to the
expected utility formula (1) with utility index v such that v(x) = u(x�x). The
purpose of the extension to non-ideal acts is to accommodate well-documented
deviations from expected utility theory. EUU theory interprets these devia-
tions as instances in which the decision maker cannot quantify all aspects of
the relevant uncertainty.

1The paper was presented as the Fisher–Schultz Lecture at the 2009 Econometric Society Eu-
ropean Meetings in Barcelona. This research was supported by Grants from the National Science
Foundation. We are grateful to Adriano Basso, Jay Lu, Asen Kochov, Peter Wakker, and three
anonymous referees for their comments and suggestions.
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EUU theory is closely tied to Savage’s model (Savage (1954)) and, as a re-
sult, mirrors that model’s separation between uncertainty perception and uncer-
tainty attitude: the prior μ measures uncertainty perception, while the interval
utility u measures uncertainty attitude. Despite its closeness to subjective ex-
pected utility theory, EUU is flexible enough to accommodate Ellsberg-style
and Allais-style evidence. The former identifies behavior inconsistent with any
single subjective prior over the event space, while the latter deals with system-
atic violations of the independence axiom assuming preferences are consistent
with a subjective probability assessment.

In this paper, we provide a Savage-style representation theorem for EUU
theory and use it to address Ellsberg-style experiments. Section 2 introduces
the model, the axioms, and the representation theorem. Section 3 defines com-
parative measures of uncertainty aversion and the uncertainty of events, and
relates these measures to the parameters of the model. Just as Savage’s theo-
rem, our representation theorem requires a rich (continuum) state space. To
address experimental evidence and to relate our model to the literature, it is
convenient to restrict to acts that are measurable with respect to a fixed finite
partition of the state space. We introduce the discrete version of EUU the-
ory in Section 4, and provide a detailed discussion of the related literature in
Section 5. Section 6 uses discrete EUU and the comparative measures to ad-
dress Ellsberg-style evidence, and Section 7 shows how EUU accommodates
variations of Ellsberg experiments due to Machina (2009). In a companion pa-
per (Gul and Pesendorfer (2013)), we show how EUU can be used to address
Allais-style evidence and evidence showing that, ceteris paribus, decision mak-
ers prefer uncertain prospects that depend on familiar rather than unfamiliar
events.

2. MODEL AND AXIOMS

The interval X = [l�m], l < m, is the set of monetary prizes and Ω is the
state space. An act is a function f :Ω→X and F is the set of all acts. For any
property P , let {P} denote the set of all ω ∈Ω at which P holds. For example,
{f > g} = {ω | f (ω) > g(ω)}. For {P} =Ω, we simply write P ; that is, f ∈ [x� y]
means {ω | f (ω) ∈ [x� y]} =Ω. We identify x ∈X with the constant act f = x.
Consider the following six axioms for binary relations on F :

AXIOM 1: The binary relation � is complete and transitive.

Axiom 2 is a natural consequence of the fact that acts yield monetary prizes.2

AXIOM 2: If f > g, then f � g.

2Though natural, the assumption is not implied by the Savage axioms and cannot be satisfied
in the Savage model with a countable state space; see Wakker (1993).
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For any f�g ∈ F and A ⊂Ω, let fAg denote the act that agrees with f on
A and with g on the Ac , the complement of A; that is, fAg is the unique act
h such that A⊂ {h= f } and Ac ⊂ {h= g}. Ideal events are events E such that
Savage’s sure thing principle holds for E and Ec .

DEFINITION: An event E is ideal if [fEh � gEh and hEf � hEg] implies
[fEh′ � gEh′ and h′Ef � h′Eg] for all acts f�g�h, and h′.

An event A is null if fAh ∼ gAh for all f�g�h ∈ F . Let E be the set of
all ideal events and E�E′�Ei, etc. denote elements of E . Let E+ ⊂ E denote
the set of ideal events that are not null. Our main hypothesis is that the agent
uses elements of E+ to quantify the uncertainty of all events. More precisely, if
A contains exactly the same elements of E+ as B and Ac contains exactly the
same elements of E+ as Bc , then the agent is indifferent between identical bets
on A and B. Axiom 3, below, formalizes this hypothesis; the axiom is weaker
since it applies the hypothesis only to a subset of events, but our representation
implies that it holds for all events.

An event is diffuse if it and its complement contains no element of E+.

DEFINITION: An event D is diffuse if E ∩D 
= ∅ 
=E ∩Dc for every E ∈ E+.

Let D be the set of all diffuse events; let D�D′�Di, etc. denote elements of
D and note that they represent events whose likelihood cannot be bounded
by elements of E+. Axiom 3 requires that the decision maker is indifferent
between betting on E ∩D1 and E ∩D2 if E ∈ E and D1�D2 ∈ D. Notice that
E∩D1 andE∩D2 contain no element of E+, while (E∩D1)

c and (E∩D2)
c both

contain exactly those elements of E+ that are contained in Ec . Thus, Axiom 3,
below, is an implication of our main hypothesis.

AXIOM 3: yE ∩Dx∼ yE ∩D′x for all x� y�E�D, and D′.

One consequence of Axiom 3 is that it permits the partitioning of Ω into a
finite collection of sets D1� � � � �Dn such that y(Dj ∪Dk)x ∼ yDix for all i� j,
and k. Note that Savage’s theory allows for a similar possibility for infinite
collections of sets. Diffuse sets are limiting events that play a similar role in
EUU theory as arbitrarily unlikely events do in Savage’s theory. They allow us
to calibrate the uncertainty of events.

Axiom 4, below, is Savage’s comparative probability axiom (P4) applied to
ideal events.

AXIOM 4: If y > x and w> z, then yEx� yE′x implies wEz �wE′z.

Axiom 5 is Savage’s divisibility axiom for ideal events. It serves the same role
here as in Savage. Its statement below is a little simpler than Savage’s original
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statement because our setting has a best and a worst prize. Let Fo denote the
set of simple acts, that is, acts such that f (Ω) is finite. The simple act, f ∈ Fo,
is ideal if f−1(x) ∈ E for all x. Let F e denote the set of ideal simple acts.

AXIOM 5: If f�g ∈ F e and f � g, then there exists a partition E1� � � � �En of Ω
such that lEif �mEig for all i.

Axiom 6, below, is a strengthening of Savage’s dominance condition adapted
to our setting. We use it to extend the representation from simple acts to all
acts, to establish continuity of u, and to guarantee countable additivity of the
prior μ. For ideal acts f ∈ F e, Axiom 6(i) implies Arrow’s (1970) monotone
continuity axiom, the standard axiom for ensuring the countable additivity of
the probability measure in subjective expected utility theory.

AXIOM 6: Let g � fn � h for all n. Then, (i) fn ∈ F e converges pointwise to f
implies g � f � h. (ii) fn ∈F converges uniformly to f implies g� f � h.

Axiom 6(ii) is what would be required to get a continuous von Neumann–
Morgenstern utility index when proving Savage’s theorem in a setting with real-
valued prizes. Here, it serves a similar role; it ensures the continuity of the
interval utility.

Theorem 1, below, is our main result. It establishes the equivalence of the six
axioms to the existence of an EUU representation. The EUU representation
has two parameters, a prior μ and an interval utility u that assigns a utility to a
prize interval. A countably additive probability measure μ on some σ-algebra
Eμ is a prior if it is complete and non-atomic.3 Let

I = {[x� y] | l ≤ x≤ y ≤m}
be the set of all prize intervals. Each prize interval [x� y] can be identified by
its end points (x� y) ∈ R

2. Therefore, given any function u : I → R, we write
u(x� y) rather than the more cumbersome u([x� y]). Such a function is an inter-
val utility if it is continuous and u(x� y) > u(x′� y ′) whenever x > x′ and y > y ′.

Let Fμ be the set of all Eμ-measurable acts and let Fμ be the set of Eμ-
measurable functions f :Ω → I. We refer to elements of Fμ as interval acts.
For f ∈ F, let fi denote the ith coordinate of f so that f(ω) = [f1(ω)� f2(ω)],
f1(ω)≤ f2(ω) and fi ∈Fμ.

DEFINITION: The interval act f ∈ Fμ is the envelope of f ∈F if (i) f ∈ f and
(ii) f ∈ g and g ∈ Fμ imply μ{f ⊂ g} = 1.

3A prior is complete if A ⊂ E and μ(E) = 0 implies A ∈ Eμ. It is non-atomic if μ(A) > 0
implies 0<μ(B) < μ(A) for some B⊂A.
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By definition, f ’s envelope, if it exists, is unique up to sets of measure zero.4
Lemma 1, below, shows that every act has an envelope and that the mapping
from acts to envelopes is onto.5

LEMMA 1: Fix a priorμ. Then, every act f ∈F has an envelope and, conversely,
for any f ∈ Fμ, there is f ∈F such that f is f ’s envelope.

Henceforth, we let [f ] = ([f ]1� [f ]2) denote the envelope of f . A preference
� is an expected uncertain utility (EUU) if there exist a prior μ and an interval
utility u such that the function W defined as

W (f)=
∫
u[f ]dμ(3)

represents �. We write W = (μ�u) if W�u�μ satisfy equation (3) and let �u
μ

denote the EUU preference associated with (μ�u).

THEOREM 1: The binary relation � satisfies Axioms 1–6 if and only if there are
a prior μ and an interval utility u such that �=�u

μ.

Routine arguments ensure that the prior is unique and the interval utility is
unique up to a positive affine transformation for any �u

μ. The set of ideal events
E for �u

μ is the σ-algebra Eμ.6 Hence, Fμ is the set of ideal acts F e and, since
[f ]1 = [f ]2 = f for f ∈ Fμ, the restriction of � to ideal events is a subjective
expected utility preference.

In subjective expected utility theory, the prior measures the decision maker’s
uncertainty perception. With it, any act can be mapped to a lottery over prizes
such that the utility of the act is equal to the expected utility of the lottery.
EUU allows an analogous two-step evaluation of acts. With the prior, each act
can be mapped into a lottery over prize intervals such that the utility of the act
is equal to the expected utility of the interval lottery.

For any set Y , a probability on Y is a function q :Y → [0�1] such that
{y :q(y) > 0} is a finite set and

∑
Y q(y) = 1. An interval lottery is a probabil-

ity on I. Let Λ be the set of interval lotteries. For the prior μ and the simple
act f ∈Fo, let λfμ := μ◦[f ]−1; that is, λfμ(x� y)= μ{f = [x� y]} for all [x� y] ∈ I.

4In probability theory, the standard term for [f ]1 is maximal measurable minorant of f and [f ]2

is the minimal measurable majorant (van der Waart and Wellner (1996)). We use the more concise
term envelope for the pair [f ]1� [f ]2 for brevity.

5To establish that for every envelope there is an act with that envelope, we use the Banach–
Kuratowski theorem (Birkhoff (1967)) which uses the continuum hypothesis. The continuum hy-
pothesis is needed for the lemma to hold for any prior. However, in particular examples of priors,
such as the example below, the lemma can be verified directly.

6See Lemma B11 for a proof of this assertion.
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FIGURE 1.—Example.

Then, ∫
u[f ]dμ=

∑
I

u(x� y)λfμ(x� y)�

The following example illustrates the mapping from acts to envelopes and in-
terval lotteries.

EXAMPLE: Let Ω= [0�1] × [0�1] be the unit square and let E0 be the small-
est σ-algebra that contains all events of the form [a�b] × [0�1] for 0 ≤ a ≤
b ≤ 1. That is, E0 contains all full-height rectangles as illustrated by the set E
in the left panel of Figure 1. The set B depicted in the same figure is not an
element of E0.

Let μ0 be the unique measure on E0 that satisfies

μ0

([a�b] × [0�1]) = b− a
and let the agent’s prior, μ, be the completion of (E0�μ0).7 For example, the
act f̂ = xEy is ideal and has utility W (f̂ )= μ(E)u(x�x)+ (1 −μ(E))u(y� y).

Next, consider the (not ideal) act f = xAy , where x < y and A is the set
depicted in the right panel of Figure 1. The act f yields prize x on the light
shaded region and y on the dark shaded region. The envelope of f is [f ]1 =
xE1 ∪ E2y� [f ]2 = xE1y , where the sets E1�E2, and E3 are as depicted in the
right panel of Figure 1. Therefore, the utility of f is W (f) = u(x�x)μ(E1)+
u(x� y)μ(E2)+u(y� y)μ(E3). The interval lottery λfμ assigns probability μ(E1)
to (x�x), μ(E2) to (x� y), and μ(E3) to (y� y) and, thus, the utility of f is the
expected utility of the interval lottery λfμ:

W (f)= u(x�x)λfμ(x�x)+ u(x� y)λfμ(x� y)+ u(y� y)λfμ(y� y)�
Our main hypothesis implies that the agent is indifferent between all compa-
rable bets on diffuse events. Consider the following four events R�B�G�Y in
Figure 2.

7Therefore, if B is a (Lebesgue-)measure zero subset of [0�1], then any subset of B× [0�1] is
in Eμ.
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FIGURE 2.—Ideal and diffuse sets.

The event R is ideal (R ∈ Eμ) because it corresponds to a full-height rect-
angle, whereas the events B�G, and Y are diffuse subsets of the complement
of R. Axiom 3 then implies that the agent is indifferent between betting on
B�G, or Y and, moreover, is also indifferent between betting on B∪Y and Y .
Such failures of strict monotonicity also occur in other models of ambiguity.
For example, consider an α-maxmin expected utility maximizer8 who confronts
an Ellsberg-style urn which is known to have one red ball and three balls that
are blue, green, or yellow. Assume the agent’s set of priors contains all prob-
abilities that are consistent with a 1/4-probability of red; in particular, the set
contains priors that assign probability zero to any pair of non-red colors. In
that case, a bet on B yields the same utility as a comparable bet on B ∪Y .

The α-maxmin model offers a simple fix to avoid this failure of strict mono-
tonicity: consider only those sets of probabilities that assign at least β ∈ (0�1/4]
to each event B�G�Y . Expected uncertain utility theory offers an analogous
fix: consider only priors such that each event B�G�Y contains an ideal event
that has probability β.9 With this restriction, a bet on B∪Y is strictly preferred
to an equivalent bet on Y . More generally, for any fixed finite partition of the
state space, we can choose a prior such that the betting preference is strictly
monotone. The fixed finite partition represents a setting with a discrete state
space that researchers typically use when relating the theory to evidence.10 Of
course, for any fixed prior (on the infinite state space Ω), there are nested dif-
fuse sets. Therefore, for any fixed prior, there will exist some finite partition
that yields a failure of strict monotonicity.

8See Section 4 for a definition of α-maxmin expected utility.
9To construct this new prior, we add ideal events that are not full-height rectangles.
10Theorem 4, below, provides a representation for the discrete model. Section 5 shows that

discrete EUU has enough flexibility to be consistent with all common variants of the Ellsberg
paradox. Nonetheless, EUU betting preferences are no more permissive than the betting pref-
erences of other ambiguity models: for the case of two prizes, Theorem 5 implies that discrete
EUU is a special case of α-maxmin utility.
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3. ATTITUDE AND PERCEPTION

In expected utility theory, the prior describes an agent’s risk perception; that
is, it determines how each act gets mapped to a lottery. The prior plays the
same role in EUU; it determines how each act is mapped to an interval lottery.
The mapping from acts to interval lotteries is onto just like the mapping from
acts to lotteries in Savage’s model. That is, given any prior, any interval lottery
can be generated by some simple act.

LEMMA 2: For any λ ∈Λ and prior μ, there is f ∈Fo such that λfμ = λ.

Lemma 2 implies that, irrespective of the prior, each EUU decision maker
confronts the same range of prospects. For any pair of priors μ and μ̄ and any
act f ∈ Fo, we can find f̄ ∈ Fo such that λfμ = λ

f̄
μ̄. Thus, the agent with prior

μ̄ perceives the same risk and uncertainty from act f̄ as the agent with prior
μ does from act f . This enables EUU to compare the attitudes of agents with
different priors. The EUU preferences �u

μ and �ū
μ̄ have the same attitude if

λ
f̄
μ̄ = λfμ�λḡμ̄ = λgμ implies

f �u
μ g if and only if f̄ �ū

μ̄ ḡ�

Lemma 3, below, shows how the EUU model achieves separation between
uncertainty perception and attitude. Consider two EUU agents with identi-
cal priors. How these agents rank acts depends only on their uncertainty atti-
tudes (i.e., interval utilities). When the two agents have different priors μ� μ̄,
we can still isolate the uncertainty attitude by controlling for the uncertainty
they perceive (λμ = λμ̄). Lemma 3 establishes that two agents have the same
uncertainty attitude if and only if one’s interval utility is a positive affine trans-
formation of the other’s interval utility.

LEMMA 3: The preference �u
μ has the same attitude as �ū

μ̄ if and only if ū =
β1u+β2 for some β1�β2 ∈ R with β1 > 0.

It follows from Lemmas 2 and 3 that each interval utility u induces a prefer-
ence relation �u on Λ. That is, λ�u λ′ if and only if, for all μ, f�g, λfμ = λ and
λfμ = λ′ imply f �u

μ g. Henceforth, we will call this preference the attitude �u.

DEFINITION: The attitude �u is more cautious than �ū if x �ū λ implies
x�u λ.

For the interval utility u, let vu(x) = u(x�x). Hence, vu :X → R is a vNM
utility index on I. For x� y ∈X such that x < y , let σxyu be the unique σ ∈ [0�1]
that satisfies

u(x� y)= vu
(
σx+ (1 − σ)y)�
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The quantity σxyu x + (1 − σxyu )y is the certainty equivalent of the uncertain
interval [x� y]; σxyu is well defined because vu is strictly increasing, continuous,
and satisfies 0 ≤ σxyu ≤ 1.

THEOREM 2: The attitude �u is more cautious than �ū if and only if vu ◦v−1
ū is

concave and σxyu ≥ σxyū for all x < y .

Suppose �u and �ū are equally cautious; that is, each is (weakly) more cau-
tious than the other. Then, Theorem 2 ensures that both vu ◦v−1

ū and its inverse
are concave and therefore vu ◦v−1

ū is affine. Also, σxyu = σ
xy
ū for all x < y and

therefore �u=�ū. Hence, similarly to expected utility theory, two individuals
that have the same level of cautiousness (risk aversion in expected utility the-
ory) have the same ranking of interval lotteries (regular lotteries in expected
utility theory).

The function vu describes the interval utility for degenerate intervals [x�x].
As Theorem 2 shows, the more cautious preference has a more concave vu.
This part of the comparative measure corresponds to the standard comparative
measure of risk aversion for expected utility maximizers. For non-degenerate
intervals, the more cautious interval utility has a lower certainty equivalent
than the less cautious interval utility. This is the novel part that generalizes risk
aversion to include uncertainty aversion. Next, we separate uncertainty aversion
from risk aversion. To do so, we take advantage of an insight from Epstein
(1999) and use ideal acts (and diffuse acts) as benchmarks.11

Recall that F e are the ideal acts. LetΛe = {λ ∈Λ | λfμ for f ∈F e}. Hence,Λe

is the set of ideal interval lotteries, that is, the set of all interval lotteries that
can be generated by ideal acts. By using ideal interval lotteries as benchmarks,
we can identify the decision maker’s uncertainty attitude.

DEFINITION: The attitude �u is more uncertainty averse than �ū if λ �ū λ′

implies λ�u λ′ for all λ ∈Λe.

Our definition differs from Epstein’s (1999) since it accommodates differ-
ences in priors by comparing acts that yield the same interval lottery. The fol-
lowing corollary to Theorem 2 characterizes comparative uncertainty aversion.
In particular, it establishes that one attitude is more uncertainty averse than
another if and only if it is more cautious than the other and the two have the
same ranking of ideal acts.

11Epstein (1999) used as a benchmark a subset of acts for which the agent is probabilistically
sophisticated but not necessarily an expected utility maximizer. By contrast, our definition uses
ideal acts as a benchmark. Ghirardato and Marinacci (2002) used constant acts as benchmarks
but restricted to bi-separable preferences and required that the preferences being compared are
cardinally symmetric. Our preferences are not bi-separable; as a result, their definition of cardinal
symmetry cannot be applied to our model.
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COROLLARY 1: The attitude �u is more uncertainty averse than �ū if and only
if �u is more cautious than �ū and vu is a positive affine transformation of vū.

Next, we use our comparative measure of uncertainty aversion to derive a
comparative measure for the uncertainty of events. First, fix a prior μ and con-
sider two events A�B⊂Ω. If, for every interval utility u, the EUU preference
�u
μ prefers betting on B to betting on A, then B is a better bet; that is, B dom-

inates A.

DEFINITION: Event B dominates A if x < y implies yBx �u
μ yAx for every

interval utility u; A and B are comparable if neither dominates the other.

Between any two ideal events, the one with the higher probability will domi-
nate the other and hence two different EUU decision makers always rank bets
on ideal events the same way. With non-ideal events, it is possible for some
EUU decision makers to prefer betting on A while others with the same per-
ception of uncertainty prefer betting on B. This difference in behavior reflects
the difference in the decision makers’ uncertainty attitude and the differing
levels of uncertainty associated with these events. If more uncertainty averse
u’s prefer B toA while less uncertainty averse ones have the opposite ranking,
then we say A is more uncertain than B.

DEFINITION: Event A is more uncertain than B if A and B are comparable
and if x < y , �u1 more uncertainty averse than �u2 , and yBx �u2

μ yAx imply
yBx�u1

μ yAx.

For any A⊂Ω, the inner probability of the event A is defined as

μ∗(A)= sup
E∈Eμ
E⊂A

μ(E)�

For ideal events μ∗(E) + μ∗(Ec) = 1, while for general events μ∗(A) +
μ∗(Ac)≤ 1.

THEOREM 3: Event B dominates A if and only if μ∗(A) ≤ μ∗(B) and
μ∗(Ac) ≥ μ∗(Bc); A is more uncertain than B if and only if μ∗(A) < μ∗(B)
and μ∗(Ac) < μ∗(Bc).

The difference 1 − (μ∗(A) + μ∗(Ac)) represents the probability mass the
agent cannot distribute to A or to Ac . Theorem 3 shows that when A is more
uncertain than B, this difference is greater for A than for B.
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4. EUU IN A DISCRETE SETTING

To prove Theorem 1, above, we require an infinite state space. However, in
applications and when comparing the EUU model to existing alternatives, it is
convenient to use a discrete state space. Let S = {1� � � � � n} be the finite state
space, let P be the set of non-empty subsets of S, and let a�a′� b�b′, etc., denote
elements of P . We interpret S as a partition of the original state space Ω. The
onto function ρ :Ω→ S describes this partition so that state s in the discrete
model corresponds to the event ρ−1(s)⊂Ω in the original model. With slight
abuse of terminology, we refer to ρ as a partition of S and define ρ−1(a) :=⋃

s∈a ρ
−1(s). Let φ :S→ [l�m] be a discrete act and let Φ be the set of discrete

acts. The act φ ∈ Φ in the discrete model corresponds to the act f = φ◦ρ in
the original model.

As in the original model, the utility function for the discrete state space
has two parameters, the interval utility u and a probability that reflects the
agent’s prior in the discrete model. To see how the discrete prior is derived
from the original prior, consider the case with two states S = {1�2}: the event
A= ρ−1(1)⊂Ω corresponds to state 1 and Ac corresponds to state 2. The act
φ(1) = x�φ(2) = y in the discrete model corresponds to xAy in the original
model. As illustrated in the right panel of Figure 1, the expected uncertain
utility depends on the probability of three events; the event E1 is the maximal
ideal subset of A; the event E3 is the maximal ideal subset of Ac; and the ideal
set E2 represents the residual. The values μ(E1)�μ(E2), and μ(E3) define a
probability π on the non-empty subsets of S = {1�2}, where

π{1} = μ(E1)�

π{2} = μ(E3)�

π{1�2} = μ(E2)�

An agent with prior μ cannot apportion the probability μ(E2) to event A or
event Ac . The probability π{1�2} in the discrete model corresponds to μ(E2)
of the original model, that is, the part of the probability of the event {1�2}
that cannot be apportioned to state 1 or to state 2. For x < y , the utility of the
discrete act φ is

U(φ)= π{1}u(x�x)+π{1�2}u(x� y)+π{2}u(y� y)�
For the general case with n ≥ 2, let P be the set of all non-empty subsets of
S and let Π be the set of all probabilities on P . A preference � (on Φ) is a
discrete EUU if there are an interval utility u and a probability π ∈ Π such
that

U(φ)=
∑
a∈P

u
(

min
s∈a
φ(s)�max

s∈a
φ(s)

)
π(a)(4)
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represents �. Henceforth, write U = (u�π) if U�π�u satisfy equation (4), and
we let �u

π denote the discrete EUU that this U represents.

THEOREM 4: FixW = (u�μ), S and, for any π ∈Π, letUπ = (u�π). Then, for
every partition ρ, there is a unique π such that W (φ◦ρ)= Uπ(φ) for all φ ∈Φ.
Conversely, for every π, there is a partition ρ such that W (φ◦ρ)=Uπ(φ) for all
φ ∈Φ.

Theorem 4 shows that the prior μ in the original model does not constrain
the prior π in the discrete model. For any π ∈ Π, there is a partition that
generates this prior. One special case is the discrete prior corresponding to a
partition of the original state space into ideal subsets. In that case, π(a) = 0
for all non-singleton a and

U(φ)=
∑
s∈S
vu

(
φ(s)

)
π

({s})�
Thus, U = (u�π) is an expected utility function. If π(a) > 0 for some non-
singleton a, the quantity π(a) reflects the decision maker’s inability to reduce
the uncertainty of the event a to uncertainty about its components. Given any
probability π on P , define the capacity12 π∗ such that π∗(∅) = 0 and, for all
a⊂ S,

π∗(a)=
∑

b∈P�b⊂a
π(b)�

The prior π corresponding to partition ρ satisfies

π∗(a)= μ∗
(
ρ−1(a)

)
for all a ∈ P . The co-capacity π∗ of π∗ is defined as π∗(a)= 1 −π∗(ac) for all
a⊂ S. Note that

π∗(a)=
∑

b∈P�b∩a 
=∅
π(b)= 1 −μ∗

(
ρ−1

(
ac

))
�

The functions π�π∗�π∗ are the central concepts of Dempster–Shafer theory
(Dempster (1967), Shafer (1976)). The probability π is called a basic belief as-
signment; the capacity π∗ is a belief function and interpreted as a lower bound
on the probability of event a; π∗ is the plausibility function and interpreted
as an upper bound on the probability of the event a. Dempster (1967) intro-
duced these concepts to generalize Bayesian inference by adding a degree of
confidence to probabilistic statements. In Dempster’s interpretation, the basic

12A function κ is a capacity if (i) κ(∅)= 0�κ(S)= 1 and (ii) a⊂ b implies κ(a)≤ κ(b).
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belief assignment is a probability over a related (auxiliary) state space which he
identified with P . Then, π∗(a)= ∑

b⊂a π(a) is the probability of the set of aux-
iliary states that imply a (and hence, a lower bound on the “true” probability
of a); π∗(a)= ∑

b∩a 
=∅π(a) is the probability of the set of auxiliary states that
are consistent with a (and hence, an upper bound on the “true” probability
of a). Dempster (1967) and Shafer (1976) were concerned with the relation-
ship between basic belief assignments and belief (and possibility) functions13

and how to update belief functions in light of new information; by contrast,
our results relate belief functions to preferences over acts. Thus, our model
provides a subjective foundation for the Dempster–Shafer theory of evidence.

Let ΔS be the set of all probabilities on S and let Δπ ⊂ ΔS be the core of the
capacity π∗.14 That is,

Δπ =
{
p ∈ ΔS

∣∣∣ π∗(a)≤
∑
s∈a
p(s) for all a⊂ S

}
�

Theorem 3 describes how the discrete prior, π, measures the uncertainty
of events. Translated to the discrete setting, Theorem 3 implies the following
corollary:

COROLLARY 2: Event a is more uncertain than event b if and only if π∗(b) >
π∗(a) and π∗(a) > π∗(b).

Thus, in the language of Dempster–Shafer theory, event a is more uncertain
than event b if it has a greater gap between belief and plausibility. For example,
assume there are three states, S = {1�2�3}, and π{1} = 1/3�π{2} = π{3} = α ∈
[0�1/3), and π{2�3} = 2/3. State 1 is ideal since π∗{1} = 1/3 = π∗{1} and, since
π∗({2})= α�π∗{2} = 2/3 − α, state 2 is more uncertain than state 1.

Our next result relates EUU to Choquet expected utility (Schmeidler
(1989)) and to α-maxmin expected utility. A binary relation � on Φ is a Cho-
quet expected utility (CEU) preference if there exist a capacity κ and a contin-
uous, strictly increasing function v :X → R such that the function V :Φ→ R

defined by V (φ)= ∫
v(φ)dκ represents �, where the integral above denotes

the Choquet integral. We write �κv for a CEU preference with parameters κ
and v and V = (v�κ) if V (φ)= ∫

v(φ)dκ for all φ.
For α ∈ [0�1], the binary relation � on Φ is an α-maxmin expected utility

(α-MEU) preference if there exist a compact set of probabilities Δ⊂ ΔS and a
continuous, strictly increasing v :X → R such that the function V defined by

V (φ)= αmin
p∈Δ

∑
s∈S
v
(
φ(s)

)
p(s)+ (1 − α)max

p∈Δ

∑
s∈S
v
(
φ(s)

)
p(s)

13Dempster (1967) showed that each one of the three functions π�π∗�π∗ implies a unique
value for the other two.

14See Schmeidler (1989) for a definition of the core of a capacity. Schmeidler showed that
every convex capacity has a non-empty core. Since π∗ is convex, it follows that Δπ is non-empty.
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represents �. We let �αΔv denote the α-MEU with parameters α�Δ�v and write
V = (v�Δ�α) if the equation above holds for all φ.

Theorem 5 gives a condition on the interval utility so that the EUU prefer-
ence is in the intersection of CEU and α-MEU preferences.

THEOREM 5: Let v :X → R be a continuous, strictly increasing function, α ∈
(0�1) and u(x� y)= αv(x)+ (1 − α)v(y) for all (x� y) ∈ I. Then,

�κv=�αΔv=�u
π

for κ= απ∗ + (1 − α)π∗ and Δ= Δπ .

Theorem 5 shows that when u is separable with the same utility index applied
to the upper and lower bounds of the interval, EUU coincides with CEU and
α-MEU. When α = 1, the interval utility depends only on the lower bound
and hence the discrete EUU preference coincides with the MEU preference
(Gilboa and Schmeidler (1989)) with utility index vu and the set of probabilities
Δπ . Theorems 4 and 5 can be combined to establish conditions under which a
CEU or an α-MEU is a discrete EUU: If �κv is a CEU with a capacity that can
be expressed as a convex combination of a belief function and its plausibility
function, then �κv is a discrete EUU. Similarly, if �αΔv is an α-MEU with a set
of probabilities that form the core of a belief function, then �αΔv is a discrete
EUU.

We can apply our measure of uncertainty aversion to the preferences char-
acterized in Theorem 5. For u(x� y) = αv(x)+ (1 − α)v(y), the parameter α
measures uncertainty aversion. Since

v
(
σxyu x+ (

1 − σxyu
)
y
) = αv(x)+ (1 − α)v(y)�

it follows that σxy increases as α increases. Therefore, (α�v) is more uncer-
tainty averse than (ᾱ� v) if α≥ ᾱ.

5. UNCERTAINTY AND THE ELLSBERG PARADOX

In this section, we relate EUU theory to observed behavior in various ver-
sions of the Ellsberg experiment, Ellsberg (1961). Our goal is not only to show
that EUU theory is flexible enough to accommodate the Ellsberg paradox
but also to take advantage of the separation between uncertainty perception
and uncertainty attitude to relate a decision maker’s propensity for Ellsberg-
paradox behavior to his uncertainty aversion parameter.

The Ellsberg experiment has two possible prizes y = 1 and x= 0. Given any
event b⊂ S, a bet is an act that delivers 1 if b occurs and 0 otherwise. Hence,
we can identify each act with an event b. The experimenter elicits the decision
makers’ preferences over some collection of bets: B ⊂ 2S . Let U = (u�π) be
a discrete EUU utility. In the Ellsberg experiment, the interval utility affects
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TABLE I

SINGLE-URN EXPERIMENT

Config. 1 Config. 2 Config. 3 Config. 4

Ball 1 r r r r
Ball 2 w w g g
Ball 3 w g w g

behavior only through the values u(0�0)�u(1�1), and u(0�1). We normalize
u(1�1) = 1�u(0�0) = 0, and u(0�1) = z. Recall that z measures the agent’s
uncertainty aversion: lower values of z correspond to greater uncertainty aver-
sion. Since the preference depends only on π and z, we write �z

π rather than
�u
π .
The subjects are told that one or more urns have each been filled with a

fixed number of balls of various colors. An outcome is a configuration (one
color for each ball in each urn) and a draw from each urn. Let S = {sit} where
t = 1� � � � �k and i= 1� � � � �m; the state sit ∈ S represents an outcome in which
the balls were drawn from urns filled according to the tth configuration. Let
n=mk be the number of states.

For example, in the single-urn experiment, one ball is drawn from an urn that
contains three balls. It is known that exactly one ball is red and the remaining
two balls are either white or green. Let S = {sit} for i = 1�2�3, t = 1�2�3�4.
Suppose the three balls are numbered 1�2�3 and ball 1 is always red. Each
column, t, depicts one possible color configuration and each row corresponds
to a particular ball, 1�2, or 3 being drawn. Table I describes the map from states
to color draws.

In the two-urn experiment, urn I contains one red ball (ball 1) and one white
ball (ball 2); urn II contains two balls that are red or white. One ball is drawn
from each urn. Table II depicts the two-urn experiment. A column of Table II
represents a color choice for balls 1 and 2 in urn II. For example, in column 1,
both balls are white; in column 2, ball 1 is red and ball 2 is white, etc. A row
represents a pair of draws (balls 1 or 2), one from each urn.

TABLE II

TWO-URN EXPERIMENT

Config. 1 Config. 2 Config. 3 Config. 4

Ball 1 from I, ball 1 from II rw rr rw rr
Ball 1 from I, ball 2 from II rw rw rr rr
Ball 2 from I, ball 1 from II ww wr ww wr
Ball 2 from I, ball 2 from II ww ww wr wr
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Let B be all combinations of color draws in S. For example, in the single-
urn experiment, B is the algebra generated by the partition {r�w�g}, while
in the two-urn experiment, B is the algebra generated by the partition
{rr� rw�wr�ww}. We say that two events are (experimentally) comparable if they
contain the same number of states. For example, the single-color events r�w,
and g are all comparable in the single-urn experiment because each contains
four states.

The defining feature of an Ellsberg experiment is that, for some events a ∈ B,
the chance of winning at a in each configuration of the urn is fixed. For exam-
ple, ex post (i.e., upon inspecting the contents of the urn), a= g ∪ w has a 2/3
chance of winning in every configuration in the single-urn experiment. We call
such events experimentally unambiguous. In contrast, a bet on b = r ∪ g has
a 2/3 chance of winning in two configurations, a 1/3 chance in one configura-
tion, and is a sure winner in the final configuration. Hence, b is experimentally
ambiguous in the single-urn experiment. Let |a| denote the cardinality of the
set a and let B be the algebra of subsets of S corresponding to all combina-
tions of color draws. For any event a, let at = {s ∈ a | s = sit for some i} be the
outcomes in a associated with the tth possible configuration.

An event a ∈ B is experimentally unambiguous if mint |at | = maxt |at |; other-
wise, it is experimentally ambiguous. Let A be the collection of all experimen-
tally unambiguous events in B. It is easy to see that complements of exper-
imentally unambiguous events are experimentally unambiguous and disjoint
unions of experimentally unambiguous events are experimentally unambigu-
ous. Hence, we have the following lemma:

LEMMA 4: The class A of experimentally unambiguous events is a λ-system;
that is, it contains S and is closed under complements and disjoint unions.

Intersections of experimentally unambiguous events need not be experimen-
tally unambiguous. Zhang’s four-color urn describes such a situation: one ball is
drawn from an urn with two balls; balls are red, white, green, or orange. There
is exactly one ball in each of the following two categories: (1) red or white and
(2) red or green. It follows that there is also one ball in each of the following
two categories: (3) orange or green and (4) orange or white. Table III describes
Zhang’s experiment.

TABLE III

ZHANG’S FOUR-COLOR URN

Config. 1 Config. 2 Config. 3 Config. 4

Ball 1 r o w g
Ball 2 o r g w
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All single-color events have two states and are experimentally ambiguous.
Of the six two-color events, r ∪ o and w ∪ g are experimentally ambiguous.
The remaining four are experimentally unambiguous. Thus, r ∪ w and r ∪ g are
experimentally unambiguous but r is not.

Given B, we say that the experimentally unambiguous events A are a finite
source for the preference � on Φ if

|a| ≥ |b|� a�b ∈ A implies a� b�
Thus, A is a finite source means that the agent is probabilistically sophisticated
(in the sense of Machina and Schmeidler (1992)) on the class of experimentally
unambiguous events and the probability measure η : A → [0�1] such that

η(a)= |a|
n

represents his betting preference. Our definition of a source mirrors Ep-
stein and Zhang’s (2001) definition of unambiguous events. Like Epstein and
Zhang, we require that the agent be probabilistically sophisticated over an ap-
propriate λ-system of events.

The collection B is an Ellsberg experiment if there exist a ∈ A and b ∈ B \ A
such that |a| = |b|. Given any Ellsberg experiment B and preference � on Φ,
(B��) is an Ellsberg Paradox if A is a source for � and if

|a| = |b|� a ∈ A� b /∈ A implies a� b�
Thus, (B��) is an Ellsberg paradox means that probabilistic sophistication fails
when the agent compares experimentally ambiguous and unambiguous events.

Theorem 6, below, shows that, for any Ellsberg experiment, there is an
uncertainty perception π that renders each experimentally ambiguous event
more π-uncertain than every comparable experimentally unambiguous event.
Moreover, the experiment yields a paradox for any decision maker with that
perception and greater uncertainty aversion than a benchmark.

THEOREM 6: For any Ellsberg experiment, B, there are π and z∗ > 0 such that
(i) A is a discrete source for �z

π for all z;
(ii) b is more uncertain than a whenever a ∈ A� b ∈ B \ A, and |a| = |b|;
(iii) (B��z

π) is an Ellsberg paradox for all z < z∗.

For the discrete setting analyzed in this section, Theorem 6 shows that EUU
theory can address Ellsberg-style evidence, including versions of the Ellsberg
experiment that require that the unambiguous events do not form a σ-algebra.
Specifically, Theorem 6 implies that there is a discrete prior for the Zhang urn
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such that experimentally unambiguous events are a source with each of its ele-
ments less uncertain than comparable experimentally unambiguous events.15

Theorem 1 shows that the ideal events form a σ-algebra and, therefore, the
experimentally unambiguous events in Zhang’s experiment cannot be ideal.
However, as Theorem 6 shows, probabilistic sophistication is not confined to
the ideal events; the prior can be chosen so that the agent is probabilistically
sophisticated over the experimentally unambiguous events even if those events
are not closed under intersection. Put differently, Theorem 6 shows that the
existence of a σ-algebra of ideal events presents no obstacle to addressing
Ellsberg-style evidence.

6. MACHINA REVERSALS

The Ellsberg experiments analyzed in the previous section have only two
prizes. In that case, a single parameter characterizes the interval utility and,
as a result, each EUU is also a Choquet expected utility and an α-maxmin
expected utility.16 Recently, Machina (2009) examined variations of Ellsberg
experiments with more than two prizes and showed that Choquet expected
utility theory (and related models) cannot accommodate behavior that appears
plausible and even natural. In the context of EUU theory, Machina’s conjec-
tured behavior is synonymous with the nonseparability of the interval utility u.
To demonstrate this, we describe Machina’s experiment below and show that
EUU can accommodate the conjectured behavior if and only if the interval
utility is nonseparable.

Assume a ball is drawn from an urn known to have 20 balls; 10 balls
are marked 1 or 2 and 10 are marked 3 or 4. Let S = {1�2�3�4} be the
state space and, hence, each discrete act φ ∈ Φ corresponds to a vector
(φ(1)�φ(2)�φ(3)�φ(4)) ∈X4. Machina (2009) observed that if � is any Cho-
quet expected utility such that

(x1�x2�x3�x4)∼ (x2�x1�x3�x4)∼ (x2�x1�x4�x3)∼ (x4�x3�x2�x1)(5)

for all x1�x2�x3�x4 ∈ X , then we must have (x1�x2�x3�x4) ∼ (x1�x4�x3�x2)
whenever x1 ≥ x3 ≥ x2 ≥ x4. In particular, (20�10�10�0)∼ (20�0�10�10). He
noted that this indifference may be an undesirable restriction for a flexible
model. Call it an M-reversal if a preference, � on Φ, is not indifferent between
(x1�x2�x3�x4) and (x1�x4�x3�x2) for some x1 ≥ x3 ≥ x2 ≥ x4�xi ∈ X despite
satisfying (5).

15One example of such a prior is the following: there is α≥ 0�β > 0 such that π(a)= α for all
single-color events; π(a)= α+β for all experimentally unambiguous two-color events; π(a)= 0
for all other events.

16Let 0 and 1 be the two prizes. Normalize u(0�0)= 0 and u(1�1)= 1; choose the utility index
v such that v(0)= 0� v(1)= 1; set α= u(0�1) and apply Theorem 5.
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Let Πm be a collection of probabilities on the set of non-empty subsets of S
that satisfy the following conditions: π{1�2} = π{3�4}> 0 and π(a)= 0 if a is
any other two-state event; π(a)= π(b) if a and b are both single-state events
or three-state events. These conditions imply that any EUU with discrete prior
inΠm satisfies (5) and that the events {1�2} and {3�4} are less π-uncertain than
other two-state events. The interval utility u is separable if there are v1� v2 :X →
R such that u(x� y)= v1(x)+ v2(y) for all (x� y) ∈ I.

THEOREM 7: If π ∈Πm, then �u
π has no M-reversals if and only if u is separa-

ble.

Theorem 7 shows that Machina reversals occur if the interval utility is not
separable. Experimental evidence reported in L’Haridon and Placido (2010)
shows that 70% of subjects exhibit M-reversals, and of those subjects, roughly
2/3 prefer “packaging” the two extreme outcomes together. That is,

(20�0�10�10)� (20�10�10�0)�

This pattern of preference is implied by an interval utility that satisfies

u(x4�x1)+ u(x3�x2) > u(x1�x2)+ u(x3�x4)

for x1 ≥ x3 ≥ x2 ≥ x4. EUU is not the only theory that can accommo-
date Machina reversals. Baillon, L’Haridon, and Placido (2011) observed that
Siniscalchi’s (2009) vector-valued expected utility model permits them, while
α-maxmin expected utility and Klibanoff, Marinacci, and Mukerji’s (2005)
smooth model of uncertainty rule them out.

7. RELATED LITERATURE

We can organize the literature on uncertainty and uncertainty aversion by
grouping models according to the extent to which uncertainty/ambiguity is built
into the choice objects. At one extreme, there are papers such as Gilboa (1987),
Casadesus-Masanell, Klibanoff, and Ozdenoren (2000), Epstein and Zhang
(2001), the current paper, and a number of others that study preferences over
Savage acts over an unstructured state space. At the other extreme, there are
papers that introduce novel choice objects designed to incorporate uncertainty
that cannot be reduced to risk. The latter models are silent on how “real-life”
prospects are reduced to these choice objects; that is, they do not describe how
Savage acts can be mapped to the investigated choice objects. For example,
Olszewski (2007) and Ahn (2008) considered sets of lotteries, and interpreted
sets with a single lottery as situations in which the decision maker can reduce
all uncertainty to risk, while sets with multiple lotteries depict Knightian un-
certainty.



20 F. GUL AND W. PESENDORFER

In this latter category is Jaffray (1989), who studied preferences over belief
functions over prizes.17 A belief function that assigns probability 0 to both sin-
gleton sets {x}� {y} but assigns probability 1 to the set {x� y} depicts a situation
in which the decision maker knows that he will end up with either x or y but
views any remaining uncertainty as irreducible to risk. To see the relationship
between Jaffray’s model and EUU theory, consider a discrete EUU �u

π . We
can associate a capacity κ over the set of all non-empty subsets of X with each
act φ in a natural way by letting

κ(Y)=
∑

{a|φ(a)⊂Y }
π(a)�

It is easy to verify that the discrete EUU �u
π is indifferent between two acts

that yield the same capacity κ as defined above. Moreover, it can be shown
that this induced preference will satisfy Jaffray’s assumptions. Hence, EUU
theory and Jaffray’s model stand roughly in the same relationship as Savage’s
theory and von Neumann–Morgenstern theory: one takes as given lotteries
(probability distribution in vNM theory, capacities in the Jaffray model) as the
choice objects, the other starts with acts, shows that each act can be identified
with a lottery in a natural way, and ensures that each preference (EU or EUU)
over acts induces a preference over lotteries (EU or Jaffray).

In between these two classes of models, there are those that partially build-
in a distinction between uncertainty and risk. Segal (1990), Klibanoff, Mari-
nacci, and Mukerji (2005), Nau (2006), and Ergin and Gul (2009) achieved
the desired effect by structuring the state space. In the first two papers, uncer-
tainty resolves in two stages; the first stage represents ambiguity, the second
stage risk. The remaining two papers assume that the state space has a product
structure and identify one dimension with ambiguity and the other with risk.

The extensive literature on ambiguity models in the Anscombe–Aumann
(1963) framework also falls into this intermediate category. This literature in-
cludes Schmeidler (1989), who introduced Choquet expected utility, Gilboa
and Schmeidler (1989), who introduced maxmin expected utility, the gen-
eralizations of maxmin expected utility, such as α-maxmin expected utility
preferences (see Ghirardato and Marinacci (2001)), variational preferences
of Maccheroni, Marinacci, and Rustichini (2006), the general uncertainty
averse preferences of Cerreia-Vioglio, Maccheroni, Marinacci, and Montruc-
chio (2011), as well as Zhang’s (2002) model of Choquet expected utility with
inner probabilities, Lehrer’s (2007) model of partially specified probabilities,
and Siniscalchi’s (2009) vector expected utility theory.

Theorem 5, above, relates EUU to Choquet expected utility and to α-
maxmin expected utility. EUU theory is also related to Zhang (2002) and
Lehrer (2007). Zhang (2002) studied preferences in the Savage setting, while

17As defined in the previous section, a belief function is a type of capacity.
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Lehrer (2007) considered the Anscombe–Aumann framework with a finite
state space. Ignoring the difference in the sets of prizes, in the state spaces,
and in the underlying axioms, we can state the relationship between these two
models and EUU theory as follows: each Lehrer representation can be identi-
fied with a Zhang representation (and vice versa) by identifying every partially
specified probability with its inner probability extension to the set of all subsets
of the state space. Then, it can be verified that every Lehrer/Zhang represen-
tation is equivalent to an EUU representation for some interval utility u such
that u(x� y)= vu(x) for all x� y . Hence, Lehrer/Zhang preferences correspond
to the subclass of EUU preferences for which the interval utility depends only
on the lower end of the interval. Note that this is also the subclass of EUU
preferences that are maxmin expected utility.

8. CONCLUSION

In this paper, we introduce Expected Uncertain Utility theory, an extension
of subjective expected utility theory, to address well-known anomalies in choice
behavior. By staying close to Savage’s model, EUU theory replicates one of
the main achievements of Savage’s theory: the separation of uncertainty per-
ception and uncertainty attitude. As in subjective expected utility theory, the
agent’s uncertainty perception is described by a prior. In EUU theory, the prior
serves two roles: it specifies which aspects of the uncertainty can be quantified
and it measures the uncertainty of those events that can be quantified. The the-
ory uses a simple dichotomy that distinguishes perfectly quantifiable and totally
unquantifiable uncertainty. Nonetheless, mixing those two elements yields suf-
ficient flexibility to address Ellsberg-style evidence and, as we show in a com-
panion paper, Allais-style evidence.

APPENDIX A: PRELIMINARY RESULTS

The prior μ is convex ranged if, for every 0< r < 1 and every E ∈ Eμ, there is
E′ ⊂ E�E′ ∈ Eμ such that μ(E′)= rμ(E). A standard result (Billingsley (1995,
p. 35)) establishes that every countably additive non-atomic measure is convex
ranged. Hence, every prior is convex ranged.

For the prior μ, let

μ∗(A)= sup
E∈Eμ
E⊂A

μ(E)�

Since μ is countably additive, it is straightforward to show that the supremum is
attained. Call E ∈ Eμ the core of A if E ⊂A and μ(E)= μ∗(A), and note that
it is unique up to a set of measure 0. A setD is μ-diffuse if μ∗(D)= μ∗(Dc)= 0.
Let Dμ be the set of all μ-diffuse sets.

Let E ∈ Eμ, N = {1� � � � � n}, and {Ai}i∈N be a finite partition of E. Let N be
the set of all non-empty subsets of N and, for J ∈ N , let N (J) = {L ∈ N |
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L⊂ J}. Let AJ = ⋃
i∈J Ai, let CJ be the core of AJ , and let CN = E. The ideal

split {EJ∗ }J∈N ⊂ Eμ of {Ai}i∈N is inductively defined as follows: E{i}
∗ := C{i} for all

i ∈N ; for J such that |J|> 1,

EJ∗ := CJ \
( ⋃

L∈N(J)
L
=J

EL∗

)
�

Note that {EJ∗ } is a partition of E that satisfies
⋃

L∈N (J) E
L
∗ ⊂AJ for all J ∈ N

and μ∗(AJ)= μ(CJ)= ∑
L∈N (J) μ(E

L
∗ ).

For any act f ∈ Fo with range {x1� � � � � xn}, let {EJ∗(f )} be the ideal split of
{f−1(xi)}.

LEMMA A1: Let f ∈Fo with range {x1� � � � � xn}. Then, f ∈ Fμ such that f(ω)=
(mini∈J xi�maxi∈J xi) for ω ∈EJ∗(f ) is an envelope of f .

PROOF: Let Ai = f−1(xi)�A
J = ⋃

i∈J Ai, and let CJ be the core of AJ . To
show that f1 is a lower envelope, first note that f (ω)= xi andω ∈EJ∗(f ) implies
i ∈ J. Hence, f1 ≤ f . Let g ∈ Fμ such that μ{g > f1} > 0. Then, there exists
J ∈ N such that μ({g > f1} ∩ EJ∗(f )) > 0. Let xj = mini∈J xi, let E = {g > f1} ∩
EJ∗(f ), and note that E ∈ Eμ since g ∈ Fμ. We claim that minω∈E f (ω) = xj ,
thus proving that g 
≤ f . Suppose, to the contrary, that minω∈E f (ω)= xi > xj .
It follows that E ⊂ CI for I = J \ {j}. From the construction of the ideal split, it
follows that CI = ⋃

L∈N (I) E
L
∗ (f ) and therefore E 
⊂EJ(f ), yielding the desired

contradiction. An analogous argument proves that [f ]2 is an upper envelope
of f . Q.E.D.

By definition, the envelope of f is unique up to measure zero. In the follow-
ing, the envelope of f , denoted [f ], refers to this equivalence class of interval
acts.

LEMMA A2: Assume the continuum hypothesis holds and μ is a prior. Then,
Dμ is non-empty and every D ∈Dμ can be partitioned into D1�D2 ∈Dμ.

PROOF: Birkhoff (1967, p. 266, Theorem 13) proved the following: under
the continuum hypothesis, no nontrivial (i.e., not identically equal to 0), count-
ably additive measure such that every singleton has measure 0 can be defined
on the algebra of all subsets of the continuum. We will use Birkoff’s result to
establish thatΩmust have a nonmeasurable subset. That is, there existsA⊂Ω
such that A /∈ Eμ.

Since μ is convex valued, we can construct a random variable, ψ, that has a
uniform distribution on the interval [0�1] on this probability space. (For exam-
ple, see the construction in Billingsley (1995, proof of Theorem 20.4, p. 265).)
Define μ̂(R) = μ(ψ−1(R)) for every R ⊂ [0�1]. If Eμ contains every subset of
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Ω, μ̂ defines a measure on the set of all subsets of the unit interval. Moreover,
since ψ has a uniform distribution, μ̂({x}) = 0 for all x ∈ [0�1], contradicting
Birkoff’s result.

Let E{1}
∗ (A)�E

{2}
∗ (A)�E

{1�2}
∗ (A) be an ideal split of {A1�A2} for A1 =A and

A2 =Ac and let α= supA⊂Ω μ(E
{1�2}
∗ (A)). By the argument above, there exists

A⊂Ω such that A /∈ Eμ. Hence, α> 0.
To establish that α is attained, consider a sequence of sets A(n) such that

μ
(
E{1�2}

∗
(
A(n)

))
>α− 1

n

for all n = 1�2� � � � . Let E(n) = ⋃
j≤n(E

{1�2}
∗ (A(j))) and set E(0) = ∅. De-

fine B(n) = [E(n) ∩ A(n)] \ E(n − 1) and let A = ⋃
n B(n). Note that

E{1�2}
∗ (B(n) ⊂ E{1�2}

∗ (A)) and μ(E{1�2}
∗ (B(n))) ≥ μ(E{1�2}

∗ (A(n))). Therefore,
μ(E{1�2}

∗ (A)) ≥ α, as desired. If α < 1, choose A such that μ(E{1�2}
∗ (A)) = α

and let B be any nonmeasurable subset ofΩ\E{1�2}
∗ (A). Note that μ(E{1�2}

∗ (A∪
B)) > μ(E{1�2}

∗ (A)) = α, a contradiction. Hence, there exists A such that
μ(E{1�2}

∗ (A))= 1. Clearly, A ∈Dμ.
Next, we will show that any diffuse set can be partitioned into two diffuse

sets. Let D ∈ Dμ and define Σ1 = {E ∩D | E ∈ Eμ} and μ1(E ∩D)= μ(E) for
all E ∈ Eμ. Since D ∈Dμ, it follows that when E ∩D=E′ ∩D, E�E′ differ by a
set of measure 0. Hence, μ1 is well-defined. It is easy to check that μ1 is a prior
on Σ1. Then, repeating the previous argument yields a diffuse subset D1 of D.
Then, for any E such that μ(E) > 0, we have μ1(E ∩ D) > 0 and therefore
E ∩D1 
= ∅. A symmetric argument yields E ∩ (D \D1) 
= ∅. Hence,D1�D \D1

are in Dμ. Q.E.D.

PROOF OF LEMMA 1: Lemma 1.2.1 (pp. 6–7) in van der Waart and Wellner
(1996) establishes that every act f has an envelope. It remains to show that,
for every interval act f ∈ F, there is an act f ∈ F such that f = [f ]. Since μ
is a prior, Lemma A2 implies Dμ is non-empty. Let f ∈ F and f = f1Df2 for
D ∈ Dμ. We claim that [f ] = f. Note that f1(ω) ≤ f (ω) ≤ f2(ω) for all ω. For
any real-valued function g on Ω, if there exists E ∈ Eμ such that μ(E) > 0 and
g(ω) > f1(ω) for all ω ∈E, then, since D is μ-diffuse, we have g(ω) > f1(ω)=
f (ω) for some ω ∈D∩E. Therefore, g ∈ F and g1(ω)≤ f (ω) for all ω implies
μ{g1 ≤ f1} = 1. A symmetric argument yields g ∈ F and g2(ω)≥ f (ω) for all ω
implies μ{g2 ≥ f2} = 1. Q.E.D.

APPENDIX B: THEOREM 1

B.1. Outline of the Proof of Theorem 1

If we restrict attention to ideal events, Axioms 1–6 yield a standard expected
utility representation with a countably additive probability measure μ and a
continuous utility index v :X → R. Fix any diffuse event D and, for (x� y) ∈ I,
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let u(x� y) = v(z) such that yDx ∼ z. Axioms 2 and 6 ensure that z ∈ [x� y]
exists and therefore u is well-defined. The proof of the theorem shows that W
represents �u

μ. For this, it is enough to show that v(x∗)=W (f) implies x∗ ∼ f .
Consider any simple act f , let {x1� � � � � xn} be the set of values that f takes,

and assume without loss of generality that xi < xi+1. Consider the partition{
Ai |Ai = f−1(xi) for i= 1� � � � � n

}
�

By Lemma A2, we can partition Ω into any finite number of diffuse events
D1� � � � �Dl. Since μ is non-atomic, given any α1� � � � �αr > 0 such that

∑
i αi = 1,

we can also construct a partition of ideal events E1� � � � �Er such that αi = μ(Ei)
for all i. Moreover, we construct this partition so that, for all (i� j) ∈ {1� � � � � r}×
{1� � � � � l}, there is some k ∈ {1� � � � � n} with Ei ∩Dj ⊂Ak.

Let x� y be the minimal and maximal values of f on E1. Let f1 be an act
that agrees with f on Ec1 , takes on the values x and y on E1, and agrees with
f when f is equal to x or y . That f1 has the same envelope as f follows from
the definition of a diffuse event. To see that f1 is indifferent to f , consider
the simplest case: E1 = Ω and assume that f = xD1(zD2y) for some diffuse
partition D1�D2�D3. We use monotonicity and uniform continuity (Axioms 2
and 6(ii)) to show that f ≥ g implies f � g. It follows that xD1(zD2y)� xD1 ∪
D2y and xD1y � xD1(zD2y). By Axiom 3, xD1 ∪D2y ∼ xD1y and therefore
xD1 ∪D2y ∼ xD1(zD2y)∼ xD1y .

Then, by induction, f is indifferent to and has the same envelope as some act
g that takes at most two values on each Ej and agrees with f whenever f takes
its maximal or minimal value in Ej . Let yj and xj be these values, respectively.
Then, it follows from the definition of an ideal event and Axiom 3 that g is
indifferent to the act h such that h(ω) = zj for all ω ∈ Ej for zj such that
zj ∼ yjDxi. Since h is measurable with respect to ideal events, x∗ ∼ h∼ g ∼ f
for some x∗ such that

v
(
x∗) =

∑
j

v(zj)μ(Ej)=
∑
j

u(xj� yj)μ(Ej)=W (g)=W (f)�

as desired. The extension to all acts uses Axiom 6 and follows familiar argu-
ments.

B.2. Proof of Theorem 1

The proof is divided into a series of lemmas. It is understood that Axioms 1–
6 hold throughout.

DEFINITION: A set E is left (right) ideal if fEh� gEh implies fEh′ � gEh′

(hEf � hEg implies h′Ef � h′Eg). Let E l and E r be the collection of left and
right ideal sets, respectively.
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LEMMA B0: (i) E r = {E | Ec ∈ E l}. (ii) E l ∩ E r = E .

PROOF: Assertion (i) is obvious, as is the fact that E l ∩ E r ⊂ E . Suppose
E ∈ E and assume fEh � gEh. Let f ∗ = fEh and g∗ = gEh. Then, f ∗Eh =
fEh � gEh = g∗Eh and hence f ∗Eh � g∗Eh. Also, hEf ∗ = h = hEg∗ and
hence hEf ∗ � hEg∗, and therefore f ∗Eh′ � g∗Eh′ and h′Ef ∗ � h′Eg∗ since
E ∈ E . That is, fEh′ = f ∗Eh′ � g∗Eh′ = gEh′ and hence E ∈ E l. A symmetric
argument establishes that E ∈ E r and therefore E = E l ∩ E r . Q.E.D.

LEMMA B1: (i) f ≥ g implies f � g. (ii) f � g implies f � z � g for some
z ∈X . (iii) fn� gn ∈ F , fn converges uniformly to f , gn converges uniformly to g,
f � g implies fn � gn for large n. (iv) fn� gn ∈ F e, fn converges pointwise to f ,
gn converges pointwise to g, f � g implies fn � gn for large n. (v) If E ∈ E+ and
y > x, then yEh� xEh for all h ∈ F . (vi) If E ∈ E+ and f ∈ F , then there exists
a unique cE(f ) ∈X such that cE(f )Ef ∼ f .

PROOF: To prove (i), let fn = 1
n
m + (n−1

n
)f and gn = 1

n
l + (n−1

n
)g. Then, fn

converges to f uniformly and gn converges to g uniformly. By Axiom 2, fn � gn.
Then, by Axiom 6, f � gn, and applying Axiom 6 again yields f � g as desired.

To prove (ii), assume f � g and let y = inf{z ∈X | z � f } and let x= sup{z ∈
X | g � z}. By (i) above, x and y are well-defined. Axiom 6 ensures that y ∼ f
and z ∼ g and therefore y � x. Then, for z = x+y

2 , we have f � z � g.
To prove (iii), let f � g and apply (ii) three times to get z� y�x such that

f � z � y � x � g. Axiom 6 ensures that fn � y and y � gn for all n large
enough. Therefore, fn � gn for all such n. An analogous argument proves (iv).

To prove (v), consider E ∈ E+, h ∈ F , and x < y . Then, there exist f�g�h′

such that fEh′ � gEh′, which implies that mEh� fEh′ � gEh′ � lEh′ by part
(i) above and hencemEh′ � lEh′ by Axiom 1. Lemma B0(ii) impliesm� lEm,
which implies y � xEy by Axiom 4, which, again by Lemma B0(ii), implies
yEh� xEh as desired.

Finally, let z = inf{x ∈ X | xEf � f }. By part (i), mEf � f and hence z is
well-defined. Axiom 6 and part (v) of this lemma ensure that zEf ∼ f and also
that y 
= z implies yEf 
∼ f . Hence, z = cE(f ). Q.E.D.

LEMMA B2: The collection E is a σ-field.

PROOF: Our proof relies on Theorem 1 in Gorman (1968). To state this the-
orem, let T be any finite nonempty set, T be the set of all subsets of T and
consider compact intervalsQt ⊂R for t ∈ T . LetQ=×t∈T Qt ; i.e., the product
of the Qt ’s. For q� q̂ ∈Q and τ ∈ T , let q∗ = qτq̂ denote the element of Q such
that q∗

t = qt for t ∈ τ and q∗
t = q̂t for t ∈ T \ τ�

Let �∗ be a complete, transitive and continuous binary relation on Q. Call
τ ∈ T separable if qτq̂�∗ q′τq̂ implies qτq̄�∗ q′τq̄ for all q�q′� q̂� q̄ ∈Q. Thus,
the separability of τ is analogous to E being a left-ideal set. Call τ essential if
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there exists q�q′� q̂ such that qτq̂� q′τq̂; call τ strictly strictly essential if for all
q̂, there exists q�q′ ∈Q such that qτq̂�∗ q′τq̂. The following is a special case18

of Gorman’s Theorem 1:

THEOREM G: If {t} is essential for all t ∈ T , τ′ \ τ is strictly essential, τ�τ′ are
separable and τ ∩ τ′ 
= ∅, then τ ∪ τ′, τ \ τ′, τ′ \ τ and (τ \ τ′) ∪ (τ′ \ τ) are all
separable.

First, we will show that E is a field.

FACT 1: (i) ∅ ∈ E , (ii) E ∈ E implies Ec ∈ E and (iii) If E ∈ E and Ê is null,
then E ∪ Ê ∈ E and E \ Ê ∈ E .

Parts (i) and (ii) are obvious. To see why (iii) is true, note that if f (E∪ Ê)h�
g(E∪ Ê)h, then, since Ê is null, (fEh′)(E∪ Ê)h∼ f (E∪ Ê)h and (gEh′)(E∪
Ê)h∼ g(E∪Ê)h and hence we have (fEh′)(E∪Ê)h� (gEh′)(E∪Ê)h. Since,
E ∈ E , we conclude that fEh′ � gEh′ and henceE∪E′ ∈ E l. The arguments for
establishing that E \ Ê ∈ E l, E ∪ Ê ∈ E r and E \ Ê ∈ E r are essentially identical
and omitted. Hence, E ∪ Ê ∈ E l ∩ E r and E \ Ê ∈ E l ∩ E r , which by Lemma B0,
proves that E ∪ Ê ∈ E and E \ Ê ∈ E .

FACT 2: If E� Ê ∈ E l, then E ∩ Ê ∈ E l.

Suppose E� Ê ∈ E l and fE ∩ Êh � gE ∩ Êh; that is (fEh)Êh � (gEh)Êh.
Since Ê ∈ E , we have (fEh)Êh′ � (gEh)Êh′; that is, (f Êh′)E(hÊh′) �
(gÊh′)E(hÊh′). Since E ∈ E , we have fE ∩ Êh′ = (f Êh′)E(h′Êh′) �
(gÊh′)E(h′Êh′)= gE ∩ Êh′ and hence E ∩ Ê ∈ E l.

Given Fact 1(i) an 1(ii), to complete the proof that E is a field, we need
only show that E� Ê implies E ∪ Ê ∈ E . Take E� Ê ∈ E and let E1 = E \ Ê,
E2 = Ê \E, E3 = Ê ∩E and E4 =Ω \ {E ∪ Ê}. By Lemma B0, we need to show
that E ∪ Ê ∈ E l and Ec ∩ Êc ∈ E l; that is, we need to show that E4 ∈ E l and
E1 ∪ E2 ∪ E3 ∈ E l. Fact 1(ii) and Fact 2 imply Ei ∈ E l for all i = 1�2�3�4 and
hence we have only E1 ∪E2 ∪E3 ∈ E l left to prove.

If Ei is null for i= 1 or 2, then E1 ∪E2 ∪E3 ∈ E l follows from Fact 1(iii) and
Lemma B0. By Fact 1(i) and (ii), we have Ω ∈ E . Therefore, if E4 is null, then
since E1 ∪E2 ∪E3 =Ω \E4 and we get E1 ∪E2 ∪E3 ∈ E l again from Fact 1(iii)
and Lemma B0. Hence, we assume E1�E2, and E4 are nonnull. Furthermore,
if E3 is null, then E1 ∈ E by Fact 1(iii) and hence we can, without loss of gener-
ality, replace E with E1 and assume E ∩ Ê = ∅. Therefore, for the remainder
of the proof, we make the following assumption:

18In Gorman’s Theorem, Qt ’s need not be subsets of R.
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ASSUMPTION 1: E1�E2�E4 are nonnull and E3 is either empty or nonnull.

Let (x1�x2�x3�h) denote the act that yields xi on ω ∈ Ei for i = 1�2�3 and
h(ω) on ω ∈E4.

CLAIM: (x1�x2�x3�h)� (y1� y2� y3�h) implies (x1�x2�x3�h
′)� (y1� y2� y3�h

′).

Suppose the Claim is false and without loss of generality, take xi� yi for i =
1�2�3 and h�h′ such that (x1�x2�x3�h) � (y1� y2� y3�h) and (y1� y2� y3�h

′) �
(x1�x2�x3�h

′). Then, let �∗ denote following binary relation on X3 × [0�1]:
(x1�x2�x3�α)�∗ (y1� y2� y3�β) if and only if(
x1�x2�x3�αh+ (1 − α)h′) � (

y1� y2� y3�βh+ (1 −β)h′)�
Let T = {1�2�3�4} if E3 
= ∅ and let T = {1�2�4} otherwise. Then, let T = 2T .
Hence, by hypothesis, T \ {4} is not separable.

FACT 3: �∗ is complete, transitive and continuous and {t} is strictly essential for
t ∈ T \ {4}, is essential for t = 4.

The completeness and transitivity of � follows from Axiom 1, continuity fol-
lows from Axiom 6(ii) and the boundedness of X . That {4} is essential follows
immediately from the hypothesis that (y1� y2� y3�h

′) � (x1�x2�x3�h
′). Finally,

to see that {t} is strictly essential for t ∈ T \ {4}, note that since E1 is non-
null, fE1h

∗ � gE1h
∗ for all f�g�h∗. Then, by Lemma B1(i), mE1h

∗ � lE1h
∗.

Since E1 ∈ E l, we conclude that mE1ĥ� lE1ĥ for all ĥ; that is, (m�z2� z3�α)�
(l� z2� z3�α) for all z2� z3�α. The same argument applies to τ = 2 and also to
τ = 3 whenever E3 is nonempty (and hence nonnull by Assumption 1).

To prove the Claim, first consider the case in which E3 = ∅. Then, note that
Ec =E1 ∪E4 and since Ec ∈ E l, τ := {2�4} is separable. By symmetry, so is τ′ :=
{1�4}. Then, Fact 3 ensures that all of the conditions of Theorem G are met
and therefore {1�2} is separable, yielding a contradiction and hence proving
the Claim. Next, if E3 
= ∅, then set τ = {1�3}� τ′ = {2�3} and note again that all
of the conditions of Theorem G are met and hence {1�2�3} is separable, again
yielding a contradiction that proves the Claim.

Then, by Lemma B1(vi), there is x ∈X such (x(E1 ∪E3)f )(E1 ∪E2 ∪E3)h
∗ ∼

f (E1 ∪ E2 ∪ E3)h
∗ and y ∈ X such that (x� y� y�h∗) ∼ (x(E1 ∪ E3)f )(E1 ∪

E2 ∪ E3)h
∗ and therefore, (x� y� y�h∗)∼ f (E1 ∪ E2 ∪ E3)h

∗. Similarly, we can
find x̂� ŷ such that (x̂� ŷ� ŷ� h∗) ∼ g(E1 ∪ E2 ∪ E3)h

∗. Hence, (x� y� y�h∗) �
(x̂� ŷ� ŷ� h∗). Then, from (iv) above, we get (x� y� y�h′)� (x̂� ŷ� ŷ� h′). But since
E� Ê ∈ E l, (x� y� y�h∗)∼ (x(E1 ∪ E3)f )(E1 ∪ E2 ∪ E3)h

∗ implies (x� y� y�h)∼
(x(E1 ∪ E3)f )(E1 ∪ E2 ∪ E3)h and (x(E1 ∪ E3)f )(E1 ∪ E2 ∪ E3)h

∗ ∼ f (E1 ∪
E2 ∪ E3)h

∗ implies (x(E1 ∪ E3)f )(E1 ∪ E2 ∪ E3)h
′ ∼ f (E1 ∪ E2 ∪ E3)h

′ and
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therefore f (E1 ∪E2 ∪E3)h
′ ∼ (x� y� y�h′). A symmetric argument yields g(E1 ∪

E2 ∪E3)h
′ ∼ (x� y� y�h′). Then, (x� y� y�h′)� (x̂� ŷ� ŷ� h′) implies f (E1 ∪E2 ∪

E3)h
′ � g(E1 ∪ E2 ∪ E3)h

′, proving that E1 ∪ E2 ∪ E3 ∈ E l. This completes the
proof that E is a field.

To prove that the field E is a σ-field, it is enough to show that if Ei ∈ E
and Ei ⊂ Ei+1, then

⋃
Ei ∈ E . Let Ei ⊂ Ei+1 for all i. Note that f̂Eiĝ con-

verges pointwise to f̂
⋃
Eiĝ for all f̂ � ĝ ∈ F . Hence, if g

⋃
Eih

′ � f ⋃
Eih

′ or
h′ ⋃Eig � h′ ⋃Eif for some f�g�h�h′ ∈F e, by Lemma B1(iv) above, we have
gEnh

′ � fEnh′ or h′Eng � h′Enf for some n, proving that Ei ∈ E for all n im-
plies

⋃
i Ei ∈ E . Q.E.D.

LEMMA B3: There exists a finitely additive, convex-ranged probability measure
μ on E and a function v :Ω→ R such that (i) the function V :F e → R defined
by

V (f )=
∑
x∈X

v(x)μ
(
f−1(x)

)

represents the restriction of � to F e and (ii) if μ{f = g} = 1, then f ∼ g.

PROOF: Let �e be the restriction of � to F e. By definition (of E), �e satisfies
Savage’s P2. Similarly, Axiom 1 is Savage’s P1, Lemma B1(i) and (v) imply P3,
Axiom 4 is P4, Axiom 2 implies P5, and Axiom 5 implies P6. Then, following
Savage’s proof yields the desired conclusion. This is true despite the fact that
Savage’s theorem assumes that the underlying σ-field is the set of all subsets of
Ω; the arguments work for any σ-field. This proves (i). To prove (ii), note that,
by hypothesis, there exists E ∈ E such that μ(E) = 1 and g = fEg. But m ∼
mEl by part (i), and since E ∈ E , we have fEm ∼ fEl. Then, Lemma B1(i)
yields f = fEf ∼ fEg. Q.E.D.

LEMMA B4: The probability measure μ on E is a prior.

PROOF: To show that μ is countably additive, we need to prove that, given
any sequence Ei such thatEi+1 ⊂Ei for all i andE∗ := ⋂

i Ei = ∅, limμ(Ei)= 0.
Suppose limμ(Ei) > 0. Then, convex-valuedness ensures the existence of E
such that limμ(Ei) > μ(E) > 0. Hence, μ(Ei) > μ(E) for all i; that is, mEil �
mEl for all i. ButmEil ∈F e and converges pointwise tomE∗l. Hence,mE∗l �
mEl � l. Therefore, μ(E∗) > 0, a contradiction.

To prove that μ is complete, we will assume μ(E) = 0 and A ⊂ E, then
show that this implies fAh ∼ h for all f ∈ F . This means that A ∈ E . By
Lemma B1(i), fAh� lEh. Since, μ(E)= 0, Lemma B3 implies lEm∼m, and
since E ∈ E , we conclude that lEh ∼ mEh. But, mEh � h by Lemma B1(i),
so we have fAh � h. A symmetric argument yields h � fAh and, hence,
fAh∼ h as desired.
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Since μ is convex-ranged, it is obviously non-atomic. Hence, μ is a prior.
Q.E.D.

LEMMA B5: The function v is strictly increasing and continuous.

PROOF: That v is strictly increasing follows from y � x whenever y > x.
To prove continuity, assume, without loss of generality, that v(m) = 1 and
v(l) = 0, and suppose r = limv(xn) < v(x) for some sequence xn converging
to x. Choose Er ∈ E such that μ(Er)= r. By Lemma B3(i), x�mErl � xn for
n large. Therefore, x � mErl � limxn = x, a contradiction. Hence, r ≥ v(x).
A symmetric argument yields v(x)≥ r, proving the continuity of v. Q.E.D.

LEMMA B6: (i) D = Dμ. (ii) For all (x� y) ∈X2, there is a unique z ∈X such
that yDx∼ z for all D ∈D.

PROOF: (i) By construction, Eμ = E and E+ = {E ∈ Eμ | μ(E) > 0}. There-
fore, μ∗(D)= μ∗(Dc)= 0 implies E 
⊂D and E 
⊂Dc for all E ∈ E+ and, hence,
D ∈D. Therefore, Dμ ⊂D. For the reverse inclusion, note that D ∈D implies
that E ∩D 
= ∅ and E ∩Dc 
= ∅ for all E ∈ E+. Since E+ = {E ∈ Eμ | μ(E) > 0},
it follows that μ∗(D)= μ∗(Dc)= 0.

(ii) By Axiom 3, xDy ∼ xD′y for all D�D′ ∈D. Hence, fix any D ∈D and let
z = sup{w ∈X | yDx�w}. Since yDx� l, by Lemma B1(i), z is well-defined.
Then, Lemma B1(iii) rules out both z � yDx and yDx� z. Q.E.D.

Lemma B6(i) and Lemma A2 imply D 
= ∅. Then, Lemma B6(ii) ensures
that the function u : I →R, below, is well-defined.

DEFINITION: For all x ≤ y , let u(x� y) = v(z) for z ∈X such that yDx ∼ z
for D ∈D.

LEMMA B7: Let D1� � � � �Dn ∈ D be a partition of Ω, Di ⊂ {f = xi} for all i,
and yi+1 ≥ yi for i≤ n− 1. Then, f ∼ ynDy1 for all D ∈D.

PROOF: By Lemma B1(i), yn[D2 ∪ · · · ∪ Dn]y1 � f � ynDny1. By Axiom 3,
yn[D2 ∪ · · · ∪Dn]y1 ∼ ynDny1 ∼ ynDy1. Q.E.D.

LEMMA B8: The function u is increasing and continuous.

PROOF: Suppose yDx ∼ z and ŷDx̂ ∼ ẑ. If ŷ > y and x̂ > x, then Axiom 2
implies ẑ � z, and applying Axiom 2 again yields ẑ > z as desired. If ŷ ≥ y and
x̂≥ x, then by Lemma B1(i), ẑ � z. Then, applying Axiom 2 again yields ẑ ≥ z.

To prove continuity, assume yiDxi ∼ zi for i= 1� � � � , and lim(xi� yi)= (x� y).
SinceX is compact, we can assume, without loss of generality, that zi converges
to some z. Then Lemma B1(iii) rules out yDx� z and z � yDx and establishes
continuity. Q.E.D.
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Define

W (f)=
∫
u[f ]dμ�

LEMMA B9: The function W represents the restriction of � to Fo.

PROOF: Let {x1� � � � � xn} be the range of f , let Ai = f−1(xi), and let {EJ∗(f )}
be an ideal split of {Ai}. Lemma A2 implies that {EJ∗(f )} exists and is unique up
to measure zero. Let N +(f ) = {J | μ(EJ∗(f )) > 0 and |J| > 1} and Hn = {f ∈
Fo | n= |N +(f )|}. The proof is by induction on Hn. Note that, for f ∈H0,

W (f)=
∑
z∈X

v(z)μ
(
f−1(z)

) = v(x)

for x such that μ{x = f } = 1. Hence, by Lemma B3(ii), W represents the re-
striction � to H0. Suppose W represents the restriction of � to Hn and choose
f ∈Hn+1. Define hf as follows: if f ∈Hn, then hf = f ; otherwise, choose EJ∗(f )
such that |J|> 1 and μ(EJ∗(f )) > 0, choose D ∈D, and define f ∗ as follows:

f ∗(ω)=
⎧⎨
⎩
f (ω)� if ω /∈EJ∗(f ),
max f

(
EJ∗(f )

)
� if ω ∈D∩EJ∗(f ),

min f
(
EJ∗(f )

)
� if ω ∈Dc ∩EJ∗(f ).

By Lemma B7 and Axiom 3, f ∗ ∼ f . Next, choose z such that u(x� y)= v(z),
and let hf (ω) = f ∗(ω) for all ω /∈ EJ∗(f ) and hf (ω) = z for all ω ∈ EJ∗(f ).
Again, Axiom 3 ensures that hf ∼ f ∗ ∼ f . Note that hf ∈ Hn and, by con-
struction, W (hf )=W (f ∗). By Lemma A1, [f ∗] = [f ] and, therefore, W (f ∗)=
W (f). Thus, W (f) = W (hf ) for some hf ∈ Hn such that hf ∼ f . Then, the
induction hypothesis implies that W represents � on Hn+1. Q.E.D.

LEMMA B10: The function W represents �.

PROOF: Note that, for all f , there exists xf such that W (xf ) = u(xf �xf ) =
W (f). This follows from the fact that u is continuous and u(m�m)≥W (f)≥
u(l� l). Hence, by the intermediate value theorem, u(xf �xf )=W (f) for some
xf ∈ [l�m]. The monotonicity of u ensures that this xf is unique. Next, we show
that f ∼ xf .

Without loss of generality, assume l = 0 (if not, let l∗ = 0 and m∗ =
m − l and identify each f with f ∗ = f − l, and apply all previous results
to acts F ∗ = {f − l | f ∈ F}). Define, for any x ≥ 0 and ε > 0, z∗(x�ε) =
min{nε | n = 0�1� � � � such that nε ≥ x}. Similarly, let z∗(x�ε) = max{nε | n =
0�1� � � � such that nε≤ x}. Clearly,

0 ≤ z∗(x�ε)− x≤ z∗(x�ε)− z∗(x�ε)≤ ε�(B.1)
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and the first two inequalities above are equalities if and only if x is a mul-
tiple of ε. Set f n(ω) = z∗(f (ω)�m2−n) and fn(ω) = z∗(f (ω)�m2−n) for all
n = 0�1� � � � . Equation (B.1), above, ensures that f n ≥ f ≥ fn and f n� fn con-
verge uniformly to f . Note also that f n� fn ∈ Fo with f n ↓ f . This implies that
[f n] ↓ [f ] μ-almost surely (see van der Waart and Wellner (1996, p. 13)) and,
therefore,

∫
u[f n]dμ→ ∫

u[f ]dμ.
Since f n ≥ f , we haveW (f n)≥W (f)=W (xf ) for all n. SinceW represents

the restriction of � to Fo, we conclude that f n � xf for all n. Then, Axiom 6
implies f � xf . A symmetric argument with fn replacing f n yields xf � f and,
therefore, xf ∼ f as desired.

To conclude the proof of the lemma, suppose f � g; thenW (xf )=W (f) and
W (xg) =W (g) and xf ∼ f � g ∼ xg. Since W represents the restriction of �
to Fo, we conclude that W (xf )≥W (xg) and, hence, W (f)≥W (g). Similarly,
if W (f)≥W (g), we conclude f ∼ xf � xg ∼ g and, therefore, f � g. Q.E.D.

Lemma B10 establishes sufficiency. To prove that the preference, �u
μ, satis-

fies Axioms 1–6 for every prior μ and interval utility u, we first establish that
Eμ = E and Dμ =D.

LEMMA B11: Let E�D be the ideal and diffuse events for the preference �u
μ.

Then, D =Dμ�E = Eμ.

PROOF: From the representation, it is immediate that Eμ ⊂ E which, in turn,
implies D ⊂ Dμ. Thus, to prove the lemma, it suffices to show that E ⊂ Eμ.
For A ⊂ Ω, let {E{1}

∗ �E
{2}
∗ �E

{1�2}
∗ } be the ideal split of A�Ac . If A /∈ Eμ, then

μ(E{1�2}
∗ ) > 0. Let D ∈Dμ and define

D1 = (
D∩E{1}

∗
) ∪ (

D∩E{2}
∗

) ∪ (
A∩E{1�2}

∗
)
�

D2 = (
Dc ∩E{1}

∗
) ∪ (

Dc ∩E{2}
∗

) ∪ (
Ac ∩E{1�2}

∗
)
�

Note that D1�D2 ∈Dμ. By Lemma A2, there are Di1�Di2 ∈Dμ such that Di1 ∩
Di2 = ∅ andDi1 ∪Di2 =Di for i= 1�2. Let Bij =Dij ∩E{1�2}

∗ for i= 1�2� j = 1�2
and note that

A=E{1}
∗ ∪B11 ∪B12�

Ac =E{2}
∗ ∪B21 ∪B22�

For x1 < x2 < x3 ∈X , let g= x1 and let

f =
{
x3� if ω ∈ B11,
x2� if ω ∈ B12,
x1� otherwise,

h=
{
x3� if ω ∈ B21,
x1� if ω ∈ B22,
x1� otherwise,

h′ =
{
x2� if ω ∈ B21,
x2� if ω ∈ B22,
x1� otherwise.
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Then, by Lemma A1,

W
(
fAh′) = μ(

E{1�2}
∗

)
u(x2�x3)+μ(

E{1}
∗ ∪E{2}

∗
)
u(x1�x1)�

W (fAh)= μ(
E{1�2}

∗
)
u(x1�x3)+μ(

E{1}
∗ ∪E{2}

∗
)
u(x1�x1)�

W (gAh)= μ(
E{1�2}

∗
)
u(x1�x3)+μ(

E{1}
∗ ∪E{2}

∗
)
u(x1�x1)�

W
(
gAh′) = μ(

E{1�2}
∗

)
u(x1�x2)+μ(

E{1}
∗ ∪E{2}

∗
)
u(x1�x1)�

Thus, W (gAh) ≥ W (fAh). Also, hAf = x1 = hAg and, hence, W (hAg) ≥
W (hAf). But, since u is increasing, W (fAh′) > W (gAh′) and, therefore, A
is not ideal. Q.E.D.

To complete the proof, note that μ is convex-ranged since it is non-atomic.
Then, verifying Axioms 1, 2, and 5 involves nothing more than repeating fa-
miliar arguments from Savage’s theorem. Given Lemma B11, Axioms 3 and 4
follow immediately from the representation. Note that, for any f n ∈F e, if [f n]
converges pointwise to [g], thenW (f n) converges toW (g). Hence, Axiom 6(i)
follows from the fact that f n converges to f pointwise implies [f n] converges
pointwise to [f ], while Axiom 6(ii) follows from the fact that, for any f n, if f n
converges to f uniformly, then [f n] converges pointwise to [f ].

APPENDIX C: PROOFS FOR SECTION 3

PROOF OF LEMMA 2: Let λ be an interval lottery and let {(x1� y2)� � � � �
(xn� yn)} be its support. Choose a partition E1� � � � �En of Ω such that μ(Ei)=
λ(xi� yi). This can be done since μ is non-atomic and, therefore, convex-valued.
Let f ∈ F be defined as f(ω) = (xi� yi) for ω ∈ Ei. By Lemma 1, there exists
f ∈F such that [f ] = f. That λfμ = λ is immediate. Q.E.D.

PROOF OF LEMMA 3: Sufficiency is immediate. For necessity, first note that
vū = αvu+β for some α> 0. This follows since two expected utility maximizers
have the same preferences over simple lotteries only if their utility indices are
the same, up to a positive affine transformation. For every (x� y) ∈ I, there exist
unique z� z̄ such that vu(z)= u(x� y) and vū(z̄)= ū(x� y). Let D�D̄ be diffuse
sets for μ� μ̄, respectively; let f = xDy and f̄ = xD̄y , and note that λfμ = λ

f̄
μ̄.

Since f ∼u
μ z and f ∼ū

μ̄ z̄, it follows that z = z̄. Since vū = αvu + β, it follows
that ū= αu+β. Q.E.D.

PROOF OF THEOREM 2: If vū ◦v−1
u is not concave, then familiar arguments

ensure the existence of x < z < y and p ∈ (0�1) such that pvū(y) + (1 −
p)vū(x) > vū(z) and pvu(y) + (1 − p)vu(x) < vu(z). Let λ be the interval
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lottery that yields (y� y) with probability p and (x�x) with probability 1 − p.
Lemma 2 implies that there are f� f̄ such that λfμ = λ

f̄
μ̄ = λ. Since f̄ �ū

μ̄ z and
z �u

μ f , �ū
μ̄ is not more cautious than �u

μ.
If σxyū < σxyu , then choose σ strictly between these two numbers. Let λ be the

interval lottery that yields (x� y) with probability 1. Lemma 2 implies that there
are f� f̄ such that λfμ = λf̄μ̄ = λ. Since f̄ �ū

μ̄ σx+ (1−σ)y and σx+ (1−σ)y �u
μ

f , it follows that �ū
μ̄ is not more cautious than �u

μ.
To prove sufficiency, assume σxyū ≥ σxyu for all x� y and vū ◦v−1

u is concave. Let
f ∈ Fo and let λ = λfμ with support {(x1�x2)� � � � � (xn� yn)}. For each (xi� yi),
define zi = σ

xiyi
ū xi + (1 − σ

xiyi
ū )yi. Let λ∗ be the interval lottery with support

{(z1� z1)� � � � � (zn� zn)} such that

λ∗(zi� zi)= λ(xi� yi)�
By Lemma 2, there are f ∗� f̄ � f̄ ∗ ∈Fo such that λf ∗

μ = λ∗�λf̄μ̄ = λ, and λf̄
∗
μ̄ = λ∗.

Note that f̄ ∼ū
μ̄ f̄

∗ by construction and f �u
μ f

∗ since σxyū ≥ σxyu . Since vū ◦v−1
u

is concave, vu(z) ≥ ∑n

i=1 vu(zi)λ
∗(zi� zi) implies vū(z) ≥ ∑n

i=1 vū(zi)λ
∗(zi� zi).

We conclude that z �u
μ f

∗ implies z �ū
μ̄ f̄

∗ ∼ū
μ̄ f̄ . Since f �u

μ f
∗, it follows that

z �u
μ f implies z �ū

μ̄ f̄ as desired. Q.E.D.

PROOF OF COROLLARY 1: The proof is straightforward and therefore omit-
ted. Q.E.D.

PROOF OF THEOREM 3: Let f = xAy be a binary act with x < y . We first
show that if W = (u�μ), then

W (yAx)= μ∗(A)u(y� y)+μ∗
(
Ac

)
u(x�x)(∗)

+ (
1 −μ∗(A)−μ∗

(
Ac

))
u(x� y)�

Let A1 =A�A2 =Ac and {E{1}
∗ �E

{2}
∗ �E

{12}
∗ } be the ideal split of A1�A2. Then,

by Lemma A1 and the definition of an ideal split, it follows that

[f ]1 = x(E{1}
∗ ∪E{12}

∗
)
y�

[f ]2 = x(E{1}
∗

)
y�

where μ(E{i}
∗ ) = μ∗(Ai) for i = 1�2. Applying the representation now proves

the assertion.
Then, let u(x� y) = x and u∗(x� y) = y . If μ∗(A) > μ∗(B), the assertion

above yields yAx �u yBx; if μ∗(Ac) < μ∗(Bc), the assertion above yields
yAx �u∗

yBx. Hence, B dominates A implies μ∗(A) ≤ μ∗(B) and μ∗(Ac) ≤
μ∗(Bc). Conversely, if μ∗(A) ≤ μ∗(B), μ∗(Ac) ≤ μ∗(Bc), the assertion above
ensures that yBx�û yAx for all û.
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Suppose A is more uncertain than B and let u�u∗�W �W ∗ be as above. Sup-
pose A�B are comparable so that [μ∗(B) − μ∗(A)] · [μ∗(Ac) − μ∗(Bc)] < 0.
Then choose z such that x < z < y and

[
μ∗(B)−μ∗(A)

][y − z] + [
μ∗

(
Ac

) −μ∗
(
Bc

)][z− x] = 0�

Let t = y−z
y−x and û(x′� y ′)= tx+ (1− t)y for all (x′� y ′) ∈ I. Note that �u is more

uncertainty averse than �u′ and, therefore, we must have
[
μ∗(B)−μ∗(A)

][y − x] ≥ 0�

That is, we must have μ∗(B)−μ∗(A) > 0 and μ∗(Ac)−μ∗(Bc) < 0.
Conversely, assume μ∗(B) − μ∗(A) > 0, μ∗(Ac) − μ∗(Bc) < 0 and �u1 is

more uncertainty averse than �û2 . Then, by Corollary 1, vu1 = a · vû2 + b for
some a > 0. Let u2 = a · û1 + b and note that vu1 = vu2 and �û2

μ =�u2
μ . Let v :=

vu1 = vu2 . Then, by Corollary 1, for all x < y , we have u1(x� y)= v(tx+(1−t)y)
and u2(x� y) = v(rx + (1 − r)y) for t ≥ r. Hence, u1(x� y) ≤ u2(x� y) for all
(x� y) ∈ I.

If yBx �u2
μ yAx, then μ∗(B)v(y) + μ∗(Bc)v(x) + (1 − μ∗(B) − μ∗(Bc)) ×

u2(x� y)≥ μ∗(A)v(y)+μ∗(Bc)v(x)+ (1 −μ∗(A)−μ∗(Ac))u2(x� y). That is,
[
μ∗(B)−μ∗(A)

][
v(y)− u2(x� y)

]
+ [
μ∗

(
Ac

) −μ∗
(
Bc

)][
u2(x� y)− v(x)] ≥ 0�

Since μ∗(B) − μ∗(A) > 0 μ∗(Ac) − μ∗(Bc) < 0 and u1(x� y) ≤ u2(x� y), the
equation above still holds when u2 is replaced with u1. Therefore, yBx �u1

μ

yAx, proving that A is more uncertain than B. Q.E.D.

APPENDIX D: PROOFS FOR SECTION 4

PROOF OF THEOREM 4: Let W = (u�μ), S = {1� � � � � n}. Take any parti-
tion ρ. Let {EJ∗(ρ)} be an ideal split of {ρ−1(1)� � � � � ρ−1(n)}. For any a ⊂
{1� � � � � n}� a 
= ∅, define

π(a)= μ(
Ea∗(ρ)

)
�

and note that π ∈Π. Let f =φ◦ρ. For ω ∈Ea∗(ρ), Lemma A1 implies that

[f ]1(ω)= min
{
f (ω̂) | ω̂ ∈Ea∗(ρ)

} = min
{
φ(s) | s ∈ a}�

[f ]2(ω)= max
{
f (ω̂) | ω̂ ∈Ea∗(ρ)

} = max
{
φ(s) | s ∈ a}�
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Then, Theorem 1 yields

W (f)=
∑
a

u
(

min
ω∈Ea∗ (ρ)

f (ω)� max
ω∈Ea∗ (ρ)

f (ω)
)
μ

(
Ea∗(ρ)

)

=
∑
a

u
(

min
s∈a
φ(s)�max

s∈a
φ(s)

)
π(s)

as desired.
For the converse, take any π ∈Π. Choose a partition {Ea | a⊂ S} of Ω such

that Ea ∈ Eμ for all a ⊂ S and μ(Ea) = π(a). For each a such that |a| > 1,
let {Da

i }i∈a be a partition of Ω into diffuse sets. Define ρ as follows: if |a|> 1,
then ρ(ω)= i for ω ∈ Ea ∩Da

i ; if |a| = 1, then, for all ω ∈ Ea, ρ(ω)= s for s
such that {s} = a. This construction ensures that {Ea | a ⊂ S} = {EJ∗(ρ)} and,
for f =φ◦ρ,

[f ]1(ω)= min
{
φ(s) | s ∈ a}�

[f ]2(ω)= max
{
φ(s) | s ∈ a}�

It follows that W (φ◦ρ)= ∑
a u(mins∈a φ(s)�maxs∈a φ(s))π(a) as desired.

Q.E.D.

PROOF OF THEOREM 5: Assume that κ= απ∗ + (1 − α)π∗. For any φ ∈Φ,
order S = {s1� s2� � � � � sn} so that φ(si)≥φ(si+1) and let a0 = ∅, ai = {s1� � � � � si}
for i≥ 1. Then, for the V = (v�κ), we have

V (φ)=
n∑
i=1

v
(
φ(si)

)[
κ(ai)− κ(ai−1)

]

=
n∑
i=1

v
(
φ(si)

)
× {
α
[
π∗(ai)−π∗(ai−1)

] + (1 − α)[π∗(ai)−π∗(ai−1)
]}

=
n∑
i=1

v
(
φ(si)

)∑
b∈Ai

απ(b)+
n∑
i=1

v
(
φ(si)

)∑
b∈Bi

(1 − α)π(b)�

where Ai = {b⊂ S | b⊂ ai� b 
⊂ ai−1} and Bi = {b⊂ S | b⊂ aci−1� b 
⊂ aci }. Hence,
we have

V (φ)=
n∑
i=1

v
(
φ(si)

)∑
b∈Ai

απ(b)+
n∑
i=1

v
(
φ(si)

)∑
b∈Bi

(1 − α)π(b)

=
n∑
i=1

∑
b∈Ai

v
(

min
s∈b
φ(s)

)
απ(b)
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+
n∑
i=1

∑
b∈Bi

v
(

max
s∈b

φ(s)
)
(1 − α)π(b)

=
∑
b∈P

v
(

min
s∈b
φ(s)

)
απ(b)+

∑
b∈P

v
(

max
s∈b

φ(s)
)
(1 − α)π(b)

= U(φ)�

where U = (u�π) for u such that u(x� y) = αv(x) + (1 − α)v(y) for all
(x� y) ∈ I.

Define Δa = {p ∈ ΔS | p(s) = 0� s /∈ a}. It is well-known (Strassen (1964))
that

Δπ =
∑
a

π(a)Δa�

For V = (α�Δπ� v), we have

V (φ)= αmin
λ∈Δπ

∑
s∈S
v
(
φ(s)

)
λ(s)+ (1 − α)max

λ∈Δπ

∑
s∈S
v
(
φ(s)

)
λ(s)

=
∑
a

π(a)

×
(
αmin
λ∈Δa

∑
s∈S
v
(
φ(s)

)
λ(s)+ (1 − α)max

λ∈Δa
∑
s∈S
v
(
φ(s)

)
λ(s)

)

=
∑
a∈P

π(a)
(
αv

(
min
s∈a
φ(s)

)
+ (1 − α)v

(
max
s∈a

φ(s)
))

=U(φ)�

where U = (u�π) for u such that u(x� y) = αv(x) + (1 − α)v(y) for all (x�
y) ∈ I. Q.E.D.

APPENDIX E: PROOFS FOR SECTIONS 6 AND 7

PROOF OF THEOREM 6: Let P be the collection of non-empty subsets of S.
Recall that there are k different configurations of ball colors in the urns andm
different balls in each urn. For b ∈P , let

π(b)=
⎧⎨
⎩

(
1
m

)k

� if |bt | = 1 for all t,

0� otherwise.
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Note that π is indeed a probability on S. Then, for all b ∈P ,

π∗(b)=
∑
a⊂b
a∈P

π(a)= 1
mk

k∏
t=1

|bt |�(E.1)

π∗(b)= 1 − 1
mk

k∏
t=1

(
m− |bt |

)
�

For a ∈ A, |a1| = |at | for all t = 1� � � � �k and, therefore, π∗(a) = ( |a1|
m
)k and

π∗(a)= 1 − (m−|a1|
m
)k. Since |a| ≥ |a′| if and only if |a1| ≥ |a′

1|, part (i) follows.
When |a| = |b|, we have

∑
t |at | = ∑

t |bt |. Furthermore, if a ∈ A� b ∈ B \ A,
then |at | = |a1| for all t, while |bt | 
= |b1| for some t. Hence, equation (E1)
implies that π∗(a) > π∗(b) and π∗(a) < π∗(b) whenever a ∈ A, b ∈ B \ A and
|a| = |b|, proving (ii).

It follows from equation (∗) in the proof of Theorem 3 that

U(yax)= π∗(a)+ z(π∗(a)−π∗(a)
)
�

Hence, U(yax)−U(ybx)= (1 − z)[π∗(a)−π∗(b)] + z[π∗(a)−π∗(b)]. Let T
be the set of all (a�b) such that a ∈ A, b ∈ B \ A and |a| = |b|, and define

z∗ = min
(a�b)∈T

π∗(a)−π∗(b)
π∗(a)−π∗(b)+π∗(b)−π∗(a)

�

By part (ii), π∗(a) > π∗(b) and π∗(a) < π∗(b) if (a�b) ∈ T . Since T is finite, it
follows that z∗ ∈ (0�1) is well-defined, proving part (iii). Q.E.D.

PROOF OF THEOREM 7: That separability precludes M-reversals is obvious.
To conclude the proof, we will show that if there are no M-reversals, then u
must be separable. Let φ= (x1�x2�x3�x4) and φ′ = (x1�x4�x3�x2), with x1 ≥
x3 ≥ x2 ≥ x4; then π ∈Πm implies that

U(φ)−U(
φ′) = β(

u(x2�x1)− u(x4�x1)+ u(x4�x3)− u(x2�x3)
)
�

with β= π({1�2})= π({3�4}) > 0. Thus, no M-reversals implies

u(z1� y1)+ u(z2� y2)= u(z1� y2)+ u(z2� y1)

whenever (zi� yj) ∈ I for all i= 1�2� j = 1�2. Define v2(y)= u(l� y) and v1(z)=
u(z�m)− u(l�m). Then, v1(z)+ v2(y)= u(z�m)− u(l�m)+ u(l� y), and the
displayed equation above ensures that u(z�m) − u(l�m) = u(z� y) − u(l� y).
Therefore, v1(z) + v2(y) = u(z� y) for all (z� y) ∈ I, proving the separability
of u. Q.E.D.
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