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bstract

This paper studies the production decisions of generation companies (GENCOs) which are fully engaged in oligopolistic electricity markets.
he model presented is based upon the static equilibrium model solved sequentially in time. By decomposing the problem in time, each time-step is
olved independently using a Cournot-like market model. The time dimension is divided into discrete, 1-h time-steps. The model also incorporates

he effects of technical and temporal constraints such as time on/off and ramp up/down. Since GENCOs tend toward repetitive decision-making,
hey can more easily learn from the market. The concept of forward expectations and the lessons derived from the market are introduced, and
everal numerical examples are provided.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In a market-driven environment, a power generating utility
olves the self-unit commitment problem to obtain an optimal
idding strategy [1]. Ideally, its optimal policy is designed to
eap the maximum expected profit. In reality, however, the envi-
onment in which decisions (and decision-making policies) are
ade is often defined by the operational and technical con-

traints of the utility’s generating units, its short-term financial
equirements, or other restrictions.

The easiest way to model the dynamic behavior of market
layers is to replicate static snapshot of single periods [2]. The
ingle-period models then provide the basis for multi-period
odels. In the single-period Cournot model each firm wants to
aximize profits by deciding its optimal decision output. In the
ulti-period extension of the Cournot model, each firm wants to
aximize its discount profits by selecting the optimum output
evels for each time period [2,3].
Most of the work applied to the electricity market analy-

is reported in the literature covered a single period. At the
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eginning most of these models were constructed as single-
ode generation-only models [4]. Later, basic representations
nd linear dc transmission network were introduced for model-
ng spatiality [5,24–26]. Recently, ac network representation has
een incorporated in a non-linear programming problem in order
o systematically study for the impacts of network constraints
n the market equilibrium [6].

Since GENCOs operate in a sequential-period market where,
n each period, simultaneous output decisions are made, in most
arket scenarios, it may not be enough to maximize gain in

he current and next period. Therefore, the GENCOs will seek
o maximize total gain over the next several periods. However,
ot knowing (or being unaware of) their competitors’ future
utput decisions will make it difficult for any one GENCO to
redict its rivals’ behavior [7,8]. Faced with this difficulty, a
ENCO may adjust its own output expectation of the current
eriod according to both the output of the last period and the
xpected output in the next subsequent period. In addition, each
ENCO will probably rely upon other information it gathers
ver time, especially the data which will most likely influence

ts present choice. In other words, when the same bidder plays
he same opponents multiple times, we would expect that the
idding agents will adjust their own behaviors to maximize their
rofits [8]. A procedure to identify multi-period equilibria in an

mailto:ggutier@itmorelia.edu.mx
dx.doi.org/10.1016/j.epsr.2007.06.003
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where Q(k) = i=1qi(k) and a and b are the market-demand
function parameters.

We assume that a GENCO knows the inverse demand func-
tion, and that it must estimate the demand when it does not know
G. Gutierrez-Alcaraz / Electric Pow

lectricity market is important for market regulators who may
se it for market monitoring [9]. A multi-period equilibrium in a
ool-based electricity market that may include minimum profit
onstraints for online generating units is analyzed in Ref. [23].
n oligopoly with spatially dispersed generators and consumers

nd with multi-period demand is modeled in Ref. [4]. A dynamic
equential framework by using DESS is reported in Ref. [10];
hat analysis focuses on the dynamics within a single period.

We can also expect that forward expectations will accompany
he learning process [11,12]. This integration is crucial for two
easons: forward expectations teach a GENCO how its current
tock valuation is affected (since stocks are the physical link
etween successive periods, and the valuation will transform
xpectations about future trading into desires to exchange cur-
ent goods), and they are based on available information, i.e., the
tream of past and present price-quantity signals [13]. In today’s
ompetitive, volatile markets, accurate modeling of both the
perational and temporal constraints of all of its generating units
ay give a GENCO the “edge” over its competition. Conjectural

ariation method has been widely applied to estimate the strate-
ic behavior in game-theoretical contexts in terms of imperfect
nformation [14]. A conjectural variation-based learning model
hat can be used by a GENCO to improve its bidding perfor-

ance is reported in Ref. [15]. Each firm learns and dynamically
egulates its conjectures based upon the reactions of its rivals to
ts bidding according to the available information published in
he electricity market. Unfortunately, these conjectural variation

odels have been criticized for the drawbacks of logical consis-
ency and the possibility of abundant equilibria. The existence
nd uniqueness of consistent conjectural variation equilibrium
n electricity markets is investigated in Ref. [16].

Even what appears to be an insignificant constraint can
uickly alter a GENCOs market strategies [17]. For example,
he strategic use of ramp rates beyond elastic limits in genera-
ion dispatch has been investigated in Ref. [18], because they
ncur ramping costs and also widen the possible range of energy
elivery. A detailed formulation to model the power trajectories
ollowed by a thermal unit during start-up and shut-down pro-
esses, as well as the ramping limitations when increasing or
ecreasing power is reported in Ref. [19].

The Cournot model still does not analyze significant elec-
ricity market issues including intertemporal considerations. In
ef. [20] intertemporal decisions related with maintenance deci-

ions are reported. In an electricity market with only a few
ajor competing GENCOs, maintenance plays a critical role

hat goes beyond traditional least-cost analysis. In this document
he authors extend the previous work reported in Ref. [12]. A
igorous formulation of the ramping constraints reported in Ref.
19] has been implemented to analyze the effect of intertemporal
onstraints on a GENCOs decision-making process. The learn-
ng aspect, represented by forward expectations, is compared
ith the Cournot model without learning. A sensitivity analysis

s performed to observe how the solution of the short-term equi-

ibrium problem varies with the generation cost parameters, the
emand parameters, and the adjusting coefficients.

The paper is organized as follows: Section 2 describes the
lectricity spot market model. Section 3 presents a set of numer-
Fig. 1. Electricity spot market model.

cal examples to illustrate the points at hand. Section 4 presents
parameter dependency analysis. Finally, our conclusions are

iven in Section 5.

. Electricity market model

In this paper we consider a spot market operated on an hourly
asis where each time-step is solved individually using the
ournot market model. A representation of this electric market

s shown in Fig. 1.
Since GENCOs tend to make repetitive decisions, it is

xpected that they will learn from the market [22]. For each
ime period, GENCOs must form an expectation of their rivals’
utput in the subsequent period in order to determine their own
orresponding profit-maximizing quantity for period k + 1, and
o on. The sequential decision-making process of GENCO 1 is
epicted in Fig. 2.

Consider the inverse linear market-demand function at period
given by

(Q) = a − bQ(k) (1)∑n
Fig. 2. Sequential decision-making for GENCO 1.
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he actual demand function. Its optimization program is to max-
mize the expected profit from its generation assets, energy and
eserve, subject to operational constraints, over time. Mathemat-
cally, this can be expressed as

ax
qi(k)

πi(k) = P(qi(k) + q̂j(k))qi(k) − Ci(qi(k)) (2)

here q̂j(k) = λjqj(k − 1) + (1 − λj)qj(k), q̂j(k) represents
ENCO j’s expectation of the decisions made by GENCO i,

j (k − 1) is GENCOs j’s decision output at period (k − 1), λj is
he adjustment coefficient for GENCO j, and λ2 ∈ [−1 < λ2 ≤ 1].

Subject to the following constraints:
Ramp-up constraints: From one time instant to the next the

nit cannot increase its output above a maximum increment; this
ields:

i(k + 1) − qi(k) ≤ Zi ∀k = 1, . . . , K (3)

here Zi is the maximum power ramp-up increment of
nit i.

Ramp-down constraints: A unit cannot decrease its output
ower above a maximum power decrement. Therefore

i(k) − qi(k + 1) ≤ Wi ∀k = 1, . . . , K (4)

here Wi is the maximum power ramp-down decrement of unit
.

Unit capacity constraint: Any unit at any time should operate
ithin operational limits, then:

min
i ≤ qi ≤ qmax

i ∀i = 1, . . . , n (5)

here qmin
i and qmax

i are the lower and upper generation limit,
espectively, of unit i.

State transition constraints: The length of time the unit has
een off or online.

ik =
{

min(ton
i , xk+1 + 1) if uik = 1

max(toff
i , xk+1 − 1) if uik = 0

(6)

here xik is a state variable indicating the length of time that unit
has been up or down at period k, and uik is a binary decision
ariable indicating whether unit i at period k is up or down.

Unit status constraint: The unit can be either on or off, then:

ik =
{

1 if 1 ≤ xi,k−1 < ton
i

0 if − 1 ≥ xi,k−1 > −toff
i

(7)

The GENCO i production cost function is given by

q1(k) = 2(b + f2)(a − e1 − bλ2q2(k

4(b + f1)(b +

q2(k) = 2(b + f1)(a − e2 − bλ1q1(k

4(b + f1)(b +
i(qi(k)) = di + eiqi(k) + fiq
2
i (k) ∀i = 1, . . . 2 (8)

here di, ei, and fi are the production cost factors.
Temporarily ignoring operational and temporal constraints

nd solving the problem as if they did not exist, then:

W

L

w

Fig. 3. Two-GENCO electricity market equivalent.

ax
qi(k)

πi(k) = P(qi(k) + q̂j(k))qi(k) − di − eiqi(k) − fiq
2
i (k)

(9)

The first-order condition is

∂πi

∂qi(k)
= a − 2bqi(k) − bλjqj(k − 1)

+ b(1 − λj)qj(k) − ei − 2fiqi(k) = 0 (10)

For the two players, in matrix form we have

2(b + f1) b(1 − λ2)

b(1 − λ1) 2(b + f2)

] [
q1(k)

q2(k)

]

=
[

a − e1 − bλ2q2(k − 1)

a − e2 − bλ1q1(k − 1)

]
(11)

representation of this electric market is shown in Fig. 3.
Solving for q1(k) and q2(k) yields:

) − b(1 − λ2)(a − e2 − bλ1q1(k − 1))

− b2(1 − λ1)(1 − λ2)
(12)

) − b(1 − λ1)(a − e1 − bλ2q2(k − 1))

− b2(1 − λ1)(1 − λ2)
(13)

If the GENCOs do not know the inverse demand func-
ion, they must estimate the demand. Assume that GENCO i’s
stimate is P(Q) = ai − biQ(k), i = 1, . . ., 2. Then, the system
ecomes:

2(b1 + f1) b1(1 − λ2)

b2(1 − λ1) 2(b2 + f2)

] [
q1(k)

q2(k)

]

=
[

a1 − e1 − b1λ2q2(k − 1)

a2 − e2 − b2λ1q1(k − 1)

]
(14)

.1. Generation upper limits

If GENCO 1 has a capacity constraint, its profit-maximization
ecision becomes:

ax π1(k) = P(Q(k))q1(k) − C1(q1(k)) S. to q ≤ qmax
1 (15)
e construct the new function:

= P(Q(k))q1(k) − c1(q1(k)) − μ(q1(k) − qmax
1 ) (16)

here μ is a Lagrange multiplier.
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Fig. 4. Effect of capacity limit in market equilibrium.

The first-order conditions are

∂L

∂q1(k)
= a − e1 − 2(b + f1)q1(k) − bq2(k) − μ = 0 (17)

∂L

∂μ
= q1(k) − qmax

1 (k) = 0 (18)

n the two-player market model, the resulting set of equations
s

2(b + f1) b(1 − λ2) −1

b(1 − λ1) 2(b + f2) 0

1 0 0

⎤
⎥⎦

⎡
⎢⎣

q1(k)

q2(k)

μ

⎤
⎥⎦

=

⎡
⎢⎣

a − e1 − bλ2q2(k − 1)

a − e2 − bλ1q1(k − 1)

qmax
1 (k)

⎤
⎥⎦ (19)

similar procedure is applied when the lower limit is bounded.
The intersection of the two reaction functions, Eqs. (12) and

13), determines the market equilibrium in the Cournot model.
his equilibrium represents a Nash equilibrium if each GENCO

elieves the other will not change output regardless of what its
ompetitor does. The standard Nash equilibrium is also reached
ven when maximum generation limit is reached (which we can
bserve in a situation where one GENCO reaches its maximum

G
m

C
o

Fig. 5. Illustration of ramp up/down and
tems Research 78 (2008) 824–834 827

imit under the assumption that its competitor lacks complete
nformation). If this was not the case, the other GENCO will
xercise market power.

Fig. 4 portrays the reaction functions for the two GENCOs at
pecific period. Here we observe that the upper generating limit
f any unit is not reached given that such limits are above the
arket equilibrium, q1 = 141.53 and q2 = 143.83. If a generating

pper limit is reached, the new market equilibrium is determined
t the intersection point between the reaction function and the
enerating unit’s upper limit. Therefore, the limit will restrict
he pure Cournot equilibrium.

From Fig. 4, we also observe that the upper limit will never
e reached under demand and cost production parameters: if the
pper limit is 100 MW instead of 150 MW, the new equilibrium
s q1 = 100 and q2 = 164.53, as shown.

.2. Time on/off and ramp up/down constraints

The increment or decrement of the generation level of a unit
ver any two successive online periods (excluding start-up and
hut-down periods) is bounded by the ramp-up (RU) and ramp-
own (RD) limits, respectively as shown in Fig. 5. Temporal
onstraints and ramp up/down are incorporated in our model
rom Ref. [19].

. Numerical examples

This section presents three numerical examples of the model
escribed above. In each case the Cournot model is executed
wice: without and with learning. The production cost data
hown in Table 1 has been taken from Ref. [1] and modified.

The expected demand function parameters for each period of
he day-ahead market are listed in Table 2. The same demand
unction is retained for the three cases.

The forward expectation adjusting factors for each period
f the day-ahead market are listed in Table 3 (obtaining the
djusting coefficients is an important topic, but beyond the scope
f this paper). These parameters must be estimated for each

ENCO; they can be found utilizing several methods (e.g., data
ining, neural nets, and forecasting approaches) [21].

ase A. In this case, operational and temporal constraints are
mitted. The market equilibrium is found for each trading period

maximum/minimum constraints.
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Table 1
Producers’ data

GENCO di ($) ei ($/MW) fi ($/MW2) qmin
i (MW) qmax

i (MW) ton
i (h) toff

i (h) Ramp upmax
i (MW) Ramp downmax

i (MW)

1 820 9.023 0.00113 0 150
2 400 7.654 0.00160 0 300

Table 2
Expected demand function parameters for the day-ahead market

Period a b

1 185 0.42
2 190 0.35
3 210 0.46
4 120 0.34
5 130 0.40
6 140 0.62
7 195 0.34
8 150 0.20
9 180 0.37

10 240 0.42
11 230 0.99
12 160 0.28
13 148 0.22
14 330 0.5
15 135 0.25
16 180 0.43
17 168 0.35
18 160 0.36
19 198 0.49
20 175 0.30
21 190 0.48
22 140 0.60
23 150 0.52
24 130 0.20

Table 3
Forward expectation adjusting coefficient

Period λ1 λ2

1 0.0 1.0
2 −1.0 1.0
3 0.0 0.0
4 −1.0 0.9
5 −0.9 1.0
6 −0.3 0.3
7 −0.8 0.5
8 0.7 0.5
9 0.6 1.0

10 0.8 0.7
11 −0.7 −0.4
12 1.0 1.0
13 0.3 0.2
14 0.8 −0.8
15 −0.9 −0.9
16 −0.4 0.4
17 0.0 −1.0
18 0.0 0.7
19 0.9 0.2
20 0.4 1.0
21 −0.3 −0.1
22 0.0 0.7
23 −0.4 1.0
24 −0.6 0.8

i
p
r

T
k
o
C
t
a
a
n
c

d
o
m
l
b
i

d

T
E

P

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2

16 6 40 30
12 4 50 30

ndividually. The expected market supply and the expected out-
uts of the two GENCOs for each period of the day-ahead are
eported in Table 4 and graphically depicted in Fig. 6.

By comparing columns 2 and 3 with columns 4 and 5 in
able 4, we observe that each GENCOs contribution to the mar-
et is the same when both adjusting coefficients equal 0 (this
ccurs at period 3). Hence this case represents the traditional
ournot equilibrium with two players and a linear demand func-

ion. The equilibrium is more competitive when both coefficients
re positive; the opposite occurs when both coefficients are neg-
tive [17]. Each market equilibrium is a Nash equilibrium since
either GENCO will change its output if the other does not
hange, given the current information.

From Fig. 6(a) we can observe that the GENCOs’ outputs
iffer slightly. The differences between their outputs are due
nly to different production costs. We see that GENCO 1 is
ore costly and therefore its output is lower. However, when

earning is introduced, the outputs of the two GENCOs differ
ecause of production costs and because of the adjusting factor

nvolved in each one’s decisions as shown in Fig. 6(b).

The market price for each period as displayed in Fig. 7 is
etermined by the total market generation.

able 4
xpected GENCOs’ outputs: Case A

eriod No learning Learning

GENCO 1 GENCO 2 GENCO 1 GENCO 2

1 138.51 141.60 209.21 106.32
2 170.95 174.62 205.05 159.69
3 144.58 147.40 144.58 147.40
4 107.40 111.26 89.33 147.82
5 99.62 102.92 77.20 119.55
6 69.66 71.81 59.89 79.28
7 180.88 184.64 230.30 91.98
8 232.44 238.69 270.24 233.79
9 152.71 156.21 113.98 128.75
0 182.14 185.18 198.02 210.81
1 73.93 75.27 65.87 125.51
2 177.97 182.54 206.43 238.43
3 208.30 214.04 205.35 215.35
4 212.98 215.51 209.90 218.87
5 166.01 171.14 193.04 165.23
6 131.42 134.44 118.98 155.44
7 150.01 153.71 151.73 152.85
8 138.45 142.05 134.37 144.09
9 127.57 130.23 127.40 127.19
0 182.77 187.03 212.63 189.13
1 124.67 127.39 118.22 144.75
2 71.98 74.20 45.31 87.51
3 89.46 92.00 91.70 81.62
4 199.14 205.47 256.29 127.83
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Fig. 6. GENCOs’ expected outputs (a) without learning and (b) with learning: Case A.

out le

a
m
c

Fig. 7. Market-clearing prices (a) with
From Fig. 7(a), the lowest market price occurs at period 5
nd at period 13 in Fig. 7(b). In the first case, it is due only to the
arket demand and production cost parameters. In the second

ase, the adjusting factors play an important role such that the

m
t

F

Fig. 8. Profits per period per GENCO (a) w
arning and (b) with learning: Case A.
arket equilibrium reaches the perfect competitive outcome in
hat specific period.

Fig. 8 shows the profits for each GENCO at each period.
ig. 8(a) shows that profits are quite similar (the differences

ithout and (b) with learning: Case A.
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Table 5
Total revenues, total costs and net profits: Case A

GENCO Total revenue ($) Total cost ($) Net profit ($)

1 232,080 52,207 179,873
2 237,410 38,257 199,153
1
2

o
p
o
p

p

G
t
c

C
o
p
t

e
f
T
E
t
t
t

C
i
s
i

s

Table 6
Expected GENCOs’ outputs: Case B

Period No learning Learning

GENCO 1
(MW)

GENCO 2
(MW)

GENCO 1
(MW)

GENCO 2
(MW)

1 138.51 141.60 150.00 135.87
2 150.00 185.07 150.00 214.61
3 144.58 147.40 144.58 147.40
4 107.40 111.26 89.33 147.82
5 99.62 102.92 77.20 119.55
6 69.66 71.81 59.89 79.28
7 150.00 200.04 150.00 164.08
8 150.00 279.75 150.00 251.75
9 150.00 157.56 113.98 128.75

10 150.00 201.22 150.00 215.60
11 73.93 75.27 65.87 125.51
12 150.00 196.49 150.00 238.43
13 150.00 0.00 150.00 0.00
14 150.00 0.00 150.00 0.00
15 150.00 0.00 150.00 0.00
16 150.00 0.00 150.00 0.00
17 0.00 228.54 0.00 228.54
18 0.00 211.12 0.00 211.12
19 0.00 193.91 0.00 193.91
20 0.00 278.17 0.00 278.17
21 0.00 189.63 0.00 189.63
22 0.00 110.14 0.00 110.14
2
2

o
s

i
T
c
b

231,610 54,149 177,461
220,000 38,094 181,906

ccur because the GENCOs’ outputs differ slightly). However,
rofits vary more when the learning effect is considered. More-
ver, in some cases (i.e., periods 1, 2, 7, 8, and 24), GENCO 1’s
rofits are higher due to the adjusting factors.

Table 5 summarizes the total revenues, total costs, and net
rofits over the 24 periods.

From Table 5 we observe that net profits are higher for both
ENCOs when learning is not included. This indicates that the

raditional Cournot outcome is even greater because the coeffi-
ients selected were not the optimum values.

ase B. In this case, maximum/minimum on/off times and
perational limits are considered. The new expected market sup-
ly and the new expected GENCOs’ outputs for each period of
he day-ahead are presented in Table 6.

Here we can see that GENCO 1 reaches its upper limit of gen-
ration in several periods and that market equilibrium is found
or each period even when GENCO 1 reaches its upper limit.
able 6 also shows that there is one shut-down for each GENCO.
ach time that a GENCO goes “off,” the market supply becomes

he GENCOs online output. Maximum up and minimum down
imes are met throughout the timespan. The remaining opera-
ional constraints are satisfied.

By comparing Table 4 with Table 6, we observe that the GEN-
Os’ outputs differ only for the periods in which the upper limit

s reached, in addition to the shut-down periods. A graphic repre-

entation of the two outputs with and without the learning effect
s shown in Fig. 9.

Fig. 9 shows that each time a GENCO is off, the market
upply becomes the GENCOs online output. In addition, we

n
t
b

Fig. 9. GENCOs’ expected outputs (a) withou
3 89.46 92.00 80.40 80.47
4 150.00 229.95 150.00 209.15

bserve that GENCO 1 reaches its upper generating limit in
everal periods even when GENCO 2 is off.

During those periods when only one unit is on and it reaches
ts upper limit, the learning aspect affects the market equilibrium.
he market equilibrium is still a Nash equilibrium. The capacity-
onstrained price game potentially will appear if the players
ecome informed (Figs. 10 and 11).
Similar to Table 5, the net profits are higher when learning is
ot considered. However, GENCOs 2 profits increase substan-
ially while GENCOs 1 profits decrease. Changes in profits occur
ecause the units went off for several periods. During periods

t learning and (b) with learning: Case B.
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Fig. 10. Market-clearing prices (a) without learning and (b) with learning: Case B.

(a) w

w
a
a

C
s
p

f
G
(
r

T
T

G

1
2
1
2

w
C
w
b

r
e
d

Fig. 11. Profits per period per GENCO

hen only one unit is supplying the market, a GENCOs profits
t day’s end are higher than when all of its units are online for
ll the periods (Table 7).

ase C. This case accounts for temporal and operational con-
traints. The expected GENCOs’ outputs for the day-ahead are
resented in Table 8.

Here we observe that the commitment schedule differs

rom the two previous cases. There is one shut-down for each
ENCO. In addition, ramp-up and ramp-down constraints occur

seen in the GENCOs’ outputs). In Case B above, once the unit
eached its maximum time online, it goes off (this also occurs

able 7
otal revenues, total costs and net profits: Case B

ENCO Total revenue Total cost Net profit

205,480 41,463 164,017
256,490 36,698 219,792
199,530 40,614 158,916
256,840 37,221 219,619

s

w
h
a
d

c

a
i
b
o

ithout and (b) with learning: Case B.

hen it reaches its maximum offline time). However, in Case
, before the unit goes off, the ramp-down constraint begins
orking so that the unit decreases its output for several periods
efore it finally goes off.

As seen in Fig. 12, the commitment schedule differs with
espect to the two previous cases. There is one shut-down for
ach GENCO. The market-clearing price as displayed in Fig. 13
iffers considerably due to the ramp-up and ramp-down con-
traints (Fig. 14, Table 9).

In the situation depicted, GENCO 2 makes the highest profits
ith and without learning. Moreover, GENCO 2’s profits are
igher when the learning aspect is considered via the use of
djusting factors. However, the inclusion of ramp-up and ramp-
own reduces its profits with respect to Case B.

Table 10 summarizes total expected revenues, total expected
osts, and net expected profits for each GENCO for each case.

Table 10 reveals that net profits differ from case to case. In

ll cases, GENCO 2 earns higher profits, with Case B resulting
n the most favorable conditions. The table also shows that the
enefits differ with the incorporation of additional constraints,
perative generation limits, and ramping constraints.
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Fig. 12. GENCOs’ expected outputs (a) without learning and (b) with learning: Case A.

hout l

4

c
e

Fig. 13. Market-clearing prices (a) wit

. Parameter dependency
A different choice of parameters will influence market out-
omes. Market equilibrium depends on all system parameters
xcept fixed-cost parameters.

m
c
f
r

Fig. 14. Profits per period per GENCO (a) w
earning and (b) with learning: Case C.

Adjusting factors assume a key role in the determination of

arket equilibrium since they modify the reaction functions. By

hanging the adjusting factors, we can find a factible region. The
actible region is determined by the extreme maximum values
eached by the adjusting factors. For instance, when both factors

ithout and (b) with learning: Case C.
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Table 8
Expected GENCOs’ outputs: Case C

Period No learning Learning

GENCO 1
(MW)

GENCO 2
(MW)

GENCO 1
(MW)

GENCO 2
(MW)

1 138.51 141.60 150.00 135.87
2 150.00 185.07 150.00 214.61
3 140.74 155.07 125.99 184.61
4 110.74 125.07 95.99 154.61
5 99.62 102.92 77.20 124.61
6 69.11 72.92 54.53 94.61
7 109.11 122.92 94.53 213.89
8 149.11 150.00 134.53 150.00
9 150.00 120.00 113.98 120.00

10 150.00 90.00 150.00 90.00
11 120.00 60.00 120.00 60.00
12 150.00 30.00 150.00 30.00
13 120.00 0.00 120.00 0.00
14 90.00 0.00 90.00 0.00
15 60.00 0.00 60.00 0.00
16 30.00 0.00 30.00 0.00
17 0.00 50.00 0.00 50.00
18 0.00 100.00 0.00 100.00
19 0.00 150.00 0.00 150.00
20 0.00 200.00 0.00 200.00
21 0.00 189.63 0.00 189.63
22 0.00 159.63 0.00 159.63
23 40.00 129.63 40.00 129.63
24 80.00 179.63 80.00 264.92

Table 9
Producers’ revenues, costs and profits: Case C

GENCO Total revenues ($) Total costs ($) Net profits ($)

1 186,360 37,608 148,752
2 214,070 29,419 184,651
1
2
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2
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2
1
2
1
2
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2
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172,330 36,494 135,836
225,600 31,903 193,697

qual 1, it represents the maximum market quantity which is in
ssence the Bertrand outcome. The intersection of reaction func-

ions still determines the market equilibrium. On the other hand,
hen both factors approach −1, the lower market quantity bound

s established. Graphically this factible region is represented by

able 10
roducers’ revenues, costs and profits

ENCO Total revenues ($) Total costs ($) Net profits ($) Case

232,080 52,207 179,873 A
237,410 38,257 199,153
231,610 54,149 177,461
220,000 38,094 181,906
205,480 41,463 164,017 B
256,490 36,698 219,792
199,530 40,614 158,916
256,840 37,221 219,619
186,360 37,608 148,752 C
214,070 29,419 184,651
172,330 36,494 135,836
225,600 31,903 193,697

p
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p
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t
t
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a
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Fig. 15. Equilibrium market factible region.

he shadowed area depicted in Fig. 15. We note that any combi-
ation of adjusting factors will fall within the factible region.

It is well known that changes in market-demand function
arameters will increase or decrease the factible region [ ]. For
nstance market demand “shifts up” when increasing parameter a
nd keeping everything else constant. Consequently, the factible
egion increases. If parameter b decreases, and everything else
s kept constant, the market demand also shifts up and therefore
he factible region increases.

. Conclusions

This paper studies the production decisions of GENCOs in
n oligopolistic electricity market solved by sequential market
quilibriums. The formulation of sequential market equilibri-
ms is represented by an independent linear set of equations
ith unique solutions when temporal constraints are omitted.
perational and temporal constraints have been included in the
odel. Once the temporal constraints are considered, the inde-

endent time-steps solutions are coordinated by the supervision
f the maximum/minimum on/off time constraints.

The model elaborated in this paper was reduced to a two-
layer model to facilitate the analysis and make it relatively easy
o identify the results derived a priori. The model can be extended
o an n-player model in a single-node. Under this condition,
he problem can be reduced to a two-player model. To reduce
two-player model we can use a composite of the generation

roduction cost curves, and reduce our own generation units
nd the rival units to one composite unit. The Cournot game
esults if all the adjusting coefficients equal zero, λ = 0. When
ll of the GENCOs’ adjusting coefficients are equal to 1, the
arket equilibrium moves to the Bertrand outcome; monopoly

s reached when they tend to −1.
The solution of the short-term equilibrium problem varies
ith the generation cost parameters, the demand parameters, and
he adjusting coefficients. A numerical example that illustrates
he impact of the ramping process shows that the benefits will
iffer with the incorporation of ramping constraints.
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34 G. Gutierrez-Alcaraz / Electric Pow

Modeling the repetition of static snapshot with learning effect
n the decision-making process is an alternative method to
nalyze the dynamic behavior of the market players. We incorpo-
ated learning by using forward expectations. In the examples
iven, these coefficients are assumed to be known. However,
hey must be estimated for each GENCO utilizing methods such
s data mining, neural nets, and forecasting.

The issue of transmission network effect merits further
esearch. Currently, we are applying it to our model and will
eport the results in further publications.

ppendix A. List of symbols

, b market-demand parameters
i(qi(k)) production cost function of GENCO i
i, ei, fi coefficients of production cost function Ci(qi(k))

index for the number of GENCOs
index for the number of time intervals (h)

(Q) inverse linear market demand at period k
i(k) output from player i at period k

ˆj(k) GENCO j’s expectation of the decisions made by
GENCO i at period k

min
i minimum output of the GENCO i
max
i maximum output of the GENCO i
(k) total market output at period k

off
i minimum time off of the GENCO i
on
i maximum time on of the GENCO i
ik binary decision variable indicating whether the unit i

at period k is up or down
i maximum power ramp-down decrement of unit i

ik state variable indicating the length of time that the unit
i has been up or down at period k

i maximum power ramp-up increment of unit i

reek symbols
j adjustment coefficient for GENCO j

Lagrange multiplier
i(k) profit of GENCO i at period k
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