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Introduction. Recently, several authors have dealt with the issue of the
existence of equilibrium points in normal-form games with incomplete
information. Their papers have had different focuses. Armbruster and
Bdge [AB] investigated a variety of non-standard equilibrium notions for games
in which the players have inconsistent beliefs, and treated the classical Mash
equilibrium point primarily for reasons of contrast. Rosenthal and
Radner [RR] studied\ situations in which the mixed-strategy equilibria of a
game correspond to “equivalent” pure-strategy equilibria (the occurrence of
these situations is related to the nonatomicity of the game's information
structure). Milgrom and Weber [MW] were concerned with the manner in which

the equilibria of a game vary as the information structure is changed.

The most general of the game models considered was that developed in
[MW], wherein a general existence theorem was also obtained. Our purpose in
this paper is to discuss the general model, and to explore the relationships
among the three existence theorems mentioned above. A centrai feature of this
paper is the treatment of topological issues concerning the information in the

game and the players' strategies.

Definitions and examples. In an n-person game with incomplete

information, an initial chance move determines an n-tuple of player “types."
Each player is told his own type, and must then select from a set of
permissible “"actions.” Finally, each receives a payoff depending on the
n-tuples of types and selected actions. The formal model consists of six

elements, all of which are common knowledge among the players:

(i) a set N={1,2,...,n} of players;
(ii) for each player i, a compact metric space A; of actions;
(iii) for each player i, a measurable space T; of types;

(iv) a measurable space Tg of states.

Let A= Ap Xeoux A, and T= Tg X ewex Tn' The next element of the
model is:
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(v) the information structure of the game, a probability

measure n on T.

The marginal distribution of n on player i's type space is denoted
by ny ; that is, for every measurable set S in Ty, “i(s) =
n(Tox...xTi_IXSXTi+1x...xTn). The final element of the model is:

(vi) for each player i, a payoff function wuy: T x A+ R, which is

bounded, measurable on T, and continuous on A.

Example 1 (preference uncertainty). Assume that each player in a game
knows his own preferences, but is uncertain about the preferences (and hence,
about the stfategic motivations) of his competitors. Harsanyi proposed that
this situation be modeled as a game of incomplete information, in which each

payoff function can be written in the form ui(ti,a). The realization of the

's "type,"” known to him but unknown to the

other players. (We are dealing here with the case in which the beliefs of the

random variable Ei is player i

players are consistent.) Frequently, it is further assumed that the types of
the players are distributed independently, i.e., n = Ny XeeoX M . It is this
independent-types, preference-uncertainty model which is the principal object
of study in both [AB] and [RR].

When i's type is tys his payoff function ui(ti,-) is a von Neumann-
Morgenstern utility function representing his preferences. Such utility
functions are determined only up to positive affine transformatioms.
Therefore, it is desirable that the analysis of the game should be independent
of the particular choice 9f utility representations. That is, ‘the game with
payoff functions v;(t;,a) =a(tjlu;(ty,a) +B(t;), where o and B are
measurable functions and o > 0 , should be treated as equivalent to the

original game.

Example 2 (quality uncertainty). Assume that the preferences of the
players are known to all, but that the payoffs are affected by some chance
event represented by the random variable EO; that is, each payoff function
can be written in the form ui(to,a). The variable ;i represents a private
signal received by player i prior to his choice of an action. Note that a
player's signal may be informative about the signals of others, as well as

about the chance event, through the joint distribution n.

In this case, the expected payoff of a player, given that the vector of
signals t = (t;,...,t;) has arisen and the players have selected the vector

of actions a, 1is vi(t,a) = E[ui(to,a)ltl,...,tn].
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Similarly, in any game in which the state variable appears in the payoff
functions, that variable can be "integrated out” of the game, yielding an
equivalent game from the standpoint of expected payoffs. (Actually, this
corresponds to moving an unobservable chance move from the beginning of the
extensive form of the game to the end, and then replacing terminal payoffs by
expected payoffs.) Therefore, throughout the remainder of this paper we shall
assume without loss of generality that the state variable does not appear in

the payoff functions, and that T = Ty Xeoox Tpe

Strategies. A pure strategy for player 1 1is a measurable function

py+ Ty » Aj. It is well-known that even in the case of complete information PR
(i.ee, IT| = 1), many games fail to have equilibria if the players are
restricted to using pure strategies. Therefore, we wish to extend the

players' options to include randomized strategies.

In games of complete information, a randomized strategy is defined as a
probability measure on a player's pure-strategy space, or equivalently, on his
action space. This approach leads to technical difficulties when we try to
extend it to general games with incomplete information (for a discussion of
these difficulties, see_ [Au]). One alternative is to define a mixed strategy
for player 1 to be a measurable function o,: [0,1] x T, > A; . The first
argument of o4 is interpreted as a uniformly distributed random variable s;
hence, Oi(z,ti) is a random variable on A;. The expected payoff to

player i, when the players use mixed strategies TpseessOy, is
M0y ,eee,0 ) = ui(t,[cl(sl,tl),..-,dn(sn,tn)]) ds;...ds_ n(dt).

Another approach, developed in [MW], is to define a distributional
strategy for player i to be a probability measure uy on Ty x Ay, for
which the marginal distribution on T; is ny (that is, for all measurable
sets S in Ti', ui(s X Ai) = ni(S) ). We denote player i's set of
distributional strategies by Dj. When the players adopt distributional
strategies Hiseonalos the expected payoff to player i is

mQupeeen) = / u, (t,a) ul(dalltl)...un(danltn) n{dt).

It is shown in [MW] that mixed and distributional strategies provide the
players with identical strategic opportunities. However, each distributional
strategy corresponds to many mixed strategies. For example, in the case of
complete information, many mixed strategies induce the same distribution on

actions; only a single distributional strategy 1s this distribution.
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Equilibrium points. An n-tuple (pl,...,un) of distributional
strategies is an equilibrium point of a game if each player's strategy is a
best response to the strategies of the others, i.e., if for every player i
and every ui in Di’ "i(ul""’ui""’un) > wi(ul,...,ui,...,un).

A general theorem asserting the existence of equilibria for classes of

games is due to Glicksberg:

Theorem. Let the players' strategy spaces be nonempty compact,
convex linear Hausdorff spaces. Let the payoff functions be continuous on the
product of the strategy spaces, and let each player's payoff function be

quasiconcave in his strategy. Then an equilibrium point exists.

In order to apply this theorem to games with incomplete .information, it
is necessary to topologize each space of distributional strategies in such a
way as to resolve two conflicting tensions: the topology must be weak enough
to make the strategy spaces compact, yet strong enough to make the expected

payoff functions continuous. How might we do this?

Assume that each T; is endowed with a complete separable metric
topology, and that the measurable structure of Ti contains the Borel sets.
Then a natural topology on Dy is the topology of weak convergence of

probability measures.

Recall that a family of probability measures on a topologica; space is
tight if for every e > 0 there is a compact set K. on which each of the
measures places probability at least 1 - e. Every single probability measure
on a complete separable metric space is tight; hence, n; is tight on Ty.

A; 1is compact, and for any K in T; and every My in Dy,
ui(K x Ai) = ni(K) ; hence, Dy 1is a tight family and, by Prohorov's Theorem,

is compact in the weak topology.

The existence theorem. In order to assure that the expected payoff

functions are continuous in the players' distributional strategies when

each D; is given the weak topology, we make two further assumptions.

Continuous payoffs: For every player i and every e > O, there is
a subset E of T such that n(E) > 1 - e and such that the family of

functions {u,(t,*): t e E} is equicontinuous.

Continuous information: The measure n is absolutely continuous

with respect to the product measure n = Ny XeeoX Moo
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The continuous payoffs condition holds, for example, when each u; 1is
uniformly continuous on T x A, or when each Ay is finite. More generally,
this condition permits us (via Lusin's Theorem) to find, for every player i
and every € > 0, a set K in T with n(K) >1 -¢ and a bounded,

continuous function vi on Tx A such that vy coincides with uy on
K x A.

The continuous information condition holds, for example, when the type
spaces are finite, or when the types are independently distributed. Assuming
the condition to hold, let f be the Radon-Nikodym derivative of n wicﬂ
respect to ﬁ. Then the expected payoff functions can be rewritten in the

following form:

myupaeeeay) = [ uy(e,8) £0E) duy(e)hap)eedu (e La ).

(One can define new payoff functions ViseessVy, by vi(t,a) =
u;(t,a)f(t). The expected payoff functions in the game with these payoffs,
and with information structure a, are the same as the expected payoff
functions in the original game; hence, the equilibria of the two games are
identical. Several authors have made use of this identity in the finite-
types, finite-actions case, to enable them to restrict their attention to

games with independent types.)

With these assumptions, it is shown in [MW] that the expected payoff

functions are continuous when each D; 1s given the weak topology.

Theorem. If a game with incomplete information has continuous payoffs

and continuous information, then an equilibrium point exists.

The existence theorem of [AB] treats the case in which each type space is
compact and the payoff functions are continuous in both types and actions; in
this case, the continuous payoffs assumption is satisfied. Furthefmore, they
deal only with the case of independent types, so the continuous information
assumption is satisfied as well. Hence, the above theorem encompasses their

result.

In the existence theorem of [RR], on the other hand, no topology on the
type spaces is assumed to be given. We discuss their approach in the next
section.

The finite-actions, independent-preferences case. Assume that the type

spaces are general measurable spaces, that the types are independent, that

each A; is finite, and that each uy depends only‘on ty and a.
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(Actually, [RR] also assume only that each uy(¢,a) is nj-integrable.
However, using the rescaling discussed in Example 1, there is no- loss of
generality in assuming that these functions are bounded.) They endow each
Dy
{ui} converges to if for every measurable C in Ti x Ai, {ui(c)}

with the topology of pointwise convergence: a (generalized) sequence

converges to ui(C). Interpreting this as a weak*-topology, they obtain the
compactness of D; via Alaoglu's Theorem, and demonstrate the continuity of

the expected payoff functioms.

An alternative approach is available in their setting. Consider the
mapping ty I+ ui(ti,f), which takes Ty dinto RIAI. Topologize T; with
the Euclidean topology on RIA[, identifying types which are mapped into the
same point. (With respect to this topology, the payoff function u; is
continuous on' Ty x A. Furthermore, the measurability of each ui(-,a)
implies that all Borel subsets of T; are measurable.) Use this topology to
define the weak topology oﬁ D;, and observe that the continuous payoffs and
continuous information conditions are satisfied by the games under
consideration. Existence of equilibria then follows from the theorem given in

the previous section.

How do the two topologies defined on D; compare? Up to identificationms,
they are identical. For any a; in Ay and By in Dy, let the partial
distribution of ui conditioned on aj be the measure ui[ai] on Ti
defined for all measurable S in T; by ui[ai](S) = ui(s x {aiL).

A sequence of strategies converges weakly (when there are only finitely many
actions available) if and only if the partial.distributions conditioned on
acts all coﬁverge weakly. And since all of these partial distributions must
sum to, and thétefore are bounded by, the marginal distribution“kni, weak

convergence is equivalent to the pointwise convergence defined above.

Endogenously-defined topologies on types. For games of the type treated

by [RR], it was possible to conmstruct a "suitable" topology on T; when none
was originally given. How might this be done for more general games with
incomplete information? A player's type has two features. It plays a direct
role in his payoff function, and it affects his beliefs about the types of his
competitors. We shall define a metric (actually, a pseudometric) topology on
types which captures these two aspects separately.
For any player i and types ti and t; in Ti’ define
n

1.y ey _ ' - “
Rt jzl sup  sup luy(tfye ) = uy(ege 0
1
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in T, define

(where T—i = Tlx...xTi_lei+1x...xTn), and for t' and t'

dl(t',t") =

[Rnary~1

1
d, (t!,t”).
i=1 LR S |
With respect to the product topology on T x A induced by this metric om T
and the originally-given topology on A, all of the players' payoff functions
are continuous. (The topology defined on Ti in the preceding section is

the di-topology .)

For any player i and type t; in Ty, let n_i(-lti) denote the
conditional distribution on Tog induced by n. (We assume here that regular
versions of conditional probability exist for n.) For any ti and t; in
Ty, define

ael,e) = sup In_(sle)) = n_(slen],
S CT_i

and for t' and t" in T, define
n
aer,emy = ¥ a?(er,en).
i=1 i i

When the players' types are independent, this metric is identically zero.

Given a metric d on T, a probability measure n on T is d-tight if
all of the Borel sets with respect to d are measurable, and if for every

e > 0 there is a d-compact set of measure at least 1 - e.

Theoren.
(a) If n is dl-tight, then the game has continuous payoffs.
(b) If n is dz—tight, then the game has continuous information.

Proof. Part (a) is an immediate consequence of the Arzela -Ascoli

Theorem (see [Bi], page 55). The remainder of the proof deals with part (b).

Since n is dz-tighc, n, is df—tight. Fix any € > 0. From tightnest
it follows that there is a countable collection {Bk} of disjoint measurable
subsets of T; such that each Bk has df-diameter less than € and v
L ni(Bk) 1. Let {tk} be a collection of points such that each tK ig
in BX, For each k, define

e,k _ k
n = n_l(-lt ) x nl’Bk’ where nllBk(C) z nl(Cr1Bk),

and define n° = I n®°%. For every S in T, [n®(S) -n(S)| <e. Also,

€ 14
no<<nZp % Ny
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Define 71 = % Z—m.nllm Thea n << n, and 1 << rT_l xn . Hence, n
is absolutely continuous with respect to a product measure, and therefore
(taking the Lebesgue decomposition of "_—1 with respect to "«1) is
absolutely continuous with respect to n_y X e The theorem follows by

induction. . N

In view of this theorem, a natural topology on each T; 1is that induced
by the metric cli1 + di- Tightness of n with respect to the product topology
induced by these metrics is sufficient to guarantee the existence of

equilibrium points.

An example which sheds light on part (b) of the theorem is the
following: Consider a two-person game, in which both players jointly observe
a single random variable which is uniformly distributed on [0,1]. In this
case, the gontinuous--g}nformation condition fails to hold; the di—topology is
discrete, and nj
point follows by treating the games associated with different values of the

is not di—tight. Still, the existence of an equilibrium

random variable separately. It is not known whether an existence result can
be obtained, for example, for three-player games in which there are three
random variables, X, ¥, and %, and the players observe % and ¥,

% and %, and ¥ and %, respectively.
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