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Estimation

Popularity due to its asymptotic optimality.

To maximize L = Πi f (xi , θ)—likelihood—given realized X ,
find value of θ makes it most likely.

Equivalently, to maximize

ln L =
n∑

i=1

ln f (xi , θ)

First order condition

∂ ln L

∂θ
=

n∑
i=1

∂ ln f (xi , θ)

∂θ
=

n∑
i=1

gi = 0
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The linear model under normality

Estimation

By approximation

0 =
n∑

i=1

∂ ln f (xi , θ̂)

∂θ

=
n∑

i=1

∂ ln f (xi , θ0)

∂θ
+

[
n∑

i=1

∂2 ln f (xi , θ0)

∂θ∂θ′

]
(θ̂ − θ0)

Usefulness of the FOC/Linearization—in MLE and Nonlinear
regression.

Justify the limiting distribution.
Facilitate computation—iteration method.
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Estimation

Consistency, asymptotic normality, and efficiency,

√
n(θ̂ − θ0)

d→ N(0, nI (θ0)
−1) = N(0,E

[
−∂2 ln f (xi , θ0)

∂θ∂θ′

]−1

)

where

I (θ) = E

[
−∂2 ln L

∂θ∂θ′

]
= nE

[
−∂2 ln f (xi , θ)

∂θ∂θ′

]
= nE

[
∂ ln f (xi , θ)

∂θ

∂ ln f (xi , θ)

∂θ′

]
I (θ) is the information matrix
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Estimation

Estimate the asymptotic Variance of the MLE

approach one

Î (θ̂) = n ∗ 1

n

∑
i

[
−∂2 ln f (xi , θ̂)

∂θ∂θ′

]
=

[
−∂2L(θ̂)

∂θ̂∂θ̂′

]

approach two

Î ∗(θ̂) = n ∗ 1

n

[
n∑

i=1

ĝi ĝ
′
i

]
=

[
n∑

i=1

ĝi ĝ
′
i

]

where ĝi = g(xi , θ̂), which is known as BHHH estimator and
the outer product of gradients, or OPG.
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Three Asymptotically equivalent test procedures

The null hypothesis H0: c(θ) = q. Let θ̂ denote the MLE and
θ̄ the constrained MLE.

Likelihood ration test: LR= 2(ln L(θ̂)− ln L(θ̄)), which
asymptotically χ2

J under the null hypothesis

The Wald test:
W = (c(θ̂)− q)′(Var(c(θ̂)− q))−1(c(θ̂)− q) =

(c(θ̂)− q)′(∂c(θ̂)
∂θ′ Est. Var(θ̂)∂′c(θ̂)

∂θ )−1(c(θ̂)− q)

The Lagrange Multiplier Test–Rao’s Score test:

LM=
(

∂L(θ̂)
∂θ′

)
[I (θ̂)]−1

(
∂′L(θ̂)

∂θ

)
.
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The linear model under normality

The model
yi = x ′i β + εi

The density for εi—–f (εi ) = 1√
2πσ2

exp{−ε2
i /2σ2}.

log Likelihood

ln L(θ) = −n

2
ln(2π)− n

2
lnσ2 − [1/2σ2]

n∑
i=1

(yi − x ′i β)2

= −n

2
ln(2π)− n

2
lnσ2 − [1/2σ2](y − Xβ)′(y − Xβ)
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The linear model under normality

The first order conditions

∂ ln L

∂β
=

1

σ2
X ′(y − Xβ) = 0

and
∂ ln L

∂σ2
=
−n

2σ2
+

1

2σ4
(y − Xβ)′(y − Xβ) = 0

Thus
β̂ML = (X ′X )−1X ′y = b

and

σ̂2
ML =

e ′e

n
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The linear model under normality

[
∂2 ln L/∂β∂β′ ∂2 ln L/∂β∂σ2

∂2 ln L/∂σ2∂β′ ∂2 ln L/∂(σ2)2

]∣∣∣∣
θ̂

=

[
−(1/σ2)X ′X −(1/σ4)X ′ε
−(1/σ4)ε′X n/(2σ4)− ε′ε/σ6

]
hence

[I (β, σ2)]−1 =

[
σ2(X ′X )−1 0

0 2σ4/n

]
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