Scientific Research Open Access

Search Keywords, Title, Author, ISBN, ISSN

Home	Journals	Books	Conferences	News	About Us	s Job
Home > Journal > Business & Economics Earth & Environmental Sciences > LCE					Open Special Issues	
Indexing View Papers Aims & Scope Editorial Board Guideline Article Processing Charges					Published Special Issues	
LCE> Vol.3 No.1, March 2012					Special Issues Guideline	
OPEN@ACCESS Technico-Economical Evaluation of CO ₂ Transport in an Adsorbed					LCE Subscription	
Phase					Most popular papers in LCE	
PDF (Size: 300KB) PP. 21-33 DOI: 10.4236/Ice.2012.31004 Author(s)					About LCE News	
Mildred Lemus Perez, Manuel Rodriguez Susa, Mario Pellerano, Arnaud Delebarre					Frequently Asked Questions	
This work considers the possibility to transport CO_2 in an adsorbed phase and analyzes its cost as a function of transported quantities, transport conditions and transportation means. CO_2 adsorption					Recommend to Peers	
capacities of 6 different adsorbents, comprising 4 activated carbons and 2 zeolites, were empirically evaluated in a given range of pressure and temperature. The adsorbent with the highest mass adsorption					Recommend to Library	
capacity (AC1), as well as another sorbent described in the literature (AC5) were selected to be used for CO_2 transportation by ships, trains or trucks. Their characteristics and performances were then used to develop an economic analysis of transportation costs and CO_2 emissions generated by the transport with					Contact Us	
or without storage. Economic evaluation of CO_2 batch transport shows that CO_2 transported in an adsorbed phase by train was seen to be almost competitive on distances between 250 and 500 km in				Downloads:	49,889	
comparison to liquefied CO_2 . One of the activated carbon appeared to be competitive on short distances by truck when transport was not followed by storage. Shin transport of adsorbed CO_2 on distances around					Visits:	141,194
1500 km was competitive, when CO_2 was used as delivered; there was an over cost of only 16%, when there was storage after the transport. The CO_2 emissions generated by CO_2 transport and storage when transport is carried out in an adsorbed phase were smaller than the ones generated by liquid phase					Sponsors, Associates, ai	
transport below 1200 km, 500 km and 300 km by ship, train and truck respectively, as a function of the						

Cite this paper

KEYWORDS

Analysis

M. Perez, M. Susa, M. Pellerano and A. Delebarre, "Technico-Economical Evaluation of CO2 Transport in an Adsorbed Phase," Low Carbon Economy, Vol. 3 No. 1, 2012, pp. 21-33. doi: 10.4236/lce.2012.31004.

adsorbent used. Adsorbed CO2 transported on 1500 km by ship generated 27% less CO2 emissions than liquid phase and 17% by train for a distance of 250 km and 16% by truck on 150 km, although these

Component; Formatting; Style; Styling; Insert; CO2; Transport; Adsorption; Activated Carbon; Economical

differences were decreasing with the distance of transport.

References

- R. Svensson, M. Odenberger, F. Johnsson and L. Str?mberg, "Transportation Systems for CO2-[1] Application to Carbon Capture and Storage," Energy Conversion and Management, Vol. 45, No. 15-16, 2004, pp. 2343-2353. doi:10.1016/j.enconman.2003.11.022
- [2] A. Aspelund, M. J. Molnvik and G. De Koeijer, "Ship Transport of CO2: Technical Solutions and Analysis of Costs, Energy Utilization, Exergy Efficiency and CO2 Emissions," Chemical Engineering Research and Design, Vol. 84, No. 9, 2006, pp. 847-855. doi:10.1205/cherd.5147
- [3] D. Golomb, " Transport Systems for Ocean Disposal of CO2 and Their Environmental Effects," Energy Conversion and Management, Vol. 38, 1997, pp. 279-286. doi:10.1016/S0196-8904(96)00282-8
- [4] Y. Fujioka, M. Ozaki, K. Takeuchi, Y. Shindo and H. J. Herzog, " Cost Comparison in Various CO2 Ocean Disposal Options," Energy Conversion and Management, Vol. 38, 1997, pp. 273-277. doi: 10.1016/S0196-8904(96)00281-6
- B. Metz, O.Davidson, H. De Coninck, M. Loos and L. Meyer, " Carbon Dioxide Capture and Storage: [5]

IPCC Special Report," Cambridge University Press, Cambridge, 2005.

- [6] S. Decarre, J. Berthiaud, N. Butin and J.-L. Guillaume- Combecave, " CO2 Maritime Transportation," International Journal of Greenhouse Gas Control, Vol. 4, No. 5, 2010, pp. 857-864.
- [7] M. Barrio, A. Aspelund, T. Weydahl, T. E. Sandvik, L. R. Wongraven, H. Krogstad, R. Henningsen, M. Molnvik, and S. I. Eide, "Ship-Based Transport of CO2," Proceedings of the 7th International Conference on Greenhouse Gas Control Technologie, Vancouver, 5-9 September 2004, pp. 1655-1660.
- [8] O. Kaarstad and C. W. Hustad, " Delivering CO2 to Gullfaks and the Tampen Area," 2003. http:// www.co2.no
- [9] G. Hegerland, T. Jorgensen and J. O. Pande, "Liquefaction and Handling of Large Amounts of CO2 for EOR," Proceedings of the 7th International Conference on Green- house Gas Control Technologies, Vancouver, 5-9 September 2004, pp. 2541-2544.
- [10] F. Neele, C. Hendriks and R. Brandsma, "Geocapacity: Economic Feasibility of CCS in Networked Systems," Energy Procedia, Vol. 1, No. 1, 2009, pp. 4217-4224. doi:10.1016/j.egypro.2009.02.232
- [11] A. Shafeen, E. Croiset, P. L. Douglas and I. Chatzis, "CO2 Sequestration in Ontario, Canada. Part I: Storage Evaluation of Potential Reservoirs," Energy Conversion and Management, Vol. 45, No. 17, 2004, pp. 2645-2659. doi:10.1016/j.enconman.2003.12.003
- S. Sircar, T. C. Golden and M. B. Rao, "Activated Carbon for Gas Separation and Storage," Carbon, Vol. 34, No. 1, 1996, pp. 1-12. doi:10.1016/0008-6223(95)00128-X
- [13] A. Subrenat and P. Le Cloirec, "Volatile Organic Compound (VOC) Removal by Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption: An Industrial Application," Chemical Engineering Communications, Vol. 193, No. 4, 2006, pp. 478-486. doi:10.1080/00986440500191768
- M. Pellerano, P. Pré, M. Kacem and A. Delebarre, "CO2 Capture by Adsorption on Activated Carbons Using Pressure Modulation," Energy Procedia, Vol. 1, No. 1, 2009, pp. 647-653. doi:10.1016/j.egypro.2009.01.085
- [15] M. Ozaki, J. Davison, J. Minamiura, E. S. Rubin, D. W. Keith, C. F. Gilboy, M.Wilson, T. Morris, J. Gale and K. Thambimuthu, " Marine transportation of CO2," Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, 5-9 September 2004, pp. 2535-2539.
- [16] Z. Oztürk, "Investigating Optimum Speed in High-Speed Railway: Istanbul-Ankara Corridor," ARI The Bulletin of the Istanbul Technical University, Vol. 54, No. 3, 2004, pp. 78-89.
- [17] W. Edwards, "Estimating Farm Machinery Costs," 2009. http://www.extension.iastate.edu
- [18] M. Aka, M. Nishio, M. Iijima, M. Ozaki, J. Minamiura, T. Tanaka, E. S. Rubin, D. W. Keith, C. F. Gilboy, M. Wilson, T. Morris, J. Gale and K. Thambimuthu, "Performance and Economic Evaluation of CO2 Capture and Sequestration Technologies," Proceedings of the 7th International Conference on Greenhouse Gas Control Technolo- gies, Vancouver, 5-9 September 2004, pp. 1213-1219.
- [19] A. Aspelund, T. E. Sandvik, H. Krogstad and G. Koeijer, "Liquefaction of Captured CO2 for Ship-Based Transport," Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, 5-9 September 2004, pp. 2545-2549.
- [20] J. A. Kent, "Riegel' s Hand Book of Industrial Chemistry," 10th Edition, Kluwer Academic Press, New York, 2003.
 - Y. Haseli, G. F. Naterer and I. Dincer, Comparative Assessment of Greenhouse Gas Mitigation of